Synthetic, Register-Specific, AAB Heterotrimers to Investigate Single Point Glycine Mutations in Osteogenesis Imperfecta

Amanda M. Acevedo-Jake \ddagger and Katherine A. Clements \neq, and Jeffrey D. Hartgerink*

Departments of Chemistry and Bioengineering, Rice University, 6100 Main St. Houston, Texas 77005, United States

Supporting Information

Isotopic Label	Partner Atom	Partner Residue	Type	Standard Deviation
45B	2 HA	45B	positive	1
45B	1HA	45B	positive	1
45B	1HB	72C	positive	1
45B	1HD	14A	positive	1
75C	HA	74C	positive	1
75C	H	76C	positive	1
75C	1HA	75C	positive	1
75C	1HA	18A	positive	1
75C	1HD	19A	positive	1
75C	1HD	44B	positive	1
75C	1HA	45B	positive	1
66C	HA	65C	positive	1
66C	2HA	66C	positive	1
66C	1HA	66C	positive	1
66C	1HD	67C	positive	1
66C	1HD	37B	positive	1
66C	2 HB	65C	positive	1
66C	1HB	37B	positive	1
66C	1HB	65C	positive	1
66C	1HD	38B	positive	1
15A	1HA	15A	positive	1
15A	2HA	45B	positive	1
15A	1HD	43B	positive	1
15A	1HB	72C	negative	0.75
15A	2 HB	72C	negative	0.75
15A	3HB	72C	negative	0.75
45B	HA	72C	negative	0.75
45B	HA	74C	negative	0.75
15A	HA	44B	negative	0.75
15A	HA	16A	negative	0.75
15A	HA	71C	negative	0.75

Table S1. Constraints used for B-Ala modeling.

Isotopic Label	Partner Atom	Partner Residue	Type	Standard Deviation
75C	1HB	74C	positive	1
75C	1HA	75 C	positive	1
75 C	1 HB	76 C	positive	1
75C	2HB	76 C	positive	1
75C	1HD	19A	positive	1
15A	2HB	72C	positive	0.5
15A	1HD	14A	positive	1
15A	1HA	15A	positive	1
66 C	H	8A	positive	1
66 C	HA	8A	positive	1
66 C	1HB	8A	positive	1
66 C	1HD	8A	positive	1
66 C	1HB	65C	positive	1
66 C	1HA	66C	positive	1
66 C	2HA	66C	positive	1
45B	H	72C	positive	0.5
45B	HG	72C	positive	1
45B	1HD	73C	positive	1
45B	HA	74C	positive	1
45B	1HB	74C	positive	0.5
45B	H	75C	positive	1
45B	1HA	75 C	positive	0.25
45B	1HA	15A	positive	1
45B	H	44B	positive	1
45B	HA	44B	positive	1
45B	1HA	45B	positive	1
45B	2HA	45B	positive	1
66C	HA	37B	negative	1
66C	HA	67 C	negative	1
66C	HA	7A	negative	1
75 C	HA	73C	negative	1
75 C	HA	77C	negative	1
75 C	HA	19A	negative	1
15A	HA	71C	negative	1
15A	HA	73C	negative	1
15A	HA	74C	negative	1
45B	HA	47B	negative	1

Table S2. Constraints used for B-Ser modeling.

Isotopic Label	Partner Atom	Partner Residue	Type	Standard Deviation
45B	HA	44B	positive	1
45B	2HA	45B	positive	1
45B	1HA	45B	positive	1
45B	1 HB	44B	positive	1
45B	1HD	14A	positive	1
75C	HA	74C	positive	1
75C	1HA	75 C	positive	1
75 C	HA	16A	positive	1
75 C	1HA	45B	positive	1
75C	1 HB	74C	positive	1
75 C	1 HB	44B	positive	1
75C	H	46B	positive	1
75C	H	18A	positive	1
66C	HA	65 C	positive	1
66 C	HA	8A	positive	1
66 C	2HA	66C	positive	1
66C	1 HA	66C	positive	1
66 C	2HD	67C	positive	1
66 C	1 HD	7A	positive	1
66C	1HD	67C	positive	1
66 C	2HB	65C	positive	1
66 C	1 HB	65C	positive	1
66 C	H	8A	positive	1
66C	H	36B	positive	1
15A	HA	44B	positive	1
15A	1HA	72C	positive	1
15A	2HA	45B	positive	1
15A	1 HD	43B	positive	1
15A	1HB	73C	positive	1
15A	2HB	44B	positive	1
15A	1 HB	44B	positive	1
66C	1HA	9A	negative	1
66C	HA	35B	negative	1
15A	HA	17A	negative	1
15A	HA	74C	negative	1
45B	1HA	18A	negative	1
75C	1HA	15A	negative	1
75C	HA	47B	negative	1
75C	HA	76C	negative	1

Table S3. Constraints used for the Base modeling.

Alpha homotrimer peak	T1	T2
A1	0.459 ± 0.031	0.032 ± 0.008
A2	0.522 ± 0.042	0.050 ± 0.009
A3	0.399 ± 0.041	0.060 ± 0.011

Table S4. Alpha homotrimer relaxation values.

