## Opposing Effects of Cucurbit[7]uril and

# 1,2,3,4,6-penta-O-galloyl- $\beta$-D-glucopyranose on Amyloid $\beta_{25-35}$ Assembly 

Natália E. C. de Almeida, ${ }^{\dagger}$ Thanh D. Do, ${ }^{\dagger,{ }^{\ddagger}}$ Michael Tro, ${ }^{\dagger}$ Nichole E. LaPointe, ${ }^{\dagger}$ Stuart C. Feinstein, ${ }^{\ddagger}$ Joan-Emma Shea, ${ }^{\dagger}$ Michael T. Bowers ${ }^{\dagger}{ }^{*}$<br>${ }^{\dagger}$ Department of Chemistry and Biochemistry, ${ }^{\ddagger}$ Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States.<br>*Corresponding author: Michael T. Bowers.<br>Tel: +1-805-893-2673; E-mail address: bowers@chem.ucsb.edu

SUPPPORTING INFORMATION

## This material is available free of charge via the Internet at http://pubs.acs.org

## S1. Materials and Methods

## S1.1. Materials and Sample preparation

## Peptide and sample preparation for IMS-MS and TEM experiments

$\mathrm{A} \beta_{25-35}$ peptide (GSNKGAIIGLM) with free termini was purchased from rPeptide (Bogard, GA). The peptide solution was prepared in submicron filtered water (HPLC grade) acidified with formic acid ( $0.1 \%$ ( $\mathrm{v} / \mathrm{v})$ ) purchased from Fisher Scientific (Bridgewater, NJ) (final peptide concentration $100 \mu \mathrm{M}$ ). 1,2,3,4,6-penta-O-galloyl- $\beta$-Dglucopyranose (PGG) was purchased from Sigma-Aldrich (St. Louis, MO, USA) and dissolved in water containing 20\% (v/v) methanol purchased from TCI America (Portland, OR, USA), whereas cucurbit[7]uril (CB[7]) was purchased from SigmaAldrich (St. Louis, MO, USA) and dissolved in water acidified with formic acid ( $0.1 \%$ ( $\mathrm{v} / \mathrm{v}$ )).

The $\mathrm{A} \beta_{25-35}$ was incubated with the ligands at molar ratios of 1:1 and 1:10. A positive control was performed using an $\mathrm{A} \beta_{25-35}$ solution without the ligands and, after 1 week of incubation time at room temperature, the samples were analyzed by ion mobility spectrometry coupled mass spectrometry (IMS-MS) and by transmission electron microscopy (TEM). For the TEM analysis, samples were adsorbed onto 300 mesh formvar/carbon copper grids (Electron Microscopy Sciences) for 1.5 min . Grids were subsequently rinsed with deionized water and then stained for 1 min with $2 \%$ uranyl acetate. Additionally, $\mathrm{CB}[7]$ was added to a $\mathrm{A} \beta_{25-35}$ solution previously incubated for one week with PGG (at 1:1 ratio) to the final $\mathrm{A} \beta_{25-35}$ :PGG:CB[7] molar ratio of $1: 1: 5$ and 1:1:10, and then incubated an additional two days prior to TEM analysis.

## S1.2. Methods

## S.1.2.1. Ion mobility spectrometry coupled mass spectrometry (IMS-MS).

The samples were analyzed on a home built ion mobility spectrometer coupled to a mass spectrometer (IMS-MS) comprised of a nano-electrospray ionization (nano-ESI) source, an ion funnel, a temperature-controlled drift cell, a quadrupole mass filter and an electron multiplier detector. ${ }^{1,2}$ Briefly, gold coated borosilicate capillaries made on an inhouse micropipette puller (Sutter Instrument Co., Novato, CA) were used to load the samples. A positive voltage was applied and ions were continuously formed, focused and stored in the ion funnel. A $10 \mu$ s pulse of ions was injected into a temperature-controlled drift cell filled with $\sim 5$ Torr of helium gas where they gently passed through under the influence of a weak electric field ( $5-20 \mathrm{~V} \mathrm{~cm}^{-1}$ ). The injection energy may be varied from $\sim 20$ to $\sim 150 \mathrm{eV}$ but was normally kept as $\sim 40 \mathrm{eV}$ to minimize thermal heating of the ions and allow accurate mobility measurements. The ions leaving the drift cell were mass analyzed using a quadrupole mass filter, detected by a conversion dynode/electron multiplier arrangement, and recorded as a function of their arrival time to obtain arrival time distributions (ATDs).

