Supporting Information

Discovery of Novel Adenosine Receptor Agonists that Exhibit Subtype Selectivity

Anthony Knight,[†] Jennifer L. Hemmings,[‡] Ian Winfield,^{¶, ⊥} Michele Leuenberger, [‡] Eugenia Frattini,[⊥] Bruno G. Frenguelli,[§] Simon J. Dowell,[∥] Martin Lochner,^{*,‡} and Graham Ladds^{*,[⊥]}

[†]Systems Biology Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK.
[‡]Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
[¶]Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
[§]School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
[¶]Departments of Biological Research and Assay Development, GlaxoSmithKline, Hertfordshire, SG1 2NY, UK.
[↓]Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.

Table of Contents

I.	Synthesis of intermediates	S1 – S3
II.	¹ H and ¹³ C NMR spectra for compounds	
III.	Degree of purity for tested compounds	
IV.	A ₃ R in yeast	S63
V.	Schild plot analysis for compounds 36 and 37	S64
	Predicted binding poses for compounds 5-7, 17-21 and 34	
VII.	PSI-Coffee sequence alignment for A ₁ R homology modelling	S66
	Supplementary references	

I. Synthesis of intermediates

5'-(2-Fluorophenylthio)-5'-deoxy-2',3'-O-isopropylideneinosine (28).

2-Fluorothiophenol (0.86 mL, 8.06 mmol) was added to anhydrous DMF (25 mL). Sodium hydride (60% oil dispersion, 0.26 g, 6.51 mmol) was added in portions at 0 °C and stirred for 3 h at room temperature. Chloride **27** (0.56 g, 1.71 mmol) was added in anhydrous DMF (10 mL) and stirred overnight. The solvent was removed *in vacuo* and the resultant residue was dissolved in DCM (20 mL). The organic phase was washed with

water (2 x 50 mL), dried over anhydrous Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by column chromatography (methanol/DCM, 1–2%) to give **28** (0.34 g, 48% yield) as a white solid. ¹H NMR (300 MHz, DMSO- d_6) δ 12.43 (1H, br s, NH), 8.26 (1H, s, adenine H), 8.08 (1H, s, adenine H), 7.42 (1H, td, *J* 7.8, 1.7, Ar H), 7.31-7.10 (3H, m, 3 x Ar H), 6.14 (1H, d, *J* 2.3, 1'-H), 5.41 (1H, dd, *J* 6.1, 2.3, 2'-H), 5.0 (1H, dd, *J* 6.1, 2.8, 3'-H), 4.18 (1H, td, *J* 7.1, 2.8, 4'-H), 3.26 (2H, d, *J* 7.1, 5'-H₂), 1.48 (3H, s, CH₃), 1.30 (3H, s, CH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ 161.4, 158.9, 156.5, 147.6, 146.1, 139.1, 131.1, 128.6 (d, *J* 7.9), 125.0 (d, *J* 3.5), 124.7, 121.7 (d, *J* 17.2), 115.6 (d, *J* 21.9), 113.4, 89.3, 85.0, 83.5, 83.2, 34.3, 26.8, 25.1 (there is an additional quaternary aromatic peak in the ¹³C NMR spectrum); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -110.4; HRMS calculated for C₁₉H₂₀O₄N₄FS [MH]⁺ 419.1184, found 419.1188.

6-Chloro-6-deoxy-5'-(2-fluorophenylthio)-2',3'-O-isopropylidene-5'-deoxyinosine (29).

Intermediate **28** (0.12 g, 0.29 mmol) was dissolved in anhydrous DCM (10 mL). Anhydrous DMF (0.06 mL, 0.72 mmol) and thionyl chloride (0.11 mL, 1.44 mmol) were added and the reaction mixture was refluxed at 50 °C for 5 h. The solution was allowed to cool to room temperature, diluted with DCM (100 mL) and washed thoroughly with saturated sodium hydrogen carbonate solution (2 x 50 mL), brine (2 x 50 mL) and

