SUPPORTING INFORMATION

Interaction of CO₂ and CH₄ With Functionalized Periodic Mesoporous Phenylene–Silica: Periodic DFT Calculations and Gas Adsorption Measurements

Mirtha A. O. Lourenço,^a Christophe Siquet,^b Mariana Sardo,^c Luís Mafra,^c João Pires,^d Miguel Jorge,^e Moisés L. Pinto,^f Paula Ferreira,^{a*} José R. B. Gomes^{c*}

^aCICECO – Aveiro Institute of Materials, Department of Materials & Ceramics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal

^bLSRE-LCM Associate Laboratory, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

^cCICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

^dCCB, Center of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal

^eDepartment of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom

^fCERENA, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n° 1, 1049-001 Lisboa, Portugal

Table of Contents

- 1. PMO Materials' Characterization Procedures
- 2. Data From the Characterization of PMO Materials

Table S1. Physical properties of Ph-PMO, NH_2 -PMO, APTMS@Ph-PMO and $APTMS@NH_2$ -Ph-PMO.

Figure S1. X-ray diffraction patterns of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

Figure S2. -196 °C nitrogen adsorption-desorption isotherms of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

Figure S3. PSD curves of Ph-PMO, NH_2 -PMO, APTMS@Ph-PMO and APTMS@NH_2-Ph-PMO.

Figure S4. ²⁹Si MAS (left) and CP-MAS (right) NMR spectra of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

Table S2. Percentage of T^m silanols species calculated from the fits of the ²⁹Si MAS NMR spectra.

Figure S5. FTIR (ATR) spectra of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

Figure S6. TGA of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

Table S3. Elemental analyses of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

3. <u>CO₂ and CH₄ Adsorption in the PMOs: Experimental and Computational Studies</u>

Figure S7. Adsorbed amounts of the CO_2/CH_4 mixture as a function of the CH_4 molar fraction in the gas phase for the selected PMO materials.

Figure S8. ¹³C CP-MAS NMR spectra of NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO after material degassing.

Table S4. Virial coefficients and Henry constants (K) for the adsorption at 25 and 35 °C of methane and carbon dioxide on the APTMS@Ph-PMO

Figure S9. Adsorption equilibrium isotherms of CO_2 and CH_4 at 25 and 35 °C for the APTMS@Ph-PMO.

Table S5. Atomic distances between CO_2 and CH_4 with **R'** functionalized **R**-Ph-PMOs.

Table S6. Atomic distances between CO_2 and CH_4 with **R**-functionalized Ph-PMOs.

1. **PMO Materials' Characterization Procedures**

Powder X-ray diffraction (PXRD) data were acquired with a Rigaku Geigerflex D Max-C Series diffractometer using Cu-Kα radiation.

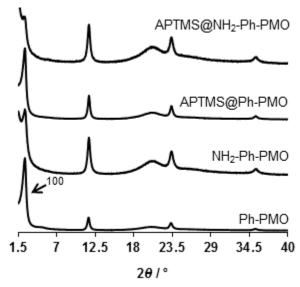
Nitrogen adsorption-desorption isotherms were collected at -196 °C using a Gemini V 2.00 instrument model 2380. All PMO materials were dehydrated overnight at 200 °C to an ultimate pressure of 1024 mbar and then cooled to room temperature prior to adsorption.

¹³C and ²⁹Si/¹⁵N NMR spectra were recorded using a double resonance 4 mm and 7 mm MAS probe, respectively, on a Bruker Avance III 400 spectrometer operating at 9.4 T. ¹³C cross-polarization magic-angle spinning (CP-MAS) NMR spectra were collected using a 4 μs ¹H 90° pulse, a contact time (CT) of 1.5 ms, a spinning rate of 7-9 kHz and recycle delay (RD) of 5 s. ²⁹Si MAS NMR spectra were collected employing a 40° flip angle pulse, a spinning rate of 5 kHz and RD of 60 s. ²⁹Si CP-MAS NMR spectra were acquired employing a 4 μs ¹H 90° pulse, a CT of 8 ms, a spinning rate of 5 kHz and a RD of 5 s. The ¹⁵N CP-MAS spectra were acquired at a spinning rate of 7 kHz under the following experimental conditions: ¹H and ¹⁵N 90° pulses set to 3.2 and 7.3 μs corresponding to a radio-frequency (RF) field strength of 78 and 34 kHz, respectively; the CP step was performed with a contact time of 2 ms with ¹H and ¹⁵N RF field strength of 69 (50–100% RAMP-CP shape) and 34 kHz, respectively; RD of 5 s. During the acquisition, a SPINAL-64 decoupling scheme was used. The SPINAL-64 basic unit pulse length was set to 6.25 μs at a RF field strength of 78 kHz.

