# Supporting Information 

# Discovery of Novel Adenosine Receptor Agonists that Exhibit Subtype Selectivity 

Anthony Knight, ${ }^{\dagger}$ Jennifer L. Hemmings, ${ }^{\dagger}$ Ian Winfield,,${ }^{\mathbb{T}, \perp}$ Michele Leuenberger, ${ }^{\dagger}$ Eugenia Frattini, ${ }^{\perp}$ Bruno G. Frenguelli, ${ }^{\S}$ Simon J. Dowell, ${ }^{\|}$Martin Lochner, ${ }^{*, *}$ and Graham Ladds*, ${ }^{\perp}$<br>${ }^{\dagger}$ Systems Biology Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK.<br>${ }^{\ddagger}$ Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.<br>${ }^{I}$ Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.<br>${ }^{\text {§ }}$ School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.<br>$\|$ Departments of Biological Research and Assay Development, GlaxoSmithKline, Hertfordshire, SG1 2NY, UK.<br>${ }^{\perp}$ Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, $U K$.

## Table of Contents

I. Synthesis of intermediates ..... S1 - S3
II. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds ..... S4 - S61
III. Degree of purity for tested compounds ..... S62
IV. $A_{3} R$ in yeast ..... S63
V. Schild plot analysis for compounds $\mathbf{3 6}$ and $\mathbf{3 7}$ ..... S64
VI. Predicted binding poses for compounds 5-7, 17-21 and 34 ..... S65
VII. PSI-Coffee sequence alignment for $\mathrm{A}_{1} \mathrm{R}$ homology modelling ..... S66
VIII. Supplementary references ..... S66

## I. Synthesis of intermediates

## 5'-(2-Fluorophenylthio)-5'-deoxy-2',3'-O-isopropylideneinosine (28).

2-Fluorothiophenol ( $0.86 \mathrm{~mL}, 8.06 \mathrm{mmol}$ ) was added to anhydrous DMF
 $(25 \mathrm{~mL})$. Sodium hydride ( $60 \%$ oil dispersion, $0.26 \mathrm{~g}, 6.51 \mathrm{mmol}$ ) was added in portions at $0^{\circ} \mathrm{C}$ and stirred for 3 h at room temperature. Chloride $27(0.56 \mathrm{~g}, 1.71 \mathrm{mmol})$ was added in anhydrous DMF ( 10 mL ) and stirred overnight. The solvent was removed in vacuo and the resultant residue was dissolved in DCM ( 20 mL ). The organic phase was washed with water ( $2 \times 50 \mathrm{~mL}$ ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by column chromatography (methanol/DCM, $1-2 \%$ ) to give $28(0.34 \mathrm{~g}, 48 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.43(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.26(1 \mathrm{H}, \mathrm{s}$, adenine H$), 8.08$ $(1 \mathrm{H}, \mathrm{s}$, adenine H), $7.42(1 \mathrm{H}, \mathrm{td}, J 7.8,1.7, \mathrm{Ar} H), 7.31-7.10(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ar} \mathrm{H}), 6.14(1 \mathrm{H}, \mathrm{d}, J 2.3,1$ 'H), $5.41\left(1 \mathrm{H}, \mathrm{dd}, J 6.1,2.3,2^{\prime}-\mathrm{H}\right), 5.0\left(1 \mathrm{H}\right.$, dd, $\left.J 6.1,2.8,3^{\prime}-\mathrm{H}\right), 4.18\left(1 \mathrm{H}, \mathrm{td}, J 7.1,2.8,4^{\prime}-\mathrm{H}\right), 3.26$ $\left(2 \mathrm{H}, \mathrm{d}, J 7.1,5^{\prime}-\mathrm{H}_{2}\right), 1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $\left.d_{6}\right) \delta 161.4$, $158.9,156.5,147.6,146.1,139.1,131.1,128.6$ (d, J7.9), 125.0 (d, J 3.5), 124.7, 121.7 (d, J 17.2), 115.6 (d, $J 21.9$ ), 113.4, $89.3,85.0,83.5,83.2,34.3,26.8,25.1$ (there is an additional quaternary aromatic peak in the ${ }^{13} \mathrm{C}$ NMR spectrum); ${ }^{19} \mathrm{~F}$ NMR ( 376 MHz , DMSO- $d_{6}$ ) $\delta-110.4$; HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{FS}[\mathrm{MH}]^{+} 419.1184$, found 419.1188.

