Supporting Information:

Amino-Functionalized Ceramic Capillary Membranes for Controlled Virus Retention

Julia Bartels[†], Marina N. Souza[†], Amelie Schaper[†], Pál Árki[‡], Stephen Kroll^{†#*} and Kurosch Rezwan^{†#}

† Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen,
Germany

Institute of Electronic- and Sensor-Materials, Technical University (TU) Bergakademie
Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany

MAPEX - Center for Materials and Processes, University of Bremen, Am Fallturm 1,28359 Bremen, Germany

* Corresponding author:

Number of pages, figures and tables for the supporting information:

Number of pages: 3

Number of figures: 4 (Fig. S1-S4)

Figure S1. Non-functionalized YSZ capillary membrane. A: Photograph of a sintered (1050 °C for 2 h) capillary membrane showing a length of 6 cm, B: SEM micrograph of the microstructure (outer membrane surface), C: Pore size distribution, average pore size (d_{50}) and open porosity obtained by Hg-porosimetry.

Figure S2. SEM micrographs of the outer membrane surface of the activated (A) and aminofunctionalized capillaries (B = APTES, C = AE-APTES, D = TPDA).

Figure S3. Zeta-potential of non-functionalized, activated, HSPSA-functionalized and aminosilanized YSZ capillaries measured in overflow mode.

Figure S4. A: Photographs of commercial available polymeric filter devices obtained from Sartorius, Germany (Virosart[®] CPV, Minisart[®] 0.1 μ m and Minisart[®] 0.2 μ m), B: SEM micrographs of the membrane surface, C: Pore size distribution and open porosity of the polymeric membranes determined by Hg-porosimetry.