## Supporting Information: Structural properties and charge distribution of the sodium uranium, neptunium and plutonium ternary oxides: a combined X-ray diffraction and XANES study.

Anna L. Smith,\*<sup>,†,‡,¶</sup> Philippe Martin,<sup>§</sup> Damien Prieur,<sup>†</sup> Andreas C. Scheinost,<sup>∥</sup> Philippe E. Raison,<sup>†</sup> Anthony K. Cheetham,<sup>‡</sup> and Rudy J.M. Konings<sup>\*,†</sup>

*†European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), P.O. Box 2340, D-76125 Karlsruhe, Germany* 

<sup>‡</sup>Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom

¶Current address: Delft University of Technology, Radiation Science & Technology Department, Nuclear Energy and Radiation Applications (NERA), Mekelweg 15, 2629 JB Delft, The Netherlands

§CEA, DEN, DEC, CEN Cadarache, 13108 St. Paul Lez Durance, France

||Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology, P.O. Box 10119, 01314, Dresden,Germany

E-mail: a.l.smith@tudelft.nl; rudy.konings@ec.europa.eu

## X-ray diffraction and differential XANES data

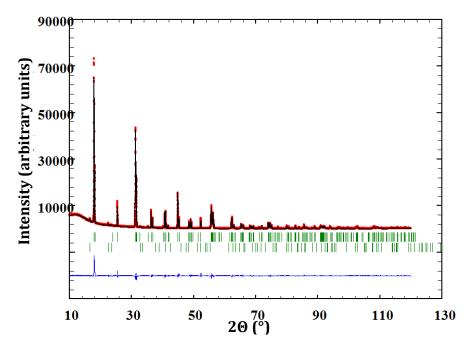



Figure S1: Comparison between the observed (Y<sub>obs</sub>, in red) and calculated (Y<sub>calc</sub>, in black) X-ray diffraction patterns of  $\alpha$ -Na<sub>2</sub>UO<sub>4</sub>. Y<sub>obs</sub>-Y<sub>calc</sub>, in blue, is the difference between the experimental and calculated intensities. The Bragg reflections are marked in green. Upper:  $\alpha$ -Na<sub>2</sub>UO<sub>4</sub>. Lower: Na<sub>4</sub>UO<sub>5</sub>. Measurement at  $\lambda = \text{Cu-K}\alpha 1$ .

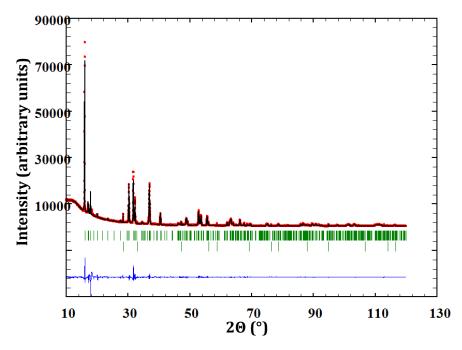



Figure S2: Le Bail fit of Na<sub>2</sub>NpO<sub>3</sub>. Comparison between the observed (Y<sub>obs</sub>, in red) and calculated (Y<sub>calc</sub>, in black) X-ray diffraction patterns. Y<sub>obs</sub>-Y<sub>calc</sub>, in blue, is the difference between the experimental and calculated intensities. The Bragg reflections are marked in green. Measurement at  $\lambda = \text{Cu-K}\alpha 1$ .

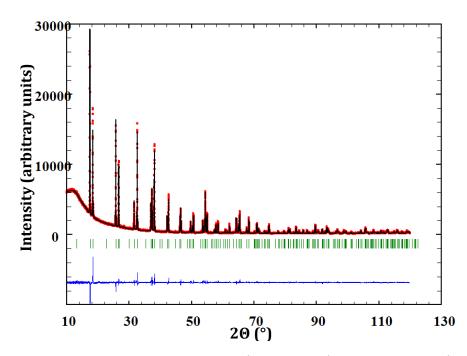



Figure S3: Comparison between the observed (Y<sub>obs</sub>, in red) and calculated (Y<sub>calc</sub>, in black) X-ray diffraction patterns of  $\alpha$ -Na<sub>3</sub>NpO<sub>4</sub>. Y<sub>obs</sub>-Y<sub>calc</sub>, in blue, is the difference between the experimental and calculated intensities. The Bragg reflections are marked in green. Measurement at  $\lambda = \text{Cu-K}\alpha 1$ .