6-Chloro-6-deoxy-5'-(2-fluorophenylthio)-2', 3'- $O$-isopropylidene-5'-deoxyinosine (29).


Intermediate $28(0.12 \mathrm{~g}, 0.29 \mathrm{mmol})$ was dissolved in anhydrous DCM $(10 \mathrm{~mL})$. Anhydrous DMF ( $0.06 \mathrm{~mL}, 0.72 \mathrm{mmol}$ ) and thionyl chloride $(0.11 \mathrm{~mL}, 1.44 \mathrm{mmol})$ were added and the reaction mixture was refluxed at $50^{\circ} \mathrm{C}$ for 5 h . The solution was allowed to cool to room temperature, diluted with DCM ( 100 mL ) and washed thoroughly with saturated sodium hydrogen carbonate solution ( $2 \times 50 \mathrm{~mL}$ ), brine ( $2 \times 50 \mathrm{~mL}$ ) and water ( $3 \times 100 \mathrm{~mL}$ ). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by column chromatography (methanol/DCM, $1-2 \%$ ) to give chloride $29\left(0.11,88 \%\right.$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.84(1 \mathrm{H}, \mathrm{s}$, adenine H$)$, $8.81(1 \mathrm{H}, \mathrm{s}$, adenine H), $7.38(1 \mathrm{H}, \mathrm{td}, J 7.7,1.9, \mathrm{Ar} \mathrm{H}), 7.27-7.05(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ar} \mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{d}, J 2.0$, $\left.1^{\prime}-\mathrm{H}\right), 5.56\left(1 \mathrm{H}, \mathrm{dd}, J 6.3,2.0,2^{\prime}-\mathrm{H}\right), 5.07\left(1 \mathrm{H}\right.$, dd, $\left.J 6.3,2.6,3^{\prime}-\mathrm{H}\right), 4.28\left(1 \mathrm{H}, \mathrm{td}, J 7.1,2.6,4^{\prime}-\mathrm{H}\right), 3.26$ $\left(2 \mathrm{H}, \mathrm{d}, J 7.1,5^{\prime}-\mathrm{H}_{2}\right), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta 161.4$, $159.0,151.7,151.0,149.4,146.2,131.5,131.3,128.7$ (d, J 8.0), 124.8 (d, J3.6), 121.6, (d, J 17.2), 115.5 (d, $J 22.0$ ), 113.3, 90.1, 85.7, 83.3, 83.2, 34.3, 26.8, 25.1 (there is an additional quaternary aromatic peak in the ${ }^{13} \mathrm{C}$ NMR); ${ }^{19} \mathrm{~F}$ NMR ( 376 MHz , DMSO- $d_{6}$ ) $\delta-110.3$; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{4} \mathrm{CIFS}[\mathrm{MH}]^{+} 437.0845$, found 437.0847.

## 3-Amino-1-adamantanol ${ }^{\mathrm{S} 1}$



Sulfuric acid $(97 \%, 10.3 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and nitric acid $(65 \%, 1 \mathrm{~mL})$ was added dropwise and stirred for 5 min . Amantadine hydrochloride ( $1 \mathrm{~g}, 5.33 \mathrm{mmol}$ ) was added in small portions and stirred for 2 h at $0^{\circ} \mathrm{C}$ and then overnight at room temperature. The reaction mixture was again cooled to $0^{\circ} \mathrm{C}$ and ice water was added slowly and stirred for 30 min . Sodium hydroxide ( 3 M aq. solution, 250 mL ) was then added until the pH was alkaline. The reaction mixture was extracted with $\mathrm{DCM}(3 \times 100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 3-amino-1-adamantanol ( $0.64 \mathrm{~g}, 72 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 4.34(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.08(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ adamantyl H$), 1.46-1.24(14 \mathrm{H}, \mathrm{m}, 12 \mathrm{x}$ adamantyl H and $\mathrm{NH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , DMSO- $d_{6}$ ) $\delta$ 67.8, 54.0, 49.8, 44.9, 44.2, 34.9, 30.5; m/z $\left(\mathrm{ESI}^{+}\right) 168(\mathrm{MH})^{+}$.
(1R, 2R)-2-Benzyloxycyclopentyl-(tert-butoxycarbonyl)amine ${ }^{\mathrm{S} 2}$