water (3 x 100 mL). The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by column chromatography (methanol/DCM, 1–2%) to give chloride **29** (0.11, 88% yield) as a yellow oil. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.84 (1H, s, adenine H), 8.81 (1H, s, adenine H), 7.38 (1H, td, *J* 7.7, 1.9, Ar H), 7.27-7.05 (3H, m, 3 x Ar H), 6.31 (1H, d, *J* 2.0, 1'-H), 5.56 (1H, dd, *J* 6.3, 2.0, 2'-H), 5.07 (1H, dd, *J* 6.3, 2.6, 3'-H), 4.28 (1H, td, *J* 7.1, 2.6, 4'-H), 3.26 (2H, d, *J* 7.1, 5'-H₂), 1.50 (3H, s, CH₃), 1.32 (3H, s, CH₃); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.4, 159.0, 151.7, 151.0, 149.4, 146.2, 131.5, 131.3, 128.7 (d, *J* 8.0), 124.8 (d, *J* 3.6), 121.6, (d, *J* 17.2), 115.5 (d, *J* 22.0), 113.3, 90.1, 85.7, 83.3, 83.2, 34.3, 26.8, 25.1 (there is an additional quaternary aromatic peak in the ¹³C NMR); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -110.3; HRMS (ESI) calculated for C₁₉H₁₉O₃N₄CIFS [MH]⁺ 437.0845, found 437.0847.

3-Amino-1-adamantanol^{S1}

Sulfuric acid (97%, 10.3 mL) was cooled to 0 °C and nitric acid (65%, 1 mL) was added dropwise and stirred for 5 min. Amantadine hydrochloride (1 g, 5.33 mmol) was added in small portions and stirred for 2 h at 0 °C and then overnight at room temperature. The reaction mixture was again cooled to 0 °C and ice water was added slowly and stirred for 30 min. Sodium hydroxide (3M aq. solution, 250 mL) was then added until the pH was

alkaline. The reaction mixture was extracted with DCM (3 x 100 mL), dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to give 3-amino-1-adamantanol (0.64 g, 72% yield) as a white solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 4.34 (1H, s, OH), 2.08 (2H, m, 2 x adamantyl H), 1.46-1.24 (14H, m, 12 x adamantyl H and NH₂); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 67.8, 54.0, 49.8, 44.9, 44.2, 34.9, 30.5; *m*/z (ESI⁺) 168 (MH)⁺.

(1R, 2R)-2-Benzyloxycyclopentyl-(tert-butoxycarbonyl)amine^{S2}

(1R,2R)-1-Amino-2-benzyloxycyclopentane (0.2 mL, 1.05 mmol) was dissolved in anhydrous THF (10 mL) and cooled to 0 °C. Triethylamine (0.29 mL, 2.10 mmol) and Boc₂O (0.25 g, 1.16 mmol) were then added and stirred at room temperature overnight. Ethyl acetate (100 mL) was then added and the organic

phase was washed with water (2 x 50 mL) and brine (50 mL) and dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo* to give a pale yellow solid, which was purified with column chromatography (methanol/DCM, 1%) to give the title compound (0.25 g, 84%) as a pale yellow solid. ¹H NMR (300 MHz, DMSO- d_6) δ 7.39-7.22 (5H, m, 5 x phenyl H), 6.91 (1H, d, *J* 7.3, NH), 4.51 (2H, m, CH₂Ph), 3.82-3.66 (2H, m, 1- and 2-H), 1.98-1.73 (2H, m, 2 x cyclopentyl H), 1.68-1.50 (3H, m, 3 x cyclopentyl H), 1.47-1.32 (10H, m, -(CH₃)₃ and 1 x cyclopentyl H); ¹³C NMR (100 MHz, DMSO- d_6) δ 154.9, 138.9, 128.1, 127.3, 127.1, 84.5, 77.5, 69.8, 56.4, 30.1, 28.2, 21.3; *m*/z (ES⁺) 314 (MNa)⁺.