The injected ions in the drift cell experience a constant force from the electric field, $E$, that is balanced by a retarding frictional force due to collisions with the buffer gas. As a result, the velocity $\left(v_{d}\right)$ of the ions in the buffer gas is constant and proportional to the electric field, equation $1 ;{ }^{3}$

$$
\begin{equation*}
\vec{v}_{\mathrm{d}}=K \vec{E} \tag{1}
\end{equation*}
$$

where $K$ is the mobility. The mobility of the ion packet is dependent on the temperature $(T)$ and the pressure $(P)$ of the buffer gas; hence the standard state reduced mobility $\left(K_{0}\right)$ is more convenient to use:

$$
\begin{equation*}
K_{0}=K \cdot \frac{P}{760 \text { Torr }} \cdot \frac{273.16 \mathrm{~K}}{T} \tag{2}
\end{equation*}
$$

The ions leaving the drift cell are mass analyzed and detected as a function of arrival time, and the reduced mobility can be obtained ${ }^{4}$ from the instrument parameters by converting equation 1 to equation 3 and by plotting $t_{\mathrm{A}}$ versus $P / V$;

$$
\begin{equation*}
t_{\mathrm{A}}=\frac{l^{2}}{K_{0}} \cdot \frac{273.16 \mathrm{~K}}{760 \text { Torr } . T} \cdot \frac{P}{V}+t_{0} \tag{3}
\end{equation*}
$$

where $l$ is the length of the drift cell $(4.503 \mathrm{~cm}), P$ denotes the gas pressure (in Torr), $V$ is the voltage across the cell and $t_{0}$ the time the ions spend outside the drift cell before hitting the detector. From the kinetic theory of gases, ${ }^{3} K_{0}$ can be related to the collision cross section $\sigma$ by equation 4 :

$$
\begin{equation*}
K_{0}=\frac{3 q}{16 N} \cdot\left[\frac{2 \pi}{\mu k_{b} T}\right]^{1 / 2} \cdot \frac{1}{\sigma} \tag{4}
\end{equation*}
$$

Here, $N$ is the buffer gas number density at STP, $q$ is the ion charge, $\mu$ is the reduced mass of the ion/helium collision system and $k_{\mathrm{b}}$ is the Boltzmann constant. The flux of ions exiting the drift tube can be calculated using ion transport theory. By assuming that the ion packet is taken as a periodic delta function, the flux is given by equation 5. ${ }^{3,4}$

$$
\begin{equation*}
\phi(0, z, t)=\frac{s \cdot a \cdot e^{-\alpha \cdot t}}{4\left(\pi \mathrm{D}_{\mathrm{L}} t\right)^{1 / 2}} \cdot\left[v_{\mathrm{d}}+\frac{z}{t}\right] \cdot\left[1-e^{\left(-r_{0}^{2} / 4 \mathrm{D}_{\mathrm{T}} t\right)}\right] \cdot e^{\left(-\left(z-v_{\mathrm{d}} \cdot t\right)^{2} / 4 \mathrm{D}_{\mathrm{L}} t\right)} \tag{5}
\end{equation*}
$$

where $z$ denotes the distance of the ion traveled, $a$ is the area of the exit aperture, $r_{0}$ is the radius of the initial ion packet, $s$ is the initial ion density, $\alpha$ is the loss of ions due to reactions in the drift tube, and $D_{\mathrm{L}}$ and $\mathrm{D}_{\mathrm{T}}$ refer to the longitudinal and transverse diffusion coefficients, respectively. This equation allows the calculation of the arrival time peak shape expected for a pulse of ions with a single collision cross section.

As a result, multiple features may appear in the same ATD, indicating the presence of different oligomers with the same $m / z$ but distinct $n / z$ or distinct conformations of the same oligomer. Extended conformers experience more collisions with the buffer gas than compact ones, leading to longer arrival times and larger cross sections. For oligomers
with the same $n / z$, the larger oligomers would transverse the drift cell faster as they possess a higher charge per unit cross section (for example, the $n / z=2 / 2$ dimer has twice the charge of the $n / z=1 / 1$ monomer but it is not twice as large due to the contact surface between the two monomers in the dimer. Hence dimers arrive before monomer, trimers before dimers etc. at the same $n / z$ ).

## S.1.2.2. Transmission electron microscopy (TEM)

TEM images were taken using a JEOL 123 microscope, an ORCA camera, and AMT Image Capture Software v. 5.24.

