Supporting Information

Low-cost Y-doped TiO₂ nanosheets film with highly reactive {001} facets from CRT waste and enhanced photocatalytic removal of Cr(VI) and methyl orange

Qijun Zhang a,* , Yu Fu^a , Yufeng Wu a,* , Yinan Zhang b and Tieyong Zuo a

a Institute of Circular Economy, Beijing University of Technology, Beijing, 100124, P.

R. China.

b Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.

*Corresponding Author: Fax: +86-10-67396234; Tel: +86-10-67396234; E-mail: zhangqijun@bjut.edu.cn and wuyufeng@ bjut.edu.cn.

Number of pages: 10

Number of figures: 8

Number of tables: 1

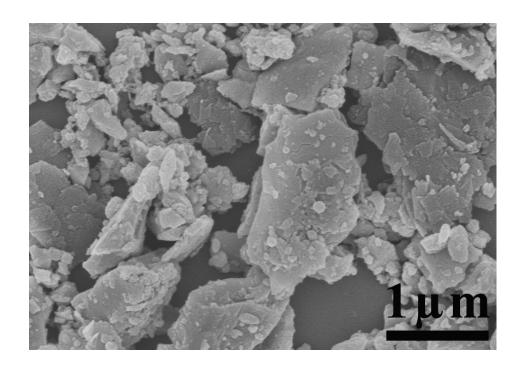


Figure S1. SEM image of CRT phosphors waste.

Figure S2. The separation of Y and Eu from the as-obtained rare earth mixtures using photochemical reduction method.

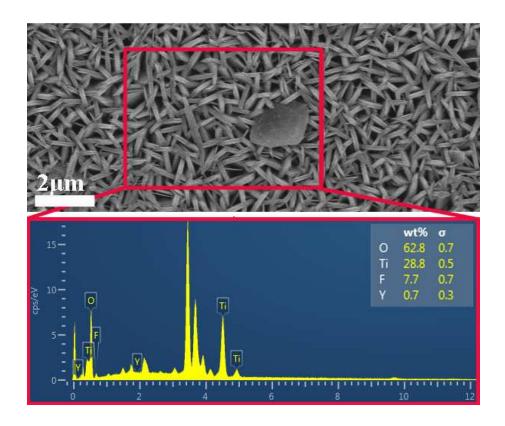


Figure S3. Upper row is SEM image of anatase Y^{3+}/TiO_2 nanosheets film of synthesized by solvothermal approach at 200 °C for 12 h, and lower row is EDAX image obtained from the region enclosed by the red box in SEM image.

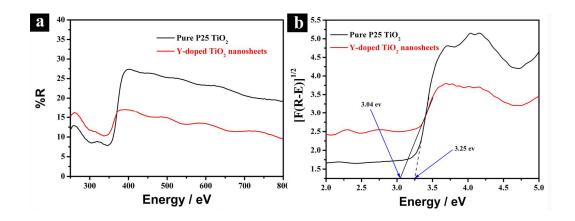


Figure S4. (a) UV-vis diffuse reflectance (DRS) spectra and (b) the plots of $[F(R-E)]^{1/2} \ \textit{vs.} \ photon \ energy \ of \ samples \ Y^{3+}/TiO_2 \ and \ pure \ P25 \ TiO_2.$

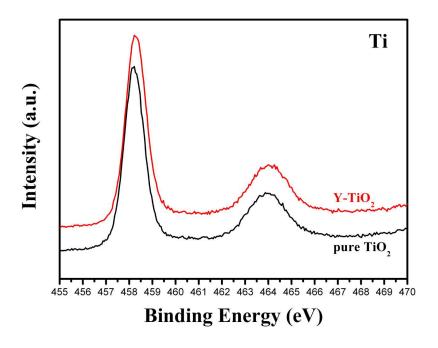


Figure S5. High-resolution XPS spectrum of Ti 2p on the surface of $Y^{3+}/\text{Ti}O_2$ and pure P25 TiO2.

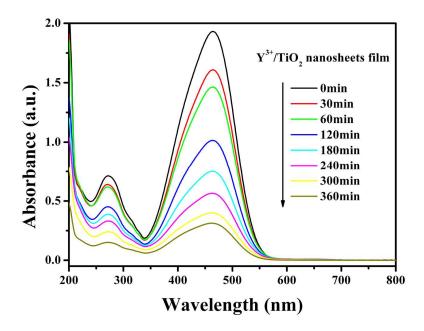


Figure S6. UV-vis spectral changes of MO in the presence the Y^{3+}/TiO_2 nanosheets films as a function of UV light illumination time.

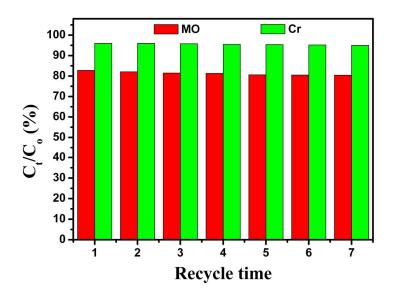


Figure S7. Results of recycling studies. Conditions: $[MO]_0=10$ mg/L; $V_{MO}=20$ mL; $[Cr(VI)]_0=10$ mg/L; $V_{Cr(VI)}=20$ mL; $S_{catalyst}=2$ cm \times 4 cm; 30 W UV light irradiation; irradiation time for MO and Cr(VI) is 360 min and 300 min, respectively.

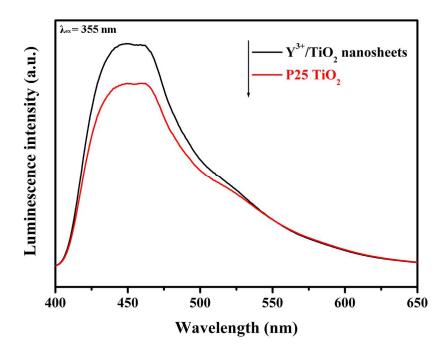


Figure S8. PL spectra of the as-prepared Y^{3+}/TiO_2 and pure P25 TiO_2 , which clearly indicates that a more efficient transfer and separation of photogenerated electrons and holes caused by doped Y^{3+} ions.

Table S1. Chemical compositions (wt %) of recycled Y_2O_3/Eu_2O_3 , $EuSO_4$ and the as-obtained yttrium sulfate. (XRF analysis).

	Y ₂ O ₃	Eu ₂ O ₃	SO ₃	ZnO	Al ₂ O ₃	SiO ₂	Fe ₂ O ₃	PbO	ВаО	K ₂ O
Recycled Y ₂ O ₃ /Eu ₂ O ₃	94.46	5.28	N.D.	0.02	0.06	0.06	0.07	0.05	N.D.	N.D.
EuSO ₄	1.44	59.45	39.08	N.D.	N.D.	N.D.	N.D.	0.03	N.D.	N.D.
Yttrium sulfate	48.5	0.03	51.35	0.01	0.03	0.03	0.04	0.01	N.D.	N.D.

N.D.: not detectable.