(1R,2R)-2-(tert-Butoxycarbonylamino)cyclopentanol^{S3}

^{OH} Fully protected cyclopentanol from above (0.25 g, 0.86 mmol) was dissolved in ethanol ^{BocHN} (20 mL). Pd(OH)₂/C (20 wt. %, 0.06 g) and cyclohexene (0.52 mL, 5.16 mmol) were then added and refluxed for 4 hours. The reaction mixture was allowed to cool to room temperature and filtered through celite. The solvent was removed *in vacuo* and the crude product was purified by column chromatography (ethyl acetate/hexane, 50%) to give the title compound (0.20 g, 99% yield) as a white solid. ¹H NMR (300 MHz, DMSO- d_6) δ 7.54 (1H, m, NH), 5.42 (1H, d, *J* 4.3, OH), 4.60 (1H, m, 1-H), 4.32 (1H, m, 2-H), 2.76-2.51 (2H, m, 2 x cyclopentyl H), 2.45-2.31 (2H, m, 2 x cyclopentyl H), 2.28-2.08 (11H, m, 2 x cyclopentyl H and -(CH₃)₃); ¹³C NMR (100 MHz, DMSO- d_6) δ 155.2, 77.3, 32.0, 28.3, 20.3; *m*/z (ES⁺) 224 (MNa)⁺.

(1R,2R)-2-Aminocyclopentanol hydrochloride^{S4}

CI H_{3N}^{+} The Boc-protected cyclopentanol from above (0.023 g, 0.11 mmol) was dissolved in 4M HCl in dioxane (0.51 mL, 2.01 mmol) and stirred at room temperature for 1.5 h. The solvent was removed *in vacuo* and the resultant solid was washed with diethyl ether to give the title compound (0.01 g, 99% yield) as a white solid as the HCl salt. ¹H NMR (300 MHz, DMSO- d_6) δ 7.99 (2H, br s, NH₂), 5.18 (1H, d, *J* 4.6, OH), 3.96 (1H, m, 1-H), 3.13 (1H, m, 2-H), 2.07-1.83 (2H, m, 2 x cyclopentyl H), 1.72-1.60 (2H, m, 2 x cyclopentyl H), 1.56-1.44 (2H, m, 2 x cyclopentyl H); ¹³C NMR (100 MHz, DMSO- d_6) δ 74.6, 57.9, 32.0, 27.6, 20.1; *m*/z (ES⁺) 102 (MH)⁺.

II. ¹H and ¹³C NMR spectra for compounds

-8500	-8000	-7500	-7000	-6500	-6000	-5500	-5000	-4500	-4000	-3500	-3000	-2500	-2000	-1500	-1000	-500	. <u>P</u>	500	
																	nedroteir		
٤0.	≁ī~																la kajeraj kaj		- 9
,43 ,24	20 20																- Minister M		- 8
69' 29'	0z-/ sz-/													-		-	Ĭ		- 6
	-32																		[^m
96' 24: 67'	68~ 88~																~		- 6
00'	67-1 67-1																5		- 2
64.	64-]																And the second		- 6
	₽9												-				and the second		- 22
	ZL~ ≁L∕∕																		-
19	T8—																		- 8
88	<u> 28</u>												-						- 6
																	-		100 f1 (ppm)
																	-		110
																	-		120
																	Number		ŀ
																	Agentine		130
T6'0	+ī—			\sim									-				_		140
97.4	CT-				Z												الإخراقية المحالي		150
25°5				τz	> }=z											-			160
7.41 7.41)_z	OL	8								-		all surgery		170
JH13-R	MeoD			0	r	Ŷ													180
035386 J.Hemmings:	C13CPD_STD Me0D20 A Shrice 47 19 19)) 	0~~											and the state of the		190
035 H.C	5			0=	1												gji ya		