## S.1.2.3. Explicit solvent molecular dynamics simulations

Force field parameterization. The three-dimensional structure of $\mathrm{CB}[7]$ was obtained from the X-ray crystal structure solved by Kim, J. et al. ${ }^{5}$ Solvent ions were removed. The three-dimensional structure of PGG was built and geometry optimized using the Avogadro molecular editor (http://avogadro.cc). ${ }^{6}$ The bare ligand molecule was subjected to geometry optimization and partial charge fitting using the RESP ESP charge Derive Server (http://q4md-forcefieldtools.org/REDServer/). ${ }^{7-10}$ We used the RESP-A1A charge model (i.e., HF level and $6-31 G^{*}$ basis set; Connolly surface algorithm used in MEP computation and two stage RESP fit with $q w t=0.0005 / 0.001$ ) to be compatible with the Amber force fields. Additional parameters for PGG were chosen from the GAFF force field. ${ }^{11,12}$

Simulation details. The $\mathrm{A} \beta_{25-35}$ monomer was built using the tleap module available from the Amber12 package. ${ }^{11}$ The force field parameters of this peptide are from the Amber ff12SB. Each simulation contains four $\mathrm{A} \beta_{25-35}$ monomers and four ligands (PGG or CB[7]). The initial positions of each peptide and ligand were set by VMD. ${ }^{13}$ Four $\mathrm{Cl}-$ ions were added to neutralize the net charge. The whole system was solvated in an
octahedral TIP3P water box using the spacing distance of $11 \AA$ around the molecules, so that there were approximately 8,000 water molecules. The solvated systems were subjected to a series of short minimization and heating cycles to equilibrate the solvent at 300K. The MD simulation was performed in the NPT ensemble using the periodic boundary condition and a time step of 2 fs . Temperature was regulated by Langevin dynamics with a collision frequency of 1.0. The MD trajectory was 180 -ns long for each system.

## S2. Mass spectra



Figure S1. ESI-Q spectra of $\mathbf{A} \boldsymbol{\beta}_{25-35}$ incubated (A) in water acidified with formic acid $\mathbf{( 0 . 1 \%}$ $\mathrm{v} / \mathrm{v}),(\mathrm{B})$ with $\mathbf{C B}[7]$ at $\mathbf{1 : 1}$ and (C) at $\mathbf{1 : 1 0} \mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5 - 3 5}} \mathbf{C B}[7]$ mixtures. The $\mathrm{A} \beta_{25-35}$ mass spectrum (Fig. A) displays two major peaks at $m / z 530(n / z, 1 / 2)$ and $m / z 1060(n / z 1 / 1$ and 2/2), and minor peaks at $m / z 578(n / z 6 / 11), m / z 652(n / z 8 / 13), m / z 733(n / z 9 / 13), m / z 795(n / z 3 / 4), m / z 908(n / z$ 6/7), $m / z 1272(n / z 6 / 5), m / z 1325(n / z 5 / 4), m / z 1413(n / z 4 / 3), m / z 1484(n / z 7 / 5)$ and $m / z 1590$ $(n / z 3 / 2)$. From the mass spectrum obtained for the $\mathrm{A} \beta_{25-35}: \mathrm{CB}[7]$ mixture at a ratio of 1 to 1 (Fig. B), the two most abundant peaks at $m / z 741(n / z(1+1) / 3)$ and $1111(n / z(1+1) / 2$ and $(2+2) / 4)$ are attributed to $\mathrm{A} \beta_{25-35}: \mathrm{CB}[7]$ complexes, which refer to the monomer and the dimer bound to one and two $\mathrm{CB}[7]$ molecules, respectively. The remaining $\mathrm{A} \beta_{25-35}$ homo-oligomers are the monomers at $m / z 530(n / z 1 / 2)$ and $m / z 1060(n / z 1 / 1)$, the dimer at $m / z 1060(n / z 2 / 2)$, the trimer at $m / z 795$ $(n / z 3 / 4)$ and the hexamers at $m / z 908(n / z 6 / 7)$ and $m / z 578(n / z 6 / 11)$. At $\mathrm{A} \beta_{25-35}: \mathrm{CB}[7] 1: 10$ ratio
(Fig. C), the large $\mathrm{A} \beta_{25-35}$ homo-oligomers fully deplete, whereas the population increases for the peaks at $m / z 741$ and 1111 that correspond to the $\mathrm{A} \beta_{25-35:} \mathrm{CB}[7]$ complexes.

