The Supporting Information for

Synthesis of Azacyclic Nucleoside Analogues via Asymmetric

[3+2] Cycloaddition of 9-(2-tosylvinyl)-9H-purines

Dan-Jie Zhang, Ming-Sheng Xie,* Gui-Rong Qu, Yao-Wei Gao, and Hai-Ming Guo*

Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

E-mail: xiemingsheng@htu.edu.cn; ghm@htu.edu.cn

1.	General information	S2
2.	Synthesis methods of starting materials	S2
3.	Typical procedure for the asymmetric [3+2] cycloaddition	S4
4.	General procedure for the synthesis of uracil dipolarophile	S8
5.	Characterization of compounds	S9
6.	References	S30
7.	Copies of ¹ H and ¹³ C NMR spectra	S31
8.	Copies of HPLC spectra for Racemic and Chiral Compounds	S70

1. General information

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts are recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constants (Hz), integration. ¹³C NMR data were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel IA/ASH/ODH/ADH in comparison with the authentic racemates. Optical rotations were reported as follows: $[\alpha]_D^T$ (c: g/100 mL, in solvent). HRMS was recorded on a commercial apparatus (ESI Source). All the solvents were purified by usual methods before use. The chiral phosferrox ligands L1-L3, L8-L9 were synthesized according to the reported literature.¹

2. Synthesis methods of starting materials

2.1 General procedure for the synthesis of a-iminoesters

All the α -iminoesters mentioned in the paper were synthesized according to the known procedure.² To a suspension of glycine methyl ester hydrochloride (1.1 equiv) and MgSO₄ (2.0 equiv) in CH₂Cl₂ was added Et₃N (1.1 equiv). Then, this solution was stirred at room temperature for 1 h. Subsequently, the aldehyde (1.0 equiv) was added and the reaction was stirred at room temperature overnight. Work up: MgSO₄ was removed by filtration and the filtrate was washed once with H₂O. The aqueous phase was extracted once with CH₂Cl₂ and the combined organic layers were washed with brine. The organic phase was dried over Na₂SO₄, filtered and concentrated. Due to their instability, most of the α -iminoesters, once isolated, were immediately used in the 1,3-dipolar cycloaddition reactions. But if necessary, further purification can be obtained via recrystallization from ethanol.

2.2 General procedure for the synthesis of ethynyl *p*-tolyl sulfone

TMS
$$\longrightarrow$$
 TMS + TsCl $\xrightarrow{AICI_3}$ \longrightarrow Ts
DCM, N₂

The ethynyl *p*-tolyl sulfone was synthesized according to the known procedure.³ In a 100 mL round bottom flask equipped with a magnetic stir bar, fresh anhydrous aluminum chloride (1.5 g, 11 mmol) and *p*-toluenesulfonyl choride (2.1 g, 11 mmol) were dissolved in dry DCM (30 mL) at room temperature under argon atmosphere. The mixture was stirred for 30 min to form an orange solution and then bis(trimethylsi1yl)acetylene (2.0 mL, 10 mmol) was added. Thereafter, the reaction was complete as monitored by TLC, and then the reagent was concentrated to dryness. The crude adducts were then purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 1:20) to afford the product in 82% yield (1.46 g).

2.3 General procedure for the synthesis of dipolarophiles.

Purine or benzimidazole (10.0 mmol), K_2CO_3 (10.0 mmol, 1.38 g) and DMF (30.0 mL) were mixed in a 100 mL flask. The mixture was stirred for 30 min at ambient temperature and then ethynyl *p*-tolyl sulfone (12.0 mmol, 2.16 g) was added. After the reaction was complete as monitored by TLC, the resulting mixture was partitioned between water and ethyl acetate, and the separated aqueous layer extracted with ethyl acetate. The combined organic layers were washed with brine (100 mL×3), dried over anhydrous MgSO₄, filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography with EtOAc/petroleum (1:3) as the eluant.