-3000	-2500	- -2000	-1500	-1000	-500	. P	·	
								-1.0
								-0.5
								- 0:0
0'28 19'0- 0'03]	1-00'ε	- 0.5
1'53 1'34							₽-70'£	- 0: -
123'T						\equiv	100.5 1−20.5 1−20.5	1.5
02.27		_			_	\equiv	£ 20'ε 28'S	2.0
05'2 T5'2 58'2 58'2 28'2							<u>⊢61.5</u>	2.5
28'2-⁄							T	30
								3.5
								m (m
4'23 4'23					-		≖-66'0	4.5 f1 (ppm)
22:32 2:39 2:42	_						I-10.2	2.0
24.2							1-100	5.5
 							≖ 86`0	- 0.9
19'9~ 65.37 79'9~		_					1− ₽6'0	6.5
8427			\frown					- 22
8+'Z 05'Z 25'Z		_	\leq				I-26'0	7.5
27 18-8-17 192-18-25	:						1.00 1.00	- 8.0
disk0 se				7				8.5
GA_121166 ලි. ශි. ශි jh188-dmso Proton_ns32 DMSO /disk0 servyide 72								- 0.6
GA_121166 jh188-dmso Proton_ns32								9.5
GA_1 jh188 Protoi			\langle					10.0

-1500	-1400	-1300	-1200	-1100	-1000	006-	-800	-700	-600	-500	-400	-300	-200	-100	P		_
																	-1.0
																	-0.5
																	- 0.0
S0'1 80'1																	0.5
07.1 1.23 64.1	Ţ_Į															1−66'Z	- 9:
8911 2911	F.				_											<u></u> -96.2	1.5
2813 5173	2-1														١	⊦oo .8	2.0
67 76 05 76 7 27	Z-1					_										T	2.5
61 '8 7 7 7	E														j		- 0:
8133 8133	ε/															1-99.1	3.5
₽1.14					_											≖-96 '0	- 4-0-
0811 SS11 0911															J J	-56'0 €6'0 £-10'1	4.5 f1 (ppm)
29.4	Þ-/																2:0 •
9519 8519	s-7				_									_		™-S6.0	5.5
₩Z19 SZ19 ₩619 9619	} s-∕[_									_	Ę	™S6'0 ™†6'0 ≆^S6'0	- 0.9
9619	s-/																6.5
6819	9—				_											I-16'0	- - 0: - 2
						ОН Н	\langle	4									7.5
	ice 42						ΞŹ	∠ ∠z									8.0
04.8 72.8	sk0/sehv				_		z) }_z							\exists	≖-⊅6'0 ≖-56'0	8.5
GA_122495 88 40 N h-dmso 55 88 40 N	msď /di				<u> </u>			∕.,,∩	17						\prec	≖-06`0	- 0.6
2495 0	ns32 DI							,,,OH									9.5 -
GA_122 ih-dmsc	Proton							ZI /									10.0
								`									

-1700	-1600	-1500	-1400	-1300	-1200	-1100	-1000	006-	-800	-700	-600	-500	-400	-300	-200	-100	<u> </u>	-100	
-1'02 -1'08 -1'10																			- 8
-1'23 -1'25																			0.5
95'T- £2'T- 58'T-≡ 06'T			_		_												J I	-20'E	- 0:1
														_		_) 5 I	2.00-2	1.5
ד-2' ל6 - ר2' ל6 - ר2' ב0	_	```			_											-2		~80.9 ~90.5 ~90.5	2:0
15'21 <u>√5'21</u> √5'23																	5		2.5
22.22 3.19																-			3.0
3.33				_													, ₽	-20,2	3.5
4' 14 4' 14				, 	_													-20'I	- 0.4
08'+7 TE'+7 65'+7				`												-92] ŀ	₽ <u>88.1</u> ₽ ^{.90.1}	5.0 4.5 f1 (ppm)
£9.4- 29.4- 29.4-																			5.0 f1 (pp
55.2 25.2				_	_													66.0	5.5
86.2 86.2 86.2					_												׀ֺֺֺֺֺ֕֕֕֕֕	-26'0 -26'0 -66'0	
80 2-																			6.5
					,												-		- 0:2
ST'Z							4		1								-{	-29.0	7.5
e 10																			-
α Σ α. α. 0 /disk0 [service 10					_		z <	j=∠ ↓ ∠z	,								J I	-86'0	- 8.0
SO /dish							ر م	, "IC	•	2			_						8.5
658 K								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2							-<		-06:0	- 0.6
GA_126658 % jh273 % Proton_n332 DMSO /(ZI / \	_								and the second second second		9.5
								`											