## S3. Ion mobility data and Arrival Time Distributions (ATDs)

## S3.1. ATDs for $\mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5 - 3 5}}$



Figure S2. ATDs of $\left.\mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5}-35} \mathbf{( 1 0 0} \boldsymbol{\mu} \mathbf{M}\right)$. The peak at $m / z 530$ was the most abundant, which refers to a single monomer species with a collision cross section of $240 \AA^{2}$. It is consistent with the compact monomer cross section ( $237 \AA^{2}$ ) obtained from the $m / z 1060$ ATD, which also contains a dimer (395 $\AA^{2}$ ). Other abundant peaks are $m / z, 908$ (hexamers, 1160 and $1213 \AA$ ), 795 (trimer, $592 \AA$ ), 733 (nonamers, 1832 and $1867 \AA$ ) and 578 (hexamers, 1135 and $1278 \AA$ ), which display
larger and extended oligomers. The minor peaks at $m / z 652,1272,1325,1413,1484$ and 1590 refer to octamers ( 1562 and $1644 \AA$ ), hexamer $(1185 \AA$ ), pentamer $(970 \AA)$, tetramers ( 676 and $805 \AA$ ), heptamers ( 1364 and $1463 \AA$ ) and trimers ( 524 and $607 \AA$ ), respectively.

Table S1. Collision cross section for homo-oligomers of $\mathrm{A} \beta_{25-35}$.

| $\mathbf{m} / \mathbf{z}$ | $\mathbf{n}$ <br> $\mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5 - 3 5}}$ | $\mathbf{z}$ <br> charge | Experimental <br> Cross Section ${ }^{\text {a }} \sigma_{\text {exp }}$ | Idealized growth model <br> Isotropic ${ }^{\mathbf{b}}, \sigma_{\text {iso }}(n)$ |
| :---: | :---: | :---: | :---: | :---: |
| 530 | 1 | 2 | 240 | 237 |
| 578 | 6 | 11 | 1135 | 782 |
| 578 | 6 | 11 | 1278 | 782 |
| 652 | 8 | 13 | 1562 | 948 |
| 652 | 8 | 13 | 1644 | 948 |
| 733 | 9 | 13 | 1832 | 1025 |
| 733 | 9 | 13 | 1867 | 1025 |
| 795 | 3 | 4 | 592 | 493 |
| 908 | 6 | 7 | 1160 | 782 |
| 908 | 6 | 7 | 1213 | 782 |
| 1060 | 1 | 1 | 237 | 237 |
| 1060 | 2 | 2 | 395 | 376 |
| 1272 | 6 | 5 | 1185 | 782 |
| 1325 | 5 | 4 | 970 | 693 |
| 1413 | 4 | 3 | 676 | 597 |
| 1413 | 4 | 3 | 805 | 597 |
| 1484 | 7 | 5 | 1364 | 867 |
| 1484 | 7 | 5 | 1463 | 867 |
| 1590 | 3 | 2 | 524 | 493 |
| 1590 | 3 | 2 | 607 | 493 |
| a $\AA^{2}$ |  |  |  |  |

## S3.2. ATDs for $\mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5}-35}$ incubated with $\mathbf{C B}[7]$




Figure S3. ATDs of $A \beta_{25-35}(100 \boldsymbol{\mu M})$ incubated with $\mathrm{CB}[7]$ at the molar ratio of 1:1. The data show ATDs for $\mathrm{A} \beta_{25-35}$ monomer and dimer bound to one and two $\mathrm{CB}[7]$ molecules. The peak at $m / z 741$ displays a compact monomer bound to one $\mathrm{CB}[7]$ molecule $(n / z(1+1) / 3)$ with cross section of $367 \AA$, and it also contains a smaller feature which consists of an extended monomer with cross section of $503 \AA$. Monomer and dimer complexes with one and two CB[7] molecules are also detected at $m / z 1111(n / z(1+1) / 2$ and $(2+2) / 4)$, for which the cross sections were 359 and $575 \AA$ A, respectively.

Table S2. Collision cross section for hetero-oligomers of $\mathrm{A} \beta_{25-35}$ incubated with $\mathrm{CB}[7]$ at the molar ratio of $1: 1$.

| m/z | $\stackrel{\mathbf{n}}{\mathbf{A} \boldsymbol{\beta}_{25-35}}$ | $\begin{gathered} \mathbf{k} \\ \mathbf{C B}[7] \end{gathered}$ | $\begin{gathered} \mathrm{z} \\ \text { charge } \end{gathered}$ | $\begin{gathered} \text { Cross } \\ \text { section }^{\text {a }} \\ \sigma_{\text {exp }} \\ \hline \end{gathered}$ | Isotropic model ${ }^{\text {a,b }}$ $\sigma_{\text {iso }}$ | Ratio experimente/ isotropic ${ }^{\text {c }}$ $\varepsilon(n, k)$ | Isotropic $\begin{gathered} \mathbf{A} \boldsymbol{\beta}_{25-35^{\mathbf{d}}} \\ \sigma_{\text {iso }}(n) \end{gathered}$ | $\begin{gathered} \text { Corrected } \\ \mathbf{A} \boldsymbol{\beta}_{25-35^{\text {a, e }}} \\ \sigma_{\text {corr }}(n, k) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 741 | 1 | 1 | 3 | 367 | 360 | 1.018149 | 237 | 241 |
| 741 | 1 | 1 | 3 | 503 | 360 | 1.395446 | 237 | 331 |
| 1111 | 1 | 1 | 2 | 359 | 360 | 0.995955 | 237 | 236 |
| 1111 | 2 | 2 | 4 | 575 | 572 | 1.004908 | 376 | 378 |