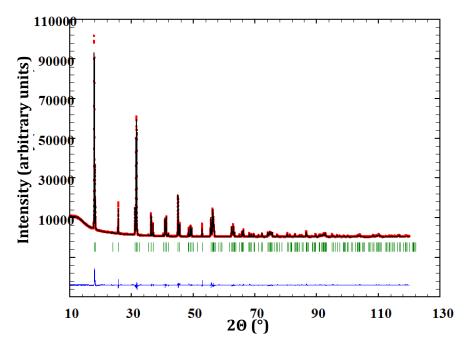



Figure S4: Comparison between the observed (Y<sub>obs</sub>, in red) and calculated (Y<sub>calc</sub>, in black) X-ray diffraction patterns of  $\alpha$ -Na<sub>2</sub>NpO<sub>4</sub>. Y<sub>obs</sub>-Y<sub>calc</sub>, in blue, is the difference between the experimental and calculated intensities. The Bragg reflections are marked in green. Measurement at  $\lambda = \text{Cu-K}\alpha 1$ .

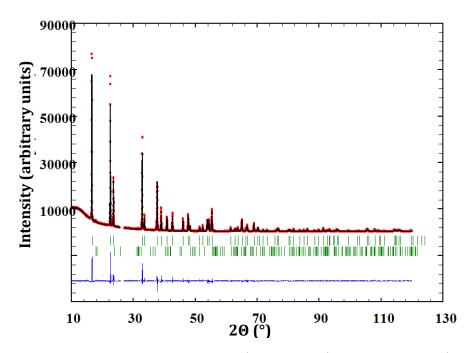



Figure S5: Comparison between the observed (Y<sub>obs</sub>, in red) and calculated (Y<sub>calc</sub>, in black) X-ray diffraction patterns of Na<sub>4</sub>NpO<sub>5</sub>. Y<sub>obs</sub>-Y<sub>calc</sub>, in blue, is the difference between the experimental and calculated intensities. The Bragg reflections are marked in green. Upper: Na<sub>4</sub>NpO<sub>5</sub>. Lower:  $\alpha$ -Na<sub>2</sub>NpO<sub>4</sub>. Measurement at  $\lambda = \text{Cu-K}\alpha 1$ .

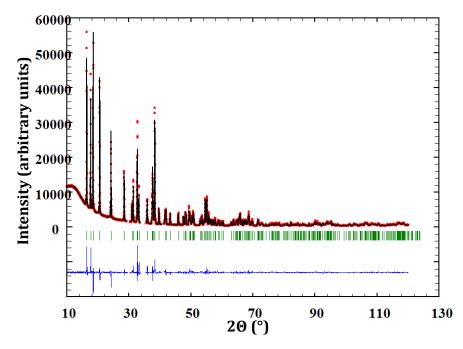



Figure S6: Comparison between the observed (Y<sub>obs</sub>, in red) and calculated (Y<sub>calc</sub>, in black) X-ray diffraction patterns of Na<sub>5</sub>NpO<sub>6</sub>. Y<sub>obs</sub>-Y<sub>calc</sub>, in blue, is the difference between the experimental and calculated intensities. The Bragg reflections are marked in green. Measurement at  $\lambda = \text{Cu-K}\alpha 1$ .

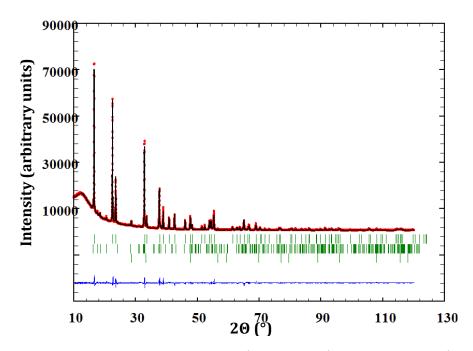



Figure S7: Comparison between the observed (Y<sub>obs</sub>, in red) and calculated (Y<sub>calc</sub>, in black) X-ray diffraction patterns of Na<sub>4</sub>PuO<sub>5</sub>. Y<sub>obs</sub>-Y<sub>calc</sub>, in blue, is the difference between the experimental and calculated intensities. The Bragg reflections are marked in green. Upper: Na<sub>4</sub>PuO<sub>5</sub>. Lower: Na<sub>5</sub>PuO<sub>6</sub> and PuO<sub>2</sub>. Measurement at  $\lambda = \text{Cu-K}\alpha 1$ .