$(1 R, 2 R)$-1-Amino-2-benzyloxycyclopentane ( $0.2 \mathrm{~mL}, 1.05 \mathrm{mmol}$ ) was dissolved in anhydrous THF ( 10 mL ) and cooled to $0^{\circ} \mathrm{C}$. Triethylamine $(0.29 \mathrm{~mL}, 2.10$ $\mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(0.25 \mathrm{~g}, 1.16 \mathrm{mmol})$ were then added and stirred at room temperature overnight. Ethyl acetate $(100 \mathrm{~mL})$ was then added and the organic phase was washed with water ( $2 \times 50 \mathrm{~mL}$ ) and brine ( 50 mL ) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to give a pale yellow solid, which was purified with column chromatography (methanol/DCM, $1 \%$ ) to give the title compound ( $0.25 \mathrm{~g}, 84 \%$ ) as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.39-7.22(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{x}$ phenyl H), $6.91(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NH}), 4.51(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.82-3.66(2 \mathrm{H}, \mathrm{m}, 1-$ and $2-\mathrm{H}), 1.98-1.73(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ cyclopentyl H$), 1.68-1.50(3 \mathrm{H}, \mathrm{m}, 3$ x cyclopentyl H), 1.47-1.32 ( $10 \mathrm{H}, \mathrm{m},-\left(\mathrm{CH}_{3}\right)_{3}$ and 1 x cyclopentyl H); ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ) $\delta 154.9,138.9,128.1,127.3,127.1,84.5,77.5,69.8,56.4,30.1,28.2,21.3 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 314(\mathrm{MNa})^{+}$.
(1R,2R)-2-(tert-Butoxycarbonylamino)cyclopentanol ${ }^{\text {S3 }}$
BocHN $\begin{aligned} & \text { Fully protected cyclopentanol from above }(0.25 \mathrm{~g}, 0.86 \mathrm{mmol}) \text { was dissolved in ethanol } \\ & (20 \mathrm{~mL}) . \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{wt} . \%, 0.06 \mathrm{~g}) \text { and cyclohexene }(0.52 \mathrm{~mL}, 5.16 \mathrm{mmol}) \text { were }\end{aligned}$ then added and refluxed for 4 hours. The reaction mixture was allowed to cool to room temperature and filtered through celite. The solvent was removed in vacuo and the crude product was purified by column chromatography (ethyl acetate/hexane, $50 \%$ ) to give the title compound ( 0.20 g , $99 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 7.54(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.42(1 \mathrm{H}, \mathrm{d}, J 4.3$, $\mathrm{OH}), 4.60(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.76-2.51(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ cyclopentyl H$), 2.45-2.31(2 \mathrm{H}, \mathrm{m}, 2$ x cyclopentyl H), 2.28-2.08 ( $11 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ cyclopentyl H and $\left.-\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 155.2,77.3,32.0,28.3,20.3 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 224(\mathrm{MNa})^{+}$.

## (1R,2R)-2-Aminocyclopentanol hydrochloride ${ }^{\text {S4 }}$



OH The Boc-protected cyclopentanol from above ( $0.023 \mathrm{~g}, 0.11 \mathrm{mmol}$ ) was dissolved in 4 M HCl in dioxane $(0.51 \mathrm{~mL}, 2.01 \mathrm{mmol})$ and stirred at room temperature for 1.5 h . The solvent was removed in vacuo and the resultant solid was washed with diethyl ether to give the title compound ( $0.01 \mathrm{~g}, 99 \%$ yield) as a white solid as the HCl salt. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 7.99\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 5.18(1 \mathrm{H}, \mathrm{d}, J 4.6, \mathrm{OH}), 3.96(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.13(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.07-1.83(2 \mathrm{H}$, $\mathrm{m}, 2 \mathrm{x}$ cyclopentyl H ), 1.72-1.60 ( $2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ cyclopentyl H ), 1.56-1.44 $(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ cyclopentyl H$)$; ${ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta 74.6,57.9,32.0,27.6,20.1 ; ~ m / \mathrm{z}\left(\mathrm{ES}^{+}\right) 102(\mathrm{MH})^{+}$.