${ }^{\text {a }}$ values in $\AA^{2}$.
${ }^{\mathrm{b}}$ isotropic cross section is calculated as $\sigma_{\text {iso }}(n, k)=\left[n \cdot \sigma_{\mathrm{AB}}^{25-35, \text { mon }}{ }^{3 / 2}+k \cdot \sigma_{\mathrm{CB}[7], \text { mon }}{ }^{3 / 2}\right]^{2 / 3}$, where $n$ and $k$ are the number of $\mathrm{A} \beta_{25-35}$ and the number of $\mathrm{CB}[7]$ molecules, respectively, and $\sigma_{\mathrm{A} \beta}^{25-35 \text {,mon }}$ $\left(237 \AA^{2}\right)$ and $\sigma_{\mathrm{CB}[7], \text { mon }}\left(217 \AA^{2}\right)$ are the collision cross sections of the compact monomers of $\mathrm{A} \beta_{25-}$ 35 and cucurbit[7]uril (CB[7]), respectively. The value of $217 \AA^{2}$ for the collision cross section of $\mathrm{CB}[7]$ was obtained from calculating the cross section of the X-ray structure of $\mathrm{CB}[7]$ (see Kim, J. et $\mathrm{al}^{5}$ ) using the trajectory (TJ) ${ }^{14,15}$ and projected superposition approximation (PSA) ${ }^{16,17}$ methods.
${ }^{\mathrm{c}}$ given by $\mathcal{E}(n, k)=\sigma_{\text {exp }} / \sigma_{\text {iso }}(n, k)$.
${ }^{\mathrm{d}}$ given by $\sigma_{\text {iso }}(n)=\sigma_{\mathrm{A} \beta_{25-35, \text { mon }}} \cdot n^{2 / 3}$.
${ }^{\mathrm{e}}$ given by $\sigma_{\text {corr }}(n, k)=\sigma_{\text {iso }}(n)^{\cdot} \mathcal{E}(n, k)=\sigma_{\text {iso }}(n)^{\bullet}\left[\sigma_{\text {exp }} / \sigma_{\text {iso }}(n, k)\right]$.

## S3.3. ATDs for $\mathbf{A} \boldsymbol{\beta}_{25-35}$ incubated with PGG



Figure S4. ATDs of $\mathbf{A} \boldsymbol{\beta}_{25-35}(100 \boldsymbol{\mu} \mathbf{M})$ incubated with PGG at the molar ratio of $1: 1$. From the data, different complexes of $A \beta_{25-35}$ with PGG were observed, which correspond to $A \beta_{25-35}$ monomer, dimer, trimer, tetramer, hexamer, heptamer and octamer bound to several PGG molecules. The ATD of $m / z 1000$ displays an $\mathrm{A} \beta_{25-35}$ monomer and a dimer bound to one and two PGG molecules $(n / z(1+1) / 2$ and $(2+2) / 4)$ with cross sections of 432 and $673 \AA$, respectively. Similarly, dimers with two and one PGG molecules are found at $m / z 1334(n / z(2+2) / 3,619 \AA)$ and at $m / z 1530(n / z(2+1) / 2,521 \AA)$, which also shows a tetramer bound to two ligand molecules $(n / z(4+2) / 4,832 \AA)$. Trimer complexes containing one and three PGG molecules are observed at $m / z 1373(n / z(3+1) / 3,607 \AA)$ and at $m / z 1500(n / z(3+3) / 4,847 \AA)$, which also display oligomeric $\mathrm{A} \beta_{25-35}$ hexamers bound to two and six PGG molecules $(n / z(6+2) / 6,1069 \AA ; n / z(6+6) / 8,1410$ A). $\mathrm{A} \beta_{25-35}$ heptamers bound to four and three PGG molecules are found at $\mathrm{m} / \mathrm{z} 1398(\mathrm{n} / \mathrm{z}(7+4) / 8$,

1454 and $1671 \AA$ ) and at $m / z 1463(n / z(7+3) / 7,1291$ and $1496 \AA)$. Finally, octamer complexes containing four bound PGG molecules are observed at $m / z 1360(n / z(8+4) / 9)$ with cross sections of 1606 and $1769 \AA$.