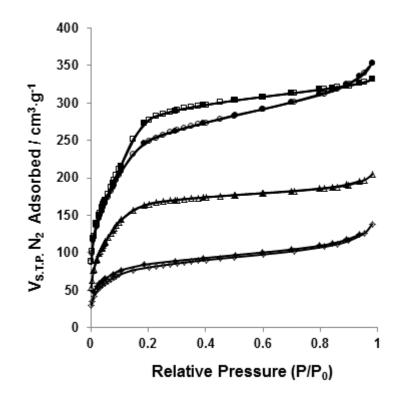
The 13 C and 29 Si NMR spectra were quoted in ppm from trimethylsilane and 15 N chemical shifts were externally referenced to the amine peak (-347.6 ppm) of glycine.

Thermogravimetric analyses (TGA) are made on a Shimadzu TGA-50 instrument with a program rate of 5 $^{\circ}$ C min⁻¹ in air.

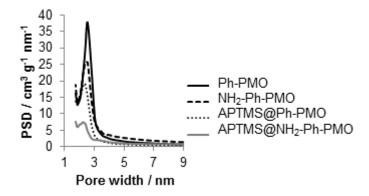
Fourier transform infrared (FTIR) spectra were carried out in a FTIR Bruker Tensor 27 instrument with a Golden Gate ATR (Attenuated Total Reflectance). PMOs powders were dehydrated at 110 °C overnight before FTIR analysis. The FTIR spectra were collected in Absorbance mode.


Elemental analyses CHN were made with a TruSpec 630-200-200 CNHS Analyser. Analysis Parameters: sample amount between 1 and 2 mg; combustion furnace temperature = 1075 °C; afterburner temperature = 850 °C. Detection method: carbon infrared absorption; hydrogen - infrared absorption, nitrogen – thermal conductivity.

2. Data From the Characterization of PMO Materials


Table S1. Physical properties of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

Sample	d_{100} / nm	a / nm^a	$S_{\rm BET}$ / m ² g ⁻¹	$V_{\rm P} /{\rm cm}^3{\rm g}^{-1}$	$d_{\rm P}$ / nm ^b	b / nm^{c}
Ph-PMO	3.59	4.14	1004	0.69	2.54	1.60
NH ₂ -PMO	3.63	4.19	924	0.70	2.41	1.78
APTMS@Ph-PMO	3.34	3.92	634	0.43	2.24	1.68
APTMS@NH ₂ -Ph-PMO	3.50	4.04	305	0.27	2.23	1.81


^aUnit cell parameter calculated as $(2d_{100}/\sqrt{3})$. ^bPore width obtained from the BJH method with the corrected Kelvin equation, i.e. KJS–BJH method at the maximum of pore size distribution calculated on the basis of adsorption data. ^cPore wall thickness calculated as $(2d_{100}/\sqrt{3} - d_P)$, where the first term is the unit cell parameter.

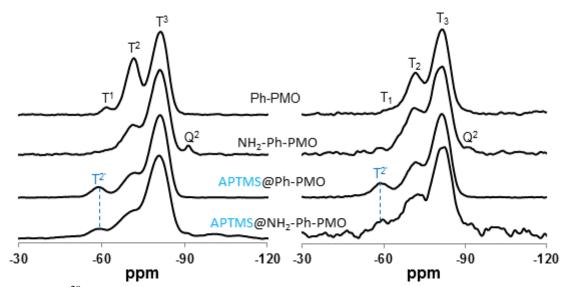

Figure S1. Powder X-ray diffraction patterns of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

Figure S2. -196 °C N₂ isotherms of a) Ph-PMO ((\Box) adsorption, (\blacksquare) desorption); NH₂-Ph-PMO ((\circ) adsorption, (\bullet) desorption); APTMS@Ph-PMO ((Δ) adsorption, (\blacktriangle) desorption) and APTMS@NH₂-Ph-PMO ((\diamond) adsorption, (\bullet) desorption).