Monomer	T1	T2
A Base M2	0.499 ± 0.64	0.340 ± 0.024
B Base M1	0.516 ± 0.033	0.247 ± 0.058
B-Ala M1	0.630 ± 0.023	0.320 ± 0.075
B-Ser M1	0.620 ± 0.023	0.355 ± 0.064
B-Ser M2	0.607 ± 0.030	0.340 ± 0.063
B-Val M2	0.564 ± 0.024	0.294 ± 0.034
B-Val M3	0.469 ± 0.034	0.201 ± 0.033
B-Asp M2	0.601 ± 0.029	0.307 ± 0.031
B-Asp M3	0.575 ± 0.012	0.274 ± 0.030
B-Arg M2	0.521 ± 0.057	0.216 ± 0.017
B-Arg M3	0.460 ± 0.080	0.218 ± 0.015
B-Arg M4	0.542 ± 0.013	0.212 ± 0.014

Table S5. Monomer relaxation values.

Peak	Base	B-Ala	B-Ser
G1	14.85	20.76	15.72
G2	9.55	10.67	13.53
G3	21.32	13.79	18.63
G4	8.00	10.02	17.84

Table S6. Peak volumes from $1 \mathrm{H}, 15 \mathrm{~N}-H S Q C$.

Figure S1. a) ESI-TOF MS of the purified fractions (Predicted MW [M +H$]^{+}=3210.55$ Observed $=3211.48)$ and b) HPLC trace of the Base A peptide.

Figure S2. a) ESI-TOF MS of the purified fractions (Predicted MW $[\mathrm{M}+\mathrm{H}]^{+}=3062.23$ Observed $=3061.60$) and b) HPLC trace of the Base B peptide.

Figure S3. a) ESI-TOF MS of the purified fractions (Predicted MW $[\mathrm{M}+\mathrm{H}]^{+}=3079.25$ Observed $=3078.08$) and b) HPLC trace of the B-Ala B peptide.

Figure S4. a) ESI-TOF MS of the purified fractions (Predicted MW [M+H $]^{+}=3095.23$ Observed $=3094.48)$ and b) HPLC trace of the B-Ser B peptide.

Figure S5. a) ESI-TOF MS of the purified fractions (Predicted MW [M+H] ${ }^{+}=3107.12$ Observed $=3108.11$) and b) HPLC trace of the crude B-Val B peptide.

Figure S6. a) ESI-TOF MS of the purified fractions (Predicted MW $[M+H]^{+}=3123.08$ Observed $=3122.80$) and b) HPLC trace of the crude B-Asp B peptide.

Figure S7. a) ESI-TOF MS of the purified fractions (Predicted MW [M+H] $=3164.10$ Observed $=3164.30$) and b) HPLC trace of the crude B-Arg B peptide.

Figure S8. B-Ser model overlaid with the Base structure backbone in grey.

Figure S9. B-Ala model overlaid with the Base structure backbone in grey.

NMR assignments were made from a combination of the HSQC, TOCSY and NOESY HSQC data. After identifying the ${ }^{1} \mathrm{H}$ chemical shift for the $\mathrm{N}-\mathrm{H}$ peaks in the HSQC, TOCSY was used to locate the glycine alpha hydrogens. It was possible to discern Gly1 from Gly2 and Gly3 etc. by the NOESY HSQC, where the adjacent alpha hydrogen of the N -terminal residue (either lysine or hydroxyproline) helped clarify which peak corresponded to which residue. TOCSY was used to confirm these assignments (see figures below). The remaining chemical shifts from the NOESY HSQC could then be spatially mapped to a model once the chain location was determined, and the side chains unambiguously assigned to the residues surrounding the ${ }^{15} \mathrm{~N}$-glycine.

Figure S10. NOESY HSQC of the AAB base peptide.

Figure S11. NOESY HSQC of the AAB' B-Ala peptide.

Figure S12. NOESY HSQC of the AAB’ B-Ser peptide.

Figure S13. TOCSY figure showing connectivity for Gly3 in the Base system. Chemical shifts are shown by red lines, and relevant correlations are circled.

Figure S14. TOCSY figure showing connectivity for Gly3 in the B-Ala system. Chemical shifts are shown by red lines, and relevant correlations are circled.

Figure S15. TOCSY figure showing connectivity for Gly3 in the B-Ser system. Chemical shifts are shown by red lines, and relevant correlations are circled.

Figure S16. TOCSY figure showing connectivity for folded proline residues. Chemical shifts are shown by red lines, and relevant correlations are circled. With the mixing time used during acquisition (85 ms) it was not possible to see direct $\mathrm{C} \beta \mathrm{H}$ to $\mathrm{C} \alpha \mathrm{H}$ correlations- for shorter mixing times (25 ms) this cross peak was observed though overlapped with other peaks in the alpha proton region. Though not directly coupled, with the longer 85 ms mixing time it was possible to observe a $\mathrm{C} \delta \mathrm{H}$ to $\mathrm{C} \alpha \mathrm{H}$ cross peak.

Figure S17. TOCSY figure showing connectivity for folded hydroxyproline residues. Chemical shifts are shown by red lines, and relevant correlations are circled.

Figure S18. TOCSY figure showing connectivity for folded lysine residues. Chemical shifts are shown by red lines, and relevant correlations are circled.

Figure S19. TOCSY figure showing connectivity for folded aspartate residues. Chemical shifts are shown by red lines, and relevant correlations are circled.

Figure S20. TOCSY figure showing connectivity for folded glutamate residues. Chemical shifts are shown by red lines, and relevant correlations are circled.