Table S3. Collision cross section for hetero-oligomers of A $\beta_{25-35}$ incubated with PGG at the molar ratio of 1:1.

| m/z | $\begin{gathered} \mathbf{n} \\ \mathbf{A} \boldsymbol{\beta}_{25-35} \end{gathered}$ | $\begin{gathered} \mathbf{p} \\ \mathbf{P G G} \end{gathered}$ | $\begin{gathered} \mathrm{z} \\ \text { charge } \end{gathered}$ | Cross section ${ }^{\text {a }}$ $\sigma_{\text {exp }}$ | Isotropic model ${ }^{\text {a,b }}$ $\sigma_{\text {iso }}$ | Ratio experimente/ isotropic ${ }^{\text {c }}$ $\varepsilon(n, p)$ | Isotropic $A \boldsymbol{\beta}_{25-35}{ }^{\text {d }}$ $\sigma_{\mathrm{iso}}(n)$ | $\begin{gathered} \text { Corrected } \\ \mathbf{A} \boldsymbol{\beta}_{25-3 \mathrm{~s}^{2, e}} \\ \sigma_{\text {corr }}(n, p) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | , | 1 | 2 | 432 | 363 | 1.189928 | 237 | 282 |
| 1000 | 2 | 2 | 4 | 673 | 576 | 1.167792 | 376 | 439 |
| 1334 | 2 | 2 | 3 | 619 | 576 | 1.074091 | 376 | 404 |
| 1360 | 8 | 4 | 9 | 1606 | 1213 | 1.323761 | 948 | 1255 |
| 1360 | 8 | 4 | 9 | 1769 | 1213 | 1.458115 | 948 | 1382 |
| 1373 | 3 | 1 | 3 | 607 | 587 | 1.034584 | 493 | 510 |
| 1373 | 6 | 2 | 6 | 1069 | 931 | 1.147804 | 782 | 898 |
| 1398 | 7 | 4 | 8 | 1454 | 1142 | 1.272801 | 867 | 1104 |
| 1398 | 7 | 4 | 8 | 1671 | 1142 | 1.462758 | 867 | 1268 |
| 1463 | 7 | 3 | 7 | 1291 | 1077 | 1.198803 | 867 | 1039 |
| 1463 | 7 | 3 | 7 | 1496 | 1077 | 1.389163 | 867 | 1204 |
| 1500 | 3 | 3 | 4 | 847 | 755 | 1.121604 | 493 | 553 |
| 1500 | 6 | 6 | 8 | 1410 | 1199 | 1.176220 | 782 | 920 |
| 1530 | 2 | 1 | 2 | 521 | 481 | 1.082119 | 376 | 407 |
| 1530 | 4 | 2 | 4 | 832 | 764 | 1.088614 | 597 | 650 |

${ }^{\text {a }}$ values in $\AA^{2}$.
${ }^{\mathrm{b}}$ isotropic cross section is calculated as $\sigma_{\mathrm{iso}}(n, p)=\left[n \cdot \sigma_{\mathrm{A} \beta_{25-35, \text { mon }}}{ }^{3 / 2}+p \cdot \sigma_{\mathrm{PGG}, \mathrm{mon}}{ }^{3 / 2}\right]^{2 / 3}$, where $n$ and $p$ are the number of $\mathrm{A} \beta_{25-35}$ and PGG molecules, respectively, and $\sigma_{A \beta_{25-35, \text { mon }}}\left(237 \AA^{2}\right)$ and $\sigma_{\text {PGG,mon }}\left(220 \AA^{2}\right)$ are the collision cross sections of the compact monomers of $\mathrm{A} \beta_{25-35}$ and 1,2,3,4,6-penta-O-galloyl- $\beta$-D-glucopyranose (PGG), respectively. The value of $220 \AA^{2}$ for the collision cross section of PGG was obtained from averaging the cross sections of geometryoptimized PGG obtained from the TJ ${ }^{14,15}$ and PSA $^{16,17}$ methods.
${ }^{c}$ given by $\varepsilon(n, p)=\sigma_{\text {exp }} / \sigma_{\text {iso }}(n, p)$.
${ }^{\mathrm{d}}$ given by $\sigma_{\text {iso }}(n)=\sigma_{A \beta_{25-35, \text { mon }}} \cdot n^{2 / 3}$.
${ }^{\mathrm{e}}$ given by $\sigma_{\text {corr }}(n, p)=\sigma_{\text {iso }}(n) \cdot \varepsilon(n, p)=\sigma_{\text {iso }}(n) \cdot\left[\sigma_{\text {exp }} / \sigma_{\text {iso }}(n, p)\right]$.