Figure S3. Pore size distribution curves of Ph-PMO, NH₂-Ph-PMOs, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

Figure S4. ²⁹Si CP-MAS (left) and MAS (right) NMR spectra of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO. Chemical shifts referenced from TMS.

Table S2. Percentage of T^m silanol species calculated from the fits of the ²⁹Si MAS NMR spectra.

РМО	$\% T^1$	$\% T^2$	% T ³	%T ^{2'a}
Ph-PMO	2.02	31.40	66.58	-
NH ₂ -Ph-PMO	1.22	32.79	66.00	-
APTMS@Ph-PMO	-	28.76	61.80	9.44
APTMS@NH ₂ -Ph-PMO	-	34.73	58.22	7.05

^apercentage of T^2 silanols in the APTMS group.

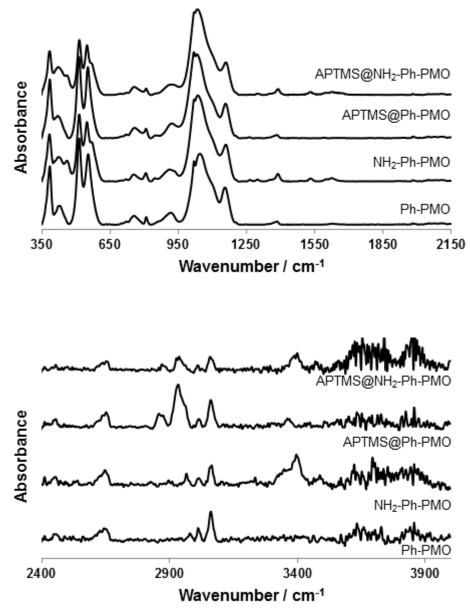
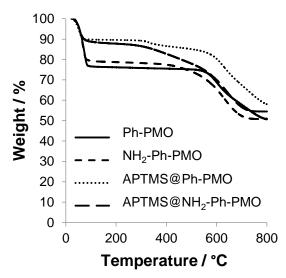



Figure S5. FTIR (ATR) spectra of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

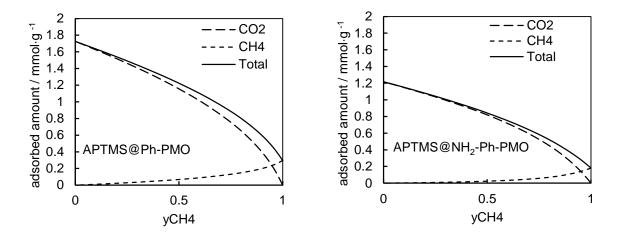
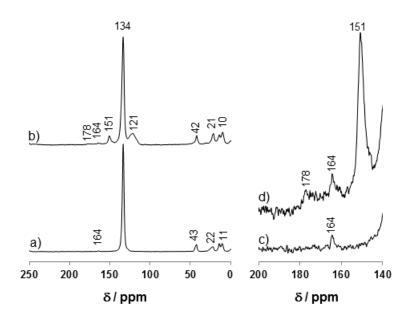


Figure S6. TGA of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.


Table S3. Elemental analyses and nitrogen densities of Ph-PMO, NH₂-PMO, APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO.

Sample	%N	%C	%H	<i>N</i> density / mmol g^{-1}
C ₁₂ -PMO	-	37.21	2.53	-
NH ₂ -C ₁₂ -PMO	2.58	31.57	3.01	1.85
APTMS@C ₁₂ -PMO	1.93	34.08	3.38	1.39
APTMS@NH ₂ C ₁₂ -PMO	3.64	32.53	3.51	2.60

3. CO₂ and CH₄ Adsorption in the PMOs: Experimental and Computational Studies

Figure S7. Adsorbed amounts of the CO_2/CH_4 mixture as a function of the CH_4 molar fraction in the gas phase, at 500 kPa and 25°C, for APTMS-PMO materials.