-7000	-6500	-6000	-5500	-5000	-4500	-4000	-3500	-3000	-2500	-2000	-1500	-1000	-500	-	500	
																0.5
23.1.23														5		- 1:0
SZ'T TE'T 67'T 89'I 89'I 7'	. ~															1.5
-5'55 -5'46 -5'46 -5'20												_		ساللار	1−10.ε 1−10.ε	2.0
<u>-05'Z</u>																2.5
52'8- 22'8- 22'8-			_											لے	E-₽2.2	3.0
62'8- 72'8- 23'33																3.5
4 ^{.20}														┥	1-51.1	- 4.0
לי0∙S																5.0 4.5 f1 (ppm)
50'S- 90'S- 90'S-				_									_	4	±-20.1	- 220 11
2'20 2'20 2'27 2'25													-		ī-₽0.1	5.5
۲۲.9 ۲۲.9														_	≖-66'0	- 0.9
89:2-	-			_	_									\neg	1−66`0	6.5
01'2- 21'2- 21'2- 81'2-					$\left\{ \right\}$										01'T E ET'T A 21'T A ST'T	- 2.0
81'2- 02'2- 82'2- 82'2- 62'2- 9					Z.		\geq								1.15	7.5
22 22 22 22 22 22 22 22 22 22 22 22 22				_	Ľ	Z Z	~ ,,Q	30		_					₹2 <u>6.0</u>	- 0.8
9 96HE							\times								200	8.5
035384 J.Hemmings:JH96 h1_pf2_STD_DMS0_					╨╱╴	S										- 0.6
035 J.He h1					1											9.5

-2300 -2200 -2200 -2100 -2100 -1900 -1800 -1700 -1600			100
			- 1.0
			-0.5
			- 0:0
			0.5
-1.24			1:0
S9'T~	-		F-00.9 - 1. - 7.1
89:1- 6# 2- 0S'2- 0S'2- 0S'2-			
OS'Z TS'Z			2.5
-3.28 		J	30
-22:23 			 1.14-≖ N
22.4 			±-ετ.1 - 6 ±-60.1 - 6
			f1 (ppm) f1 (ppm) f1 (ppm)
85.2- 55.36 28.4-			5.0
- 2°20			
52'S/ 28'S 88'S			00 - T'T0-≖
65'9 ⊭⊺:Z_↓			±-50.1 - 2.
61.7	\leftarrow		- 2 - 2
61'Z- ZZ'Z- 9+'Z- 9+'Z-	IZ =Z		- 75 ⁻ 1.14-≖
			- 20171 - 1710-1 - 20171 - 20171
pt server 32	34 HO		
v/ oswa	HO, N		- 0.6
005855 J.Hemmings 여 여 h1_pf2_STD DMSO /opt service 19	щ		9.5
0058: J.Hen h1_pf			10.0

-2300	-2200	-2100	-2000	-1900	-1800	-1700	-1600	-1500	-1400	-1300	-1200	-1100	-1000	-900	-800	-700	-600	-500	-400	-300	-200	-100	?	-100	1-200
1,23 1,49	1																								-0.5
121 123	1																								- 0.0
7.62 1.64	1																								ł
99'T 69'T 06'T	1																								0.5
2,49 2,49	1)		- 91
05'20 TS'27	1	/																				-	5	L	1:5
75'Z 02'20	1						_													-	_			-211 -211	·
28.8 25.8						<u> </u>	_															-5	Ş	<u>-</u> 91.1 -81.1	5.0
3136 9140	1																								2.5
00.₽ 86.8	-1																						Ì		3.0
20.4	#																				_	_		⊢66' (ł
4'57 4'55 4'53	-1																							1 00 0	
67.4 25.4	-N⊧				_		_														-			⊦+ 0.9	
78.4 78.4	1						<u> </u>																1	⊦99 1	- 2 -
68'9 77'30	Nr.				_																_		Ļ	⊦so ra	5.0 4.5 f1 (ppm)
85'S	1						`																	1	5.0
88'S 06'S	٦¶⊢						_													=				₽-96°0 1-66°0	5.5
717 217	1					_	_												-					1−00 '1	- - - - - - - - - - - - - - - - - - -
₩T12 ₩T12	-																								ł
91'Z 21'Z	-								_																6.5
61'Z 02'Z	1								ΗŌ	"<														т	2.0
2733 2733 2733	1					_			J	z														1-20.1	7.5
7.25 7.25	-∦⊧					_	_		z		=2	>									-			Ĩ, _{90.0} I, 20.1	ſ
72.T	1					_	_		N	`z	_z	Ч	37										J	F- Þ6 '(5 8
44'Z	I					_	_			\sum_{i}	٦		e										Ĭ	F-90.1	8.5
94'Z	E.									T		DL													- 0.9
6+7 057	Ð								щ	Ĵ															ł
97.7 197.7 1989.7											\rangle														9.5
A CO	Photon									-															10.0