## S3.4. ATDs for $\mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5 - 3 5}}$ incubated with PGG and $\mathrm{CB}[7]$



Figure S5. ATDs of $\mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5 - 3 5}}(\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{M})$ incubated with PGG and $\mathrm{CB}[7]$ at the molar ratio of 1:1:1. The ATDs are for $\mathrm{A} \beta_{25-35}$ monomer and dimer bound to one PGG and to one $\mathrm{CB}[7]$ molecule. The ATD at $m / z 791$ shows two monomers bound to one PGG and to one CB[7] molecule $(n / z(1+1+1) / 4)$ with cross sections of 470 and $493 \AA$. The dimer complexes with one bound molecule of PGG and $\mathrm{CB}[7]$ are found at $m / z 845(n / z(2+1+1) / 5)$, for which the cross sections were 577 and $598 \AA$, respectively.

Table S4. Collision cross section for hetero-oligomers of $\mathrm{A} \beta_{25-35}$ incubated with PGG and CB[7] at the molar ratio of $1: 1: 1$.

| m/z | $\begin{gathered} \mathbf{n} \\ \mathbf{A} \boldsymbol{\beta}_{25-35} \end{gathered}$ | $\begin{gathered} \mathbf{p} \\ \text { PGG } \end{gathered}$ | $\begin{gathered} \mathbf{k} \\ \mathbf{C B}[7] \end{gathered}$ | $\begin{gathered} \mathbf{z} \\ \text { charge } \end{gathered}$ | $\begin{gathered} \text { Cross } \\ \text { section }^{\mathbf{a}} \\ \sigma_{\text {exp }} \\ \hline \end{gathered}$ | Isotropic model ${ }^{\text {a,b }}$ $\sigma_{\text {iso }}$ | Ratio experimente/ isotropic ${ }^{\text {c }}$ $\varepsilon(n, p, k)$ | $\begin{gathered} \text { Isotropic } \\ \mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5 - 3 5}}^{\mathbf{d}} \\ \sigma_{\text {iso }}(n) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Corrected } \\ \mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5 - 3 5}}{ }^{\text {a,e }} \\ \sigma_{\text {corr }}(n, p, k) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 791 | 1 | 1 | 1 | 4 | 470 | 468 | 1.004959 | 237 | 238 |
| 791 | 1 | 1 | 1 | 4 | 493 | 468 | 1.054138 | 237 | 250 |
| 845 | 2 | 1 | 1 | 5 | 577 | 574 | 1.004792 | 376 | 378 |
| 845 | 2 | 1 | 1 | 5 | 598 | 574 | 1.041361 | 376 | 392 |

${ }^{\text {a }}$ values in $\AA^{2}$.
${ }^{\mathrm{b}}$ isotropic cross section is calculated as $\sigma_{\mathrm{iso}}(n, p, k)=\left[n \cdot \sigma_{\mathrm{A} \beta 25-35, \text { mon }}{ }^{3 / 2}+p \cdot \sigma_{\mathrm{PGG}, \mathrm{mon}}{ }^{3 / 2}+k \cdot\right.$ $\left.\sigma_{\mathrm{CB}[7], \text { mon }}{ }^{3 / 2}\right]^{2 / 3}$, where $n, p$ and $k$ are the number of $\mathrm{A} \beta_{25-35}, \mathrm{PGG}$ and $\mathrm{CB}[7]$ molecules, respectively, and $\sigma_{\mathrm{A} \beta_{25-35, \text { mon }}}\left(237 \AA^{2}\right), \sigma_{\text {PGG,mon }}\left(220 \AA^{2}\right)$ and $\sigma_{\mathrm{CB}[7], \text { mon }}\left(217 \AA^{2}\right)$ are the collision cross sections of the compact monomers of $\mathrm{A} \beta_{25-35}, 1,2,3,4,6$-penta-O-galloyl- $\beta$-D-glucopyranose (PGG) and cucurbit[7]uril (CB[7]), respectively. The values of 220 and $217 \AA^{2}$ for the collision cross section of PGG and CB[7] were obtained from theory, as described before.
${ }^{c}$ given by $\mathcal{E}(n, p, k)=\sigma_{\text {exp }} / \sigma_{\text {iso }}(n, p, k)$.
${ }^{\mathrm{d}}$ given by $\sigma_{\text {iso }}(n)=\sigma_{\mathrm{A} \beta_{25-35, \text { mon }}} \cdot n^{2 / 3}$.
${ }^{\mathrm{e}}$ given by $\sigma_{\text {corr }}(n, p, k)=\sigma_{\text {iso }}(n) \cdot \varepsilon(n, p, k)=\sigma_{\text {iso }}(n) \cdot{ }^{\cdot}\left[\sigma_{\text {exp }} / \sigma_{\text {iso }}(n, p, k)\right]$.