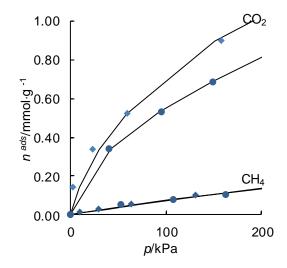


Figure S8. a) 13 C CP-MAS NMR spectra of a) APTMS@Ph-PMO and b) APTMS@NH₂-Ph-PMO after material degassing; c) and d) correspond to the magnified 140-200 ppm region of APTMS@Ph-PMO and APTMS@NH₂-Ph-PMO, respectively.

C und 33	C OI Illetiluile									
Gas	Temperature	K	C_{I}	C_2	C_3					
	°C	$(\text{mmol } g^{-1} \text{ kPa}^{-1}) \text{ x}$ 10^{-2}	g mmol ⁻¹	$(g \text{ mmol}^{-1})^2$	$(g \text{ mmol}^{-1})^3$					
CU	35	0.08	1.230							
$C\Pi_4$	25	0.07	0.797							
<u> </u>	35	1.80	2.812	-1.197						
CO_2	25	1.83	1.647	-0.476	0.048					
Ratio	35		22.50							
CO ₂ /CH ₄	25		26.1							
	Gas CH ₄ CO ₂	GasTemperature $^{\circ}C$ CH_4 25 CO_2 35 CO_2 25Ratio35	Gas Temperature K °C $(mmol g^{-1} kPa^{-1}) x$ 10^{-2} 10^{-2} CH ₄ 35 0.08 25 0.07 CO ₂ 35 1.80 25 1.83 Ratio 35	Gas Temperature K C_1 °C (mmol g ⁻¹ kPa ⁻¹) x 10 ⁻² g mmol ⁻¹ CH ₄ 35 0.08 1.230 CH ₄ 25 0.07 0.797 CO ₂ 35 1.80 2.812 25 1.83 1.647 Ratio 35 22.50	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					

Table S4. Virial coefficients (C_1 , C_2 and C_3) and Henry constants (K) for the adsorption at 25 °C and 35 °C of methane and carbon dioxide on APTMS@Ph-PMO.^a

^a Obtained by the nonlinear least-squares the virial equation to the adsorption data

Figure S9. Adsorption equilibrium isotherms of CO₂ and CH₄ at 25 and 35 °C. Solid lines represent the fits to the Virial model. Labels • correspond to the APTMS@Ph-PMO materials measured at 35 °C (1st utilization of the material) and • correspond to the APTMS@Ph-PMO measured at 25 °C (2nd utilization of the material).