III. Degree of purity for tested compounds

Compound Number	Purity (%)	t _R (min)
5	99	2.66
6	98	2.30
7	99	1.46
9	99	1.41
16	99	3.06
17	94	2.18
18	99	2.69
19	99	1.62
20	98	2.59
21	99	2.21
24	99	1.80
25	99	1.87
34	_a	_a
35	99	2.24
36	99	3.14
37	95	2.35

Table S1. Degree of purity for tested compounds	Table S1.	Degree of	purity for	tested o	compounds.
---	-----------	-----------	------------	----------	------------

^{*a*} HPLC chromatogram could not be obtained. **34** is \geq 95% pure according to ¹H, ¹³C, ¹⁹F NMR and HRMS ($\Delta = 0.8$ ppm).

Figure S1. Non-functional coupling of the A₃R in yeast. Yeast strains expressing the human A₃R were stimulated with 0 or 100 μ M NECA for 16 h and assayed for the activation of the *FUS1* > *lacZ* reporter gene as previously described.^{15-17,19} β -galactosidase units (mU) are expressed as the ratio of *o*-nitrophenol product to cell density (determined colorimetrically; see *Experimental Section*). Data are mean of 5 independent experiments ± SEM.

Figure S2. N^6 -cyclopentyl congeners **36** and **37** (CVT-3619) are competitive antagonists of the A₁R. Yeast cells expressing the human A₁R were stimulated for 16 h with (A, E) NECA, (B, F) adenosine, (C, G) CCPA in the presence of the indicated concentrations of **36** (A-C) or **37** (E-G) and the extent of signaling quantified through activation of the *FUS1-lacZ* reporter gene. Data are expressed as the percentage of the maximum response achieved when cells were stimulated in the absence of **36** or **37** and are mean of 5 independent experiments ± SEM. (D, H) Schild regression lines obtained from the data in A-C (**36**) and E-G (**37**), respectively. In the double logarithmic plot, the DR-1 of each ligand was calculated from the data in A-C and E-G, respectively.

Figure S3. (left) Docking of N^6 -substituted adenosine derivatives into the A_{2A}R crystal structure (A,B) and into the A₁R homology model (C-K). Proposed binding poses for (A) **20** and (B) **34** in the A_{2A}R crystal structure. Proposed binding poses for (C) **5**, (D) **6**, (E) **7**, (F) **17**, (G) **18**, (H) **20**, (I) **21**, (J) **19** and (K) **34** in the A₁R homology model. Black dotted lines represent potential hydrogen bonds. Compounds docked into A_{2A}R crystal structure in brown shades, compounds that showed agonist activity at the A₁R (Table 1) are in green shades, compounds which exhibited activation at very high concentration in blue shade and compounds that failed to active the A₁R are shown in red shade. Numbering of residues in (A,B) according to P29274 ($hA_{2A}R$) and of homologous residues in (C-K) according to P30542 (hA_1R). Ballesteros-Weinstein (BW) numbering: T88 (A_{2A}), T91 (A₁): BW 3.36; F168 (A_{2A}), F171 (A₁): BW ECL2; E169 (A_{2A}), E172 (A₁): BW ECL2; N181 (A_{2A}), N184 (A₁): BW 5.42; W246 (A_{2A}), W247 (A₁): BW 6.48; H250 (A_{2A}), H251 (A₁): BW 6.52; N253 (A_{2A}), N254 (A₁): BW 6.55; T270 (A₁): BW 7.35; Y271 (A_{2A}), Y271 (A₁): BW 7.36; S277 (A_{2A}), T277 (A₁): BW 7.42; H278 (A_{2A}), H278 (A₁): BW 7.43.