## S4. Transmission electron microscopy (TEM) data of $\mathbf{A} \boldsymbol{\beta}_{\mathbf{2 5}-35}$ incubated with PGG followed by CB[7]

## (A) 1-week incubation of $A \beta_{25-35}$ with PGG (1:1 ratio)


(B) 2-day incubation of sample (A) with $\mathrm{CB}[7]$ (1:1:5 $\mathrm{A} \beta_{25-35}:$ PGG:CB[7] ratio)

(C) 2-day incubation of sample (A) with $\mathrm{CB}[7]$ (1:1:10 $\mathrm{A} \beta_{25-35}:$ PGG:CB[7] ratio)


Figure S6. TEM images for recovery experiments. (A) $\mathrm{A} \beta_{25-35}$ solution incubated for one week with PGG at 1:1 molar ratio. Addition of $\mathrm{CB}[7]$ to this sample at a $1: 1: 5$ (B) or at a $1: 1: 10$ (C) $\mathrm{A} \beta_{25-35}: \mathrm{PGG}: \mathrm{CB}[7]$ molar ratio and then further incubation for two days was applied before the TEM analyzes. The exposure of pre-formed $\mathrm{A} \beta_{25-35}$ : PGG fibers to $\mathrm{CB}[7]$ qualitatively reduced the number of $\mathrm{A} \beta_{25-35}$ fibers, and the most of the remaining fibers exhibited some degree of irregularity, with regions that were thicker and heavily stained.

## References

(1) Wyttenbach, T., Kemper, P. R., and Bowers, M. T. (2001) Design of a new electrospray ion mobility mass spectrometer. Int. J. Mass Spectrom. 212, 13-23.
(2) Wyttenbach, T., Gidden, J., and Bowers, M. T. In Ion Mobility Spectrometry - Mass Spectrometry; Wilkins, C. L., Trimpin, S., Eds.; CRC Press: Boca Raton, FL, 2011, p 3-30.
(3) Mason, E. A. Transport Properties of Ions in Gases; 99 ed.; John Wiley \& Sons, 1988.
(4) Gidden, J., Ferzoco, A., Baker, E. S., and Bowers, M. T. (2004) Duplex formation and the onset of helicity in poly d(CG)n oligonucleotides in a solvent-free environment. J. Am. Chem. Soc. 126, 15132-15140.
(5) Kim, J., Jung, I. S., Kim, S. Y., Lee, E., Kang, J. K., Sakamoto, S., Yamaguchi, K., and Kim, K. (2000) New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5, 7, and 8). J. Am. Chem. Soc. 122, 540-541.
(6) Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4.
(7) Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J. C., Cieplak, P., and Dupradeau, F. Y. (2011) R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 39, W511-517.
(8) Dupradeau, F. Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., and Cieplak, P. (2010) The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys. Chem. Chem. Phys. 12, 7821-7839.
(9) Bayly, C. I., Cieplak, P., Cornell, W. D., and Kollman, P. A. (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges - the RESP model. J. Phys. Chem. 97, 10269-10280.
(10) Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., J. A. Montgomery, J., Vreven, T., Kudin, K. N., J. C. Burant, J. M. M., Iyengar, S. S., J. Tomasi, V. B.et al.; Gaussian, Inc.: Wallingford CT, 2004.
(11) Case, D. A., Darden, T. A., T.E. Cheatham, I., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B.et al. AMBER 12; University of California: San Francisco, 2012.
(12) Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) Development and testing of a general amber force field. J. Comp. Chem. 25, 1157-1174.
(13) Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics. J. Mol. Graph. Model. 14, 33-38.
(14) Shvartsburg, A. A., and Jarrold, M. F. (1996) An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86-91.
(15) Mesleh, M. F., Hunter, J. M., Shvartsburg, A. A., Schatz, G. C., and Jarrold, M. F. (1996) Structural information from ion mobility measurements: effects of the long range potential. J. Phys. Chem. A 100, 16082-16086.
(16) Bleiholder, C., Contreras, S., Do, T. D., and Bowers, M. T. (2013) A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (II). Parameterization and application to biomolecules. Int. J. Mass Spectrom. 345-347, 89-96.
(17) Bleiholder, C., Wyttenbach, T., and Bowers, M. T. (2011) A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (I). Method. Int. J. Mass Spectrom. 308, 1-10.

