Supporting Information

Multi-Functional Surface Engineering for Li-excess Layered Cathode Material Targeting Excellent Electrochemical and Thermal Safety Properties

Xiaofei Bian^a, Qiang Fu^a, Qiang Pang^a, Yu Gao^a, Yingjin Wei^{a,*}, Bo Zou^b, Fei Du^{a,*}, Gang Chen^{a,b}

^a Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China.
^b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China.

*Email: yjwei@jlu.edu.cn (Y. J. Wei); dufei@jlu.edu.cn (F. Du) Tel & Fax: 86-431-85155126

Figure S1. FESEM images of the (a) LLMO and (b) LLMO@Li₄ M_5O_{12} @BiOF samples.

Figure S2. Ni, Co, Mn, Bi and F elmental mappings of the LLMO@Li₄M₅O₁₂@BiOF sample.

Figure S3. Raman patterns of the LLMO and LLMO@Li₄M₅O₁₂@BiOF samples.

Figure S4. dQ/dV profiles of the LLMO and LLMO@Li₄ M_5O_{12} @BiOF samples during the first discharge.

Figure S5. Specific energies of the LLMO and LLMO@Li₄ M_5O_{12} @BiOF samples at the 0.2 C rate.

Figure S6. FTIR patterns of the LLMO and LLMO@ $Li_4M_5O_{12}$ @BiOF materials after three cyclces.

Figure S7. (a) GITT curves of the LLMO and LLMO@Li₄M₅O₁₂@LBO samples during the first discharge; (b) a typical *E vs.* $\tau^{1/2}$ profile of the samples for a single titration.

If the *E* vs. $\tau^{1/2}$ relationship shows a linear behavior over the entire time period of current flux, the lithium diffusion coefficients (*D*_{*Li*}) of the samples can be calculated by the following equation, ^[1]

$$D_{Li^{+}} = \frac{4}{\pi\tau} \left(\frac{mV_{M}}{MA}\right)^{2} \left(\frac{\Delta E_{s}}{\Delta E_{\tau}}\right)^{2}$$

where M and m are the molecular weight and mass of the cathode material, respectively. V_m is the molar volume of the active material, F is the Faraday constant and A is the BET surface area of the materials.

References

[1] Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H., Analysis of the Chemical Diffusion Coefficient of Lithium Ions in Li₃V₂(PO₄)₃ Cathode Material. *Electrochim. Acta* 2010, 55, 2384-2390.