VII. PSI-Coffee sequence alignment for A_1R homology modelling

3QAK	3	IMGSSVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAAADIAVGVLAIPF	62
hA1R	9	QAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAVADVAVGALVIPL	65
		** * ** **** * * * * * **** ****	
3QAK	63	$\verb AITISTGFCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAIRIPLRYNGLVTGTRAK $	122
hA1R	66	AILINIGPQTYFHTCLMVACPVLIL T QSSILALLAIAVDRYLRVKIPLRYKMVVTPRRAA	125
		** * * * ** ** ** ***** **** *** ***	
3QAK	123	GIIAICWVLSFAIGLTPMLGWNNCGQGCGEGQVACL FE DVVPMNYMVYF N F	182
hA1R	126	VAIAGCWILSFVVGLTPMFGWNNLSAVERAWAANGSMGEPVIKCE FE KVISMEYMVYF N F	185
		** ** *** **** **** ** * * * * * * * ****	
30AK	183	FACVLVPLLLMLGVYLRIFLAARRQLRSTLQKEVHAAKSLAIIVGLFAL	244
		FVWVLPPLLLMVLIYLEVFYLIRKOLNKKVSASSGDPOKYYGKELKIAKSLALILFLFAL	245
	200	* ** **** ** * * ** ** ** ** ** ***	210
30ak	245	CWLPLHIINCFTFFCPDCSHAPLWLMYLAIVLSHTNSVVNPFIYAYRIREFRQTFRKIIR	304
		SWLPLHILNCITLFCPSC-HKPSILTYIAIFLTHGNSAMNPIVYAFRIQKFRVTFLKIW-	303
MAIR	240		303
		***** ** * *** * * * * * * * * * ** **	

Figure S4. PSI-Coffee sequence alignment used for the construction of the human adenosine A_1R homology model. 3QAK: sequence of the human $A_{2A}R$ (accession no. P29274) from the agonist-bound crystal structure (PDB ID: 3QAK). hA1R: sequence of human A_1R (accession no. P30542). Identical residues are marked with an asterisk and highlighted with a grey background. Residues in bold are involved in ligand binding and discussed in the docking section (Figure 6).

VIII. Supplementary references

(S1) Slavik, R.; Herde, A. M.; Bieri, D.; Weber, M.; Schibli, R.; Krämer, S. D.; Ametamey, S. M.; Mu, L. Synthesis, radiolabeling and evaluation of novel 4-oxo quinoline derivatives as PET tracers for imaging cannabinoid type 2 receptor. *Eur. J. Med. Chem.* **2015**, *92*, 554-564.

(S2) Qiao, J. X.; Chang, C-H; Cheney, D. L.; Morin, P. E.; Wang, G. Z.; King, S. R.; Wang, T. C.; Rendina, A. R.; Luettgen, J. M.; Knabb, R. M.; Wexler, R. R.; Lam, P. Y. S. SAR and X-ray structures of enantiopure 1,2-*cis*-(1*R*,2*S*)-cyclopentyldiamine and cyclohexyldiamine derivatives as inhibitors of coagulation Factor Xa. *Bioorg. Med. Chem. Lett.* **2007**, 17, 4419-4427.

(S3) Friedrich, S. R.; Qiao, J. X.; Pinto, D. J.; Orwat, M. J.; Han, W. 1,1-Disubstituted cycloalkyl derivatives as factor Xa inhibitors. WO2003/99276 A1, **2003**.

(S4) Rouf, A.; Gupta, P.; Aga, M. A.; Kumar, B.; Parshad, R.; Taneja, S. C. *Tetrahedron Asymmetry* **2011**, *22*, 2134-2143.