## II. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds


























































## III. Degree of purity for tested compounds

Table S1. Degree of purity for tested compounds.

| Compound Number | Purity (\%) | $\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ |
| :---: | :---: | :---: |
| 5 | 99 | 2.66 |
| 6 | 98 | 2.30 |
| 7 | 99 | 1.46 |
| 9 | 99 | 1.41 |
| 16 | 99 | 3.06 |
| 17 | 94 | 2.18 |
| 18 | 99 | 2.69 |
| 19 | 99 | 1.62 |
| 20 | 98 | 2.59 |
| 21 | 99 | 2.21 |
| 24 | 99 | 1.80 |
| 25 | 99 | 1.87 |
| 34 | $-^{a}$ | ${ }^{-}$ |
| 35 | 99 | 2.24 |
| 36 | 99 | 3.14 |
| 37 | 95 | 2.35 |


[NECA]
$\square$

- $100 \mu \mathrm{M}$

Figure S1. Non-functional coupling of the $A_{3} R$ in yeast. Yeast strains expressing the human $A_{3} R$ were stimulated with 0 or $100 \mu \mathrm{M}$ NECA for 16 h and assayed for the activation of the $F U S 1>$ lacZ reporter gene as previously described. ${ }^{15-17,19} \beta$-galactosidase units (mU) are expressed as the ratio of $o$ nitrophenol product to cell density (determined colorimetrically; see Experimental Section). Data are mean of 5 independent experiments $\pm$ SEM.


Figure S2. $N^{6}$-cyclopentyl congeners $\mathbf{3 6}$ and $\mathbf{3 7}$ (CVT-3619) are competitive antagonists of the $\mathrm{A}_{1} \mathrm{R}$. Yeast cells expressing the human $\mathrm{A}_{1} \mathrm{R}$ were stimulated for 16 h with ( $\mathrm{A}, \mathrm{E}$ ) NECA, (B, F) adenosine, $(\mathrm{C}, \mathrm{G})$ CCPA in the presence of the indicated concentrations of $\mathbf{3 6}(\mathrm{A}-\mathrm{C})$ or $\mathbf{3 7}(\mathrm{E}-\mathrm{G})$ and the extent of signaling quantified through activation of the FUS1-lacZ reporter gene. Data are expressed as the percentage of the maximum response achieved when cells were stimulated in the absence of 36 or 37 and are mean of 5 independent experiments $\pm$ SEM. (D, H) Schild regression lines obtained from the data in A-C (36) and E-G (37), respectively. In the double logarithmic plot, the DR-1 of each ligand was calculated from the data in A-C and E-G, respectively.
VI. Predicted binding poses for compounds 5-7, 17-21 and 34


Figure S3. (left) Docking of $N^{6}$-substituted adenosine derivatives into the $\mathrm{A}_{2 \mathrm{~A}} \mathrm{R}$ crystal structure ( $\mathrm{A}, \mathrm{B}$ ) and into the $A_{1} R$ homology model (C-K). Proposed binding poses for (A) 20 and (B) 34 in the $A_{2 A} R$ crystal structure. Proposed binding poses for (C) 5, (D) 6, (E) 7, (F) 17, (G) 18, (H) 20, (I) 21, (J) 19 and (K) 34 in the $\mathrm{A}_{1} \mathrm{R}$ homology model. Black dotted lines represent potential hydrogen bonds. Compounds docked into $\mathrm{A}_{2 \mathrm{~A}} \mathrm{R}$ crystal structure in brown shades, compounds that showed agonist activity at the $\mathrm{A}_{1} \mathrm{R}$ (Table 1) are in green shades, compounds which exhibited activation at very high concentration in blue shade and compounds that failed to active the $A_{1} R$ are shown in red shade. Numbering of residues in (A,B) according to P29274 ( $h \mathrm{~A}_{2 \mathrm{~A}} \mathrm{R}$ ) and of homologous residues in (C-K) according to P30542 ( $h \mathrm{~A}_{1} \mathrm{R}$ ). Ballesteros-Weinstein ( BW ) numbering: T88 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), T91 ( $\mathrm{A}_{1}$ ): BW 3.36; F168 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), F171 ( $\left.\mathrm{A}_{1}\right)$ : BW ECL2; E169 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), E172 ( $\mathrm{A}_{1}$ ): BW ECL2; N181 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), N184 ( $\mathrm{A}_{1}$ ): BW 5.42; W246 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), W247 ( $\mathrm{A}_{1}$ ): BW 6.48; H250 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), H251 ( $\mathrm{A}_{1}$ ): BW 6.52; N253 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), N254 ( $\mathrm{A}_{1}$ ): BW 6.55; T270 ( $\mathrm{A}_{1}$ ): BW 7.35; Y271 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), Y271 ( $\left.\mathrm{A}_{1}\right)$ : BW 7.36; S277 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), T277 ( $\mathrm{A}_{1}$ ): BW 7.42; H278 ( $\mathrm{A}_{2 \mathrm{~A}}$ ), H278 ( $\mathrm{A}_{1}$ ): BW 7.43.

