SUPPORTING INFORMATION

Title: Ion Interaction Models and Measurements of Eu³⁺ Complexation: HEDTA in Aqueous Solutions at 25 °C Containing 1:1 Na⁺ Salts and Citrate pH Buffer

Authors: Simon L. Clegg (s.clegg@uea.ac.uk), and Peter R. Zalupski (peter.zalupski@inl.gov)

Journal: Industrial and Engineering Chemistry Research.

Prepared: 4 January 2016

This document contains Table S1, and Figures S1 to S3, which are supporting information to the above publication. Table S1 lists the types of solutions measured by Schunk and Maurer (ref. 7 in the paper), and Figures S1 to S3 show model-calculated speciation in various citrate, HEDTA, and Eu³⁺-containing solutions.

Solution	Compositions	Pitzer Model	Notes
		Interactions	
Na ₃ Citr	0.465 to 1.683 mol kg ⁻¹	β^0 , β^1 , and C^{ϕ} for Na ⁺ -	
		Citr ³⁻ interactions	
NaCl + H ₃ Citr	Up to 2.924 mol kg ⁻¹ NaCl,	λ for NaCl - H ₃ Citr	The acid dissociates
	and 5.647 mol kg ⁻¹ H ₃ Citr	interactions	very little in these
			solutions.
NaNO ₃ + H ₃ Citr	Up to 2.906 mol kg ⁻¹	λ for NaNO ₃ - H ₃ Citr	The acid dissociates
	NaNO ₃ , and 3.861 mol kg ⁻¹	interactions	very little in these
	H ₃ Citr		solutions.
Na ₃ Citr + H ₃ Citr	Various ratios, up to 1.670	Three pairs of β^0 , β^1 , and	The compositions of
	mol kg ⁻¹ Na ₃ Citr and 3.643	C^{ϕ} parameters for Na ⁺ -	the solutions were
	mol kg ⁻¹ H ₃ Citr	(Citr ³⁻ , HCitr ²⁻ , H ₂ Citr ⁻)	chosen so that all of
		interactions, the self	the different species
		interaction of the aqueous	are present.
		acid $(\lambda_{n,n})$ plus many	
		ternary (mixture)	
		parameters	

Table S1. Measurements of Osmotic Coefficients Made by Schunk and Maurer.⁷

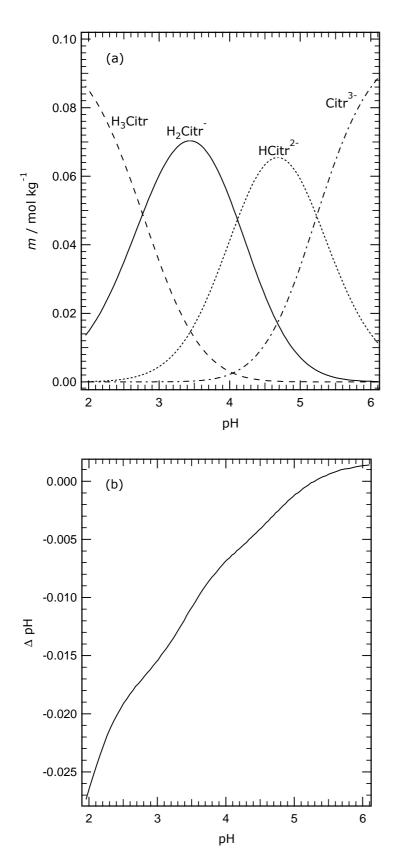


Figure S1. (a) Molalities (*m*) of citrate species in 1.0 mol kg⁻¹ aqueous NaNO₃ at 25 °C, as a function of pH, calculated using the Pitzer model developed in this study. The solutions also contain 0.1 mol kg⁻¹ total citrate, either as H₃Citr (at the lowest pH) or with substitution of some of the acid by Na₃Citr (at higher pH). (b) The effect on the calculated pH of a 1.0 mol kg⁻¹ aqueous NaCl medium instead of aqueous NaNO₃. The quantity Δ pH is the difference between the calculated pH in aqueous NaCl and that in aqueous NaNO₃ (pH[NaCl] – pH[NaNO₃]), and it is plotted against the calculated pH in aqueous NaNO₃, for which the citrate speciation is shown in panel (a).

Figure S2. Molalities (*m*) of HEDTA species in 1.0 mol kg⁻¹ aqueous NaNO₃ at 25 °C, as a function of pH, calculated using the Pitzer model developed in this study. The solutions also contain 0.1 mol kg⁻¹ total citrate, either as H₃Citr (at the lowest pH) or with substitution of some of the acid by Na₃Citr (at higher pH), and 0.01 mol kg⁻¹ of total HEDTA. The ionic strength of the solutions, calculated from the molalities of the ions, ranges from about 1.02 to 1.57 mol kg⁻¹.

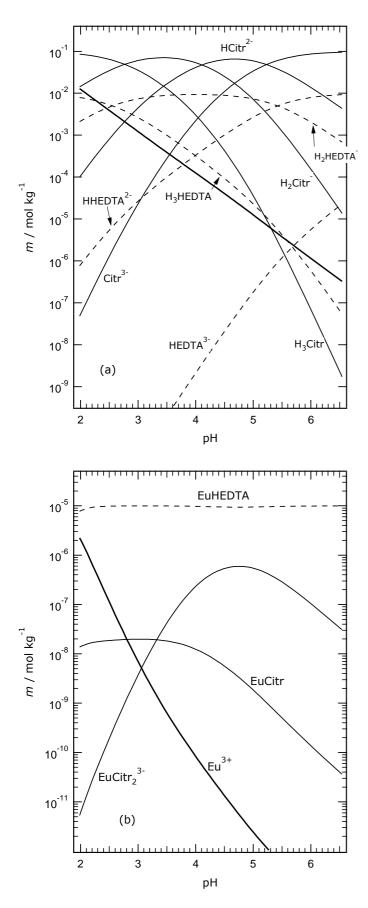


Figure S3. Calculated species molalities (*m*) in a solution containing 1.0 mol kg⁻¹ NaNO₃, 0.10 mol kg⁻¹ total citrate, 0.01 mol kg⁻¹ total HEDTA, and $1.0x10^{-5}$ mol kg⁻¹ Eu³⁺, as a function of pH. (a) Acid – base equilibria (citrate and HEDTA speciation). Lines: solid (thick) – free H⁺; solid (thin) – Citr³⁻, HCitr²⁻, H₂Citr⁻, and H₃Citr as indicated; dashed – HEDTA³⁻, HHEDTA²⁻, H₂HEDTA⁻ and H₃HEDTA as indicated. (b) Europium speciation. Lines: solid (thick) – free Eu³⁺; solid (thin) – EuCitr₂³⁻ and EuCitr, as indicated; dashed – EuHEDTA.