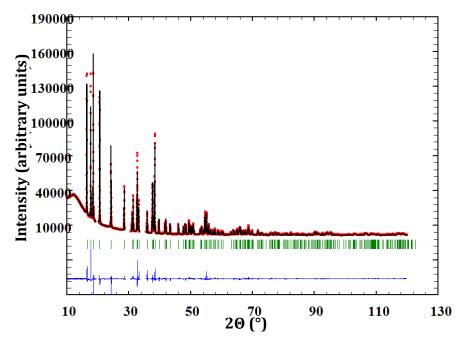



Figure S8: Comparison between the observed (Y<sub>obs</sub>, in red) and calculated (Y<sub>calc</sub>, in black) X-ray diffraction patterns of Na<sub>5</sub>PuO<sub>6</sub>. Y<sub>obs</sub>-Y<sub>calc</sub>, in blue, is the difference between the experimental and calculated intensities. The Bragg reflections are marked in green. Measurement at  $\lambda = \text{Cu-K}\alpha 1$ .

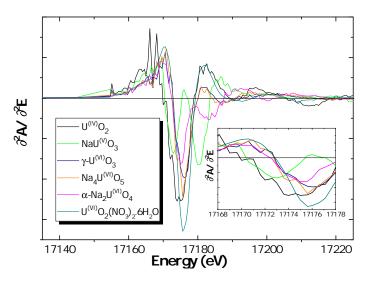



Figure S9: Second derivative of the XANES spectra collected at the U-L<sub>3</sub> edge. The second derivative zeros correspond to the inflection points of the spectra and are taken as the energies  $E_0$  of the edge absorption thresholds.

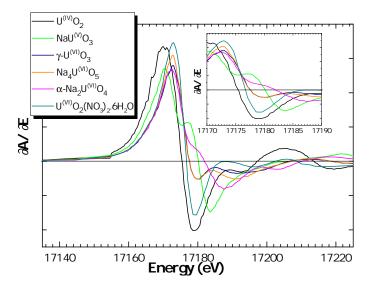



Figure S10: First derivative of the XANES spectra collected at the U-L<sub>3</sub> edge. The first derivative zeros correspond to the positions of the white line maxima.

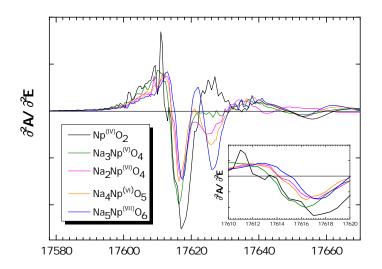



Figure S11: Second derivative of the XANES spectra collected at the Np-L<sub>3</sub> edge. The second derivative zeros correspond to the inflection points of the spectra and are taken as the energies  $E_0$  of the edge absorption thresholds.

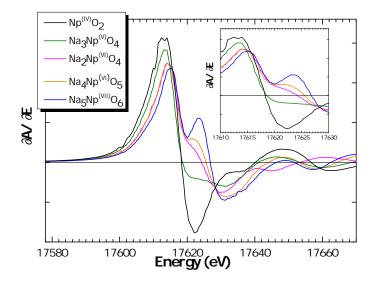



Figure S12: First derivative of the XANES spectra collected at the Np-L<sub>3</sub> edge. The first derivative zeros correspond to the positions of the white line maxima.

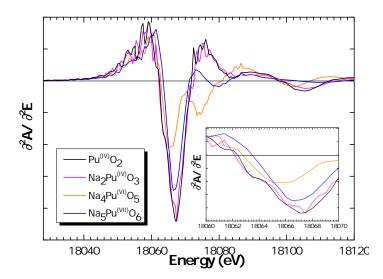



Figure S13: Second derivative of the XANES spectra collected at the Pu-L<sub>3</sub> edge. The second derivative zeros correspond to the inflection points of the spectra and are taken as the energies  $E_0$  of the edge absorption thresholds.

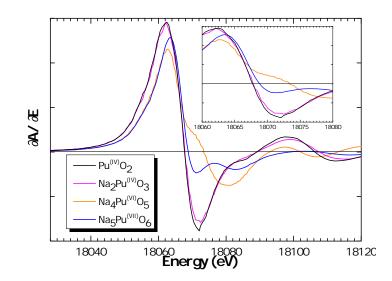



Figure S14: First derivative of the XANES spectra collected at the  $Pu-L_3$  edge. The first derivative zeros correspond to the positions of the white line maxima.