## VII. PSI-Coffee sequence alignment for $A_{1} R$ homology modelling

```
3QAK 3 IMGSSVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAAADIAVGVLAIPF 62
hA1R 9 ---QAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAVADVAVGALVIPL 65
3QAK 63 AITISTGFCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAIRIPLRYNGLVTGTRAK 122
hA1R 66 AILINIGPQTYFHTCLMVACPVLILTQSSILALLAIAVDRYLRVKIPLRYKMVVTPRRAA 125
3QAK 123 GIIAICWVLSFAIGLTPMLGWNNCGQ---------GCGEGQVACLFEDVVPMNYMVYFNF 182
hA1R 126 VAIAGCWILSFVVGLTPMFGWNNLSAVERAWAANGSMGEPVIKCEFEKVISMEYMVYFNF 185
3QAK 183 FACVLVPLLLMLGVYLRIFLAARRQL------------RSTLQKEVHAAKSLAIIVGLFAL }24
hA1R 186 FVWVLPPLLLMVLIYLEVFYLIRKQLNKKVSASSGDPQKYYGKELKIAKSLALILFLFAL 245
3QAK 245 CWLPLHIINCFTFFCPDCSHAPLWLMYLAIVLSHTNSVVNPFIYAYRIREFRQTFRKIIR }30
hA1R 246 SWLPLHILNCITLFCPSC-HKPSILTYIAIFLTHGNSAMNPIVYAFRIQKFRVTFLKIW- }30
```

Figure S4. PSI-Coffee sequence alignment used for the construction of the human adenosine $\mathrm{A}_{1} \mathrm{R}$ homology model. 3QAK: sequence of the human $\mathrm{A}_{2 \mathrm{~A}} \mathrm{R}$ (accession no. P29274) from the agonist-bound crystal structure (PDB ID: 3QAK). hA1R: sequence of human $A_{1} R$ (accession no. P30542). Identical residues are marked with an asterisk and highlighted with a grey background. Residues in bold are involved in ligand binding and discussed in the docking section (Figure 6).

## VIII. Supplementary references

(S1) Slavik, R.; Herde, A. M.; Bieri, D.; Weber, M.; Schibli, R.; Krämer, S. D.; Ametamey, S. M.; Mu, L. Synthesis, radiolabeling and evaluation of novel 4-oxo quinoline derivatives as PET tracers for imaging cannabinoid type 2 receptor. Eur. J. Med. Chem. 2015, 92, 554-564.
(S2) Qiao, J. X.; Chang, C-H; Cheney, D. L.; Morin, P. E.; Wang, G. Z.; King, S. R.; Wang, T. C.; Rendina, A. R.; Luettgen, J. M.; Knabb, R. M.; Wexler, R. R.; Lam, P. Y. S. SAR and X-ray structures of enantiopure 1,2-cis-( $1 R, 2 S$ )-cyclopentyldiamine and cyclohexyldiamine derivatives as inhibitors of coagulation Factor Xa. Bioorg. Med. Chem. Lett. 2007, 17, 4419-4427.
(S3) Friedrich, S. R.; Qiao, J. X.; Pinto, D. J.; Orwat, M. J.; Han, W. 1,1-Disubstituted cycloalkyl derivatives as factor Xa inhibitors. WO2003/99276 A1, 2003.
(S4) Rouf, A.; Gupta, P.; Aga, M. A.; Kumar, B.; Parshad, R.; Taneja, S. C. Tetrahedron Asymmetry 2011, 22, 2134-2143.