Table S1. Synthesis of 9-(2-tosylvinyl)-9H-purine.^a

	$ \begin{array}{c} CI \\ N \\ N \\ N \\ H \\ H \\ H \\ H \\ 1a $ $ \begin{array}{c} P \\ P \\$	Ts <u>K₂CO₃ (1.0 equiv)</u> solvent, time, rt	E-3a	Ts 7-3a
entry	solvent	time (h)	yield $(\%)^b$	E/Z^c
1	CH ₃ CN	4	90	1:1
2	CH ₃ CN	30	90	1:0
3	DMF	5	95	1:0
4	CH_2Cl_2	6	42	1:11
5	CH_2Cl_2	30	83	1:4

^{*a*}Reaction conditions: **1a** (10.0 mmol), K_2CO_3 (1.0 equiv) and solvent (30.0 mL) were stirred for 30 min at room temperature and then ethynyl *p*-tolyl sulfone **2** (1.2 equiv) was added. ^{*b*}Isolated yield. ^{*c*}Determined by the ¹H NMR spectra of the crude products.

3. Typical procedure for the asymmetric [3+2] cycloaddition

3.1 General procedure for the asymmetric [3+2] cycloaddition

1) The preparation of the catalyst solution. L9 (3.0 mg, 0.005 mmol) and $Cu(CH_3CN)_4ClO_4$ (1.6 mg, 0.005 mmol) were dissolved in CH_2Cl_2 (1.0 mL) and stirred for 30 min at ambient temperature.

2) In a test tube, 200 μ L (2 mol %) of the catalyst solution was added, and CH₂Cl₂ (0.5 mL) was added subsequently under *N*₂. Then, *N*-benzylidene glycine methyl ester **4a** (0.25 mmol), dipolarophile **3a** (0.05 mmol) and K₂CO₃ (20 mol %) were added. The reaction mixture was stirred at ambient temperature for 10 h.

3) Work up procedure: Upon consumption of dipolarophile **3a**, the mixture was filtered through Celite and the filtrate was concentrated to dryness. The ratio drvalue was determined by the ¹H-NMR spectroscopic analysis of crude product. The crude adducts were then purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 1:2) to afford the cycloadduct **5aa** in 90% yield (23.0 mg).

3.2 Gram-scaled synthesis of 5aa

In a 100 mL round bottom flask equipped with a magnetic stir bar, L9 (26.4 mg, 0.04 mmol) and Cu(CH₃CN)₄ClO₄ (14.4 mg, 0.04 mmol) were dissolved in CH₂Cl₂ (30 mL) at room temperature under argon atmosphere. The mixture was stirred for 30 min and then dipolarophile **3a** (668.0 mg, 2.0 mmol), *N*-benzylidene glycine methyl ester **4a** (1.4 g, 10.0 mmol) and K₂CO₃ (55.2 mg, 0.4 mmol) were added. The reaction mixture was stirred until dipolarophile **3a** was consumed (determined by TLC). Subsequently, upon consumption of the dipolarophile **3a**, the mixture was filtered through Celite and the filtrate was concentrated to dryness. The drvalue was determined by the ¹H-NMR spectroscopic analysis of crude product. The crude adducts were then purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 1:2) to afford the cycloadduct **5aa** (952.5 mg, 93% yield).

3.3 The synthetic procedure of 6aa

In a test tube, L9 (0.003 mmol) and Cu(CH₃CN)₄ClO₄ (0.003 mmol) were

dissolved in CH₂Cl₂ (2 mL) at room temperature. The mixture was stirred for 30 min and then dipolarophile **Z-3a** (0.15 mmol), *N*-benzylidene glycine methyl ester **4a** (0.75 mmol) and K₂CO₃ (20 mol %) were added under air atmosphere. The reaction mixture was stirred until dipolarophile **Z-3a** was consumed (determined by TLC). Subsequently, upon consumption of the dipolarophile **Z-3a**, the mixture was filtered through Celite and the filtrate was concentrated to dryness. The drvalue was determined by the ¹H-NMR spectroscopic analysis of crude product. The crude adducts were then purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 1:2) to afford the cycloadduct **6aa** in 86% yield (65.8 mg).

3.4 The synthetic procedure of 7aa

Azacyclic nucleoside analogue **5aa** (204 mg, 0.4 mmol) and *p*-toluenesulfonyl chloride (153 mg, 0.8 mmol) were dissolved in CH_2Cl_2 (5.0 mL). Then, Et_3N (0.11 mL, 0.8 mmol) was added and the mixture was refluxed for 36 h. The solvent was evaporated and the crude product was purified by column chromatography. The excess *p*-toluenesulfonyl chloride was eluted with CH_2Cl_2 and then the product was eluted with Et_2O to give **7aa** in 75% yield (200.0 mg). Recrystallisation in a mixture of DCM and pentane afforded crystal suitable for X-ray analysis.