			Atomic distances / Å							
	R'@R-Ph-PMO ^a		CO2			CH ₄				
			09	C ₁₀	011	C ₁₂	H ₁₃	H ₁₄	H ₁₅	H ₁₆
		H_1					3.61			
		H_2				3.33		3.12		
	H- / H-	H_3	3.80	4.33				3.07		Τ
	H/	Si-O ₆ -H ₅	2.28				5.43			
		Si-O ₇ -Si			3.90				3.15	
		Si-O ₈ -Si		3.81						
		N-H ₁₇			2.60			2.36	2.42	
		N ₁₈		4.12	3.24	3.44				
	Η	N-H ₁₉			3.19	2.62		2.65		
	V- /	H ₁	2.87	2.66			3.97			
	-H / -NH ₂	Si-O ₆ -H ₅	2.45		1.60		4.84		0.74	<u> </u>
sle	•	Si-O ₇ -Si		2.06	4.68				2.74	+
R'- Functionalized R-Ph-PMO Materials		Si-O ₈ -Si		2.96	5.00		5.15	4.0.4	2.74	
Ite					5.32		5.15	4.94	1.5.0	+
Иа		H ₂ H ₃	7.02		7.53		+	(70	4.56	+
	H-/SMT4-	H ₃ Si-O ₇ -Si	7.02		/.53			6.72	5.59	+
Ŭ		H ₂₀	2.75				+		2.64	+
M		H ₂₀ H ₂₁	3.41						3.09	+
ų-		H ₂₁ H ₂₂	5.41				3.16		5.07	+
4					3.18		5.10			+
R		H ₂₅	4.14		5.10					3.85
ed		N-H ₂₆	4.14	2.99		3.37				5.65
liz		N ₂₇		2.99	2.59	5.57		2.59		0.75
na		N-H ₂₈	2.22	2.55	2.58		2.02	2.58		2.75
ioi		Si-O-H ₂₉	3.23	3.66			2.93			
lct		H ₁	3.57	2.10				2.00		+
'n		<u>H</u> ₂	- 0 -	3.19				3.80		+
Ξ.		H ₃	6.05							<u> </u>
2		Si-O ₇ -Si	4.51		4.80					
	5	N-H ₁₇	4.51	5.04				5.71		<u> </u>
	HN	N ₁₈	4 70	5.04	4.5.4					+
	I- /	N-H ₁₉	4.78		4.54 2.62					
	SV	H ₂₀								
	-APTMS / -NH ₂	H ₂₁		<u> </u>	2.76		2.00			+
	AF.	H ₂₂	2.25	 			3.98		2.51	+
	•	H ₂₅	3.25						3.64	+
		N-H ₂₆			4.75		 			_
		N-H ₂₈			4.21		 		3.59	+
		Si-O-H ₂₉	2.45	2.74			2.66	2.14		
		Si-O-H ₃₀	4.60				4.91			

Table S5. Selected distances between atoms in the CO_2 and CH_4 adsorbates and in the parent and aminated Ph-PMO adsorbents.

^aThe reference atom for measuring the atomic distances appears in black.

			Atomic distances / Å							
	R-Ph-PMO ^a		CO ₂			CH_4				
			O ₉	C ₁₀	O ₁₁	C ₁₂	H ₁₃	H ₁₄	H ₁₅	H ₁₆
		N-O ₃₁		3.30	3.30			2.74		
		N ₃₂		4.57				3.26		
		N-O ₃₃			4.44			3.76		
	02	H_1	2.86			3.07	2.25			
	-NO2	\mathbf{H}_2	4.07	3.50	3.29	3.37		2.65		
		Si-O ₆ -H ₅	2.34				2.38			
		Si-O ₇ -Si	4.21						3.44	
		Si-O ₈ -Si							3.30	
S		N-H ₃₄			2.81				2.87	
rial		N ₃₅		3.66						
ate	-NH- <i>i</i> -Pr	NH-C-H ₃₆		3.58	3.36				2.75	
M		CH-C-H ₃₇	3.49					3.48		
Functionalized Ph-PMO Materials		CH-C-H ₃₈			2.78			2.19		3.16
PN		CH-C-H ₃₉	2.50				2.55			
-h-		CH-C-H ₄₀			3.14		2.19			
l bé		H ₁	2.62	3.50						4.20
lize		Si-O ₆ -H ₅	3.37				4.91			3.00
na		Si-O ₇ -Si		2.87					2.28	
ctic	-CH ₂ NH ₂	C-H ₄₁			3.16					2.99
nne		CH-N-H ₄₂			2.26				2.77	2.60
- F		H_1	3.86				4.26			
R		H_2	3.01				2.38			2.88
	Ģ	Si-O ₆ -H ₅	2.38				2.54			
		Si-O ₇ -Si	3.25						3.30	
		Si-O ₈ -Si		3.11					2.28	
		S-O ₄₃		3.10	3.18		 	2.43		
		S-O ₄₄			4.76		 			
		S-O ₄₅ H			3.38			3.15		
	H_{5}	H ₁	3.58				3.48			
	H ₆ O ₃ H	H ₂	3.86				4.38			
		Si-O ₆ -H ₅	2.72		4.38		2.95			
		Si-O ₇ -Si	3.71							
		Si-O ₈ -Si		4.03					3.03	

Table S6. Selected atomic distances between CO_2 or CH_4 and the **R**-functionalized Ph-PMOs.

^aThe reference atom for measuring the atomic distances appears in black.