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The objective of this case study is to compare the gPC model based fault detection and classification method with 

the empirical model based methods for process monitoring. The principal component analysis (PCA) is used for 

comparison
 3
. 

One of the most standard methods consists of constructing a single PCA model and defines regions in the lower 

dimensional space which classify whether a particular fault has occurred. Let us assume the matrix X is used to store 

measurements for all operating modes (mean values), and then the sample covariance matrix S can be calculated as: 

S =	
1

n-1
XTX	=	VΛVT (S.1) 

, where the diagonal matrix Λ contains the nonnegative real eigenvalues of decreasing magnitude. The matrix Λ can 

be used to optimally capture the variations of the data in X, and the loading vectors P corresponding to the first a 

largest singular values can be then calculated. 

Using the sample covariance matrix S and the loading vectors P, the maximum score discriminant 
[24]

 can be used to 

estimate the likelihood that an observation x is the operating mode i, which can be calculated as: 

fi(x) =	
1
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ln[det(PTSiP)] (S.2) 

x�i =	
1

ni

∑ 				xjxjϵχi
 (S.3) 

, where x�i is the mean vector for operating mode i, ni is the number of measurements in operating mode i, χi is the set 

of vectors xj which belong to the operating mode i, and Si is the sample covariance matrix for operating mode i. 

The score discriminant can also be used for multiple PCA models 
24

. Assuming the PCA models retain the important 

variations in discriminating between the faults (operating modes), and observations x is classified as being in the 

operating mode i with the maximum score discriminant: 
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, where Pi is the loading matrix for the operating mode i, ∑a,i is the diagonal matrix for the operating mode i, and pi 

is the overall likelihood of the operating mode i. 

For comparison, the fault detection and classification algorithms defined in eq S.3 and eq S.4 are compared with the 

Level-1 algorithm developed in Section 3.2 when the system is operating at steady states. For the model calibration 

with eq S.3 and eq S.4, 100 measurements for each operating mode are used, while ~81 measurements for each 

operating mode are used for the gPC model calibration with eq 11. The number of step changes of the unknown 

input (xA0) among the 3 mean values in the ML-PRS is 300 for the model calibration with PCA. Thus a slightly 

larger number of measurements were selected for the calibration of the PCA algorithm as compared to our proposed 

gPC approach. 

Three scenarios are considered: (i) measurements collected in the absence of measurement noise and variation on 

the feed mass fraction xA0; (ii) measurements collected with measurement noise but no stochastics variation on xA0; 

and (iii) both measurement noise and uncertainty on xA0 are considered. Table S.1 shows the result of Fault 

Classification Rate (FCR) for these three scenarios. 
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Table S.1  FCR with PCA model (steady state measurements) 

xA0 
S.3 S.4 

Case i Case ii Case iii Case i Case ii Case iii 

0.65 0.99 0.98 0.83 0.99 0.99 0.88 

0.75 1 0.85 0.72 1 0.88 0.76 

0.85 1 0.93 0.85 0.99 0.90 0.84 

Average 0.997 0.92 0.80 0.993 0.923 0.827 

 

In Table S.1, the variation on xA0 follows the same assumption as done for the gPC model and 1% measurement 

noise is used for simulations. To comply with the assumption that the system is operated around a fixed mean value 

with perturbations, the classification efficiency is investigated using the measured quantities before a switch 

between means occurred (see inset Figure 1 (b)-A). The measurements denote that the system is operating at steady 

state with constant mean values. It can be seen that the variation on xA0 and the measurement noise show strong 

influence on the classification of faults. As compared to the results in Table 7, the FCR is ~10 percent points lower 

than the gPC model based Level-1 algorithm. An explanation for the difference is that the principal component 

analysis (PCA) is a linear dimensionality reduction method. When the data components have nonlinear 

dependencies, PCA may require a larger dimensional representation than would be found by a nonlinear technique. 

Additionally, comparing Case-ii to Case-iii, the classification rate decreased by ~10 percent points, when the 

uncertainty on feed mass fraction xA0 is considered. One may argue that extra data is required for the model 

calibration with the PCA method to increase accuracy. The use of more training measurements may improve the 

classification rate but would increase the computational burden. The proposed gPC based method both addresses the 

nonlinearity by explicitly using a nonlinear model and necessitates less data, since it directly predict PDF profiles of 

the variables used for detection. 