X-ray of 7aa

To a solution of azacyclic nucleoside analogue **5aa** (76.6 mg, 0.15 mmol) in MeOH (5.0 mL) at room temperature, NaBH₄ (22.7 mg, 0.6 mmol) was added. After **5aa** was consumed (determined by TLC), saturated NH₄Cl aqueous solution (5.0 mL) was added. The aqueous phase was extracted with CH₂Cl₂ (5.0 mL×3) and the combined organic phases were dried and concentrated. The residue was purified by silica gel flash chromatography (ethyl acetate/petroleum ether = 1:1) to afford product **8aa** in 95% yield (68.5 mg).

4. General procedure for the synthesis of uracil dipolarophile

Following the procedure of Zhou and co-workers⁴, benzoyl chloride (1.01 mL, 8.72 mmol, 2.2 equiv) and uracil **9** (0.45 g, 4.0 mmol, 1.0 equiv) were suspended in a mixture of acetonitrile (4 mL) and pyridine (1.6 mL, 4.0 mmol, 1.0 equiv) in a flame-dried flask under nitrogen. The reaction was stirred under nitrogen atmosphere at room temperature for 12 h. Then, the reaction was partitioned between DCM and water. The aqueous layer was extracted three times with DCM and the combined organic layers were dried over anhydrous NaSO₄. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography with EtOAc/petroleum (1:5) as the eluant to give the pure product **10** in 65% yield (560.0 mg).

The N-3-Bz-protected uracil **10** (2.0 mmol, 435 mg), potassium carbonate (2.0 mmol, 275 mg) and DMF (15.0 mL) were mixed in a 50 mL flask. The mixture was stirred for 30 min at ambient temperature and then ethynyl *p*-tolyl sulfone (2.4 mmol, 432 mg) was added. After the reaction was complete as monitored by TLC, the resulting mixture was partitioned between water and ethyl acetate, and the separated aqueous layer extracted with ethyl acetate. The combined organic layers were washed with brine (30 mL×3), dried over anhydrous MgSO₄, filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography with EtOAc/petroleum (1:3) as the eluant to give the pure product **11** as a white solid.

Unfortunately, in the presence of optimized reaction conditions, the asymmetric [3+2] cycloaddition of uracil dipolarophile **11** to azomethine ylide **4a** did not occur.

5. Characterization of compounds

(E)-6-Chloro-9-(2-tosylvinyl)-9H-purine (3a)

White solid. ¹**H NMR** (400 MHz, CDCl₃): δ 8.84 (s, 1H), 8.26 (s, 1H), 8.16 (d, J = 13.8 Hz, 1H), 7.94-7.83 (m, 3H), 7.39 (d, J = 8.2 Hz, 2H), 2.46 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 153.3, 152.3, 151.2, 145.3, 144.0, 137.0, 132.9, 130.9, 130.3, 127.8, 122.2, 21.7.

(Z)-6-Chloro-9-(2-tosylvinyl)-9H-purine (3a)

White solid.¹**H NMR** (400 MHz, CDCl₃): δ 9.24 (s, 1H), 8.78 (s, 1H), 7.80 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 10.2 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 2H), 6.43 (d, *J* = 10.2 Hz, 1H), 2.44 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 153.0, 151.9, 151.6, 145.9, 136.6, 131.0, 130.3, 127.6, 124.6, 122.2, 21.7.

(*E*)-6-(Piperidin-1-yl)-9-(2-tosylvinyl)-9*H*-purine (3b)

White solid.¹**H NMR** (400 MHz, CDCl₃): δ 8.32 (s, 1H), 8.08 (d, *J* = 13.7 Hz, 1H), 7.88-7.78 (m, 4H), 7.36 (d, *J* = 8.1 Hz, 2H), 4.20 (br, 4H), 2.44 (s, 3H), 1.79-1.64 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃): δ 153.6, 150.9, 144.7, 137.8, 136.8, 132.1, 130.1, 127.7, 120.6, 119.6, 26.1, 24.7, 21.7.

(E)-6-(Pyrrolidin-1-yl)-9-(2-tosylvinyl)-9H-purine (3c)

White solid.¹**H NMR** (400 MHz, CDCl₃): δ 8.35 (s, 1H), 8.09 (d, *J* = 13.7 Hz, 1H), 7.86-7.80 (m, 4H), 7.35 (d, *J* = 8.1 Hz, 2H), 4.10 (br, 2H), 3.74 (br, 2H), 2.43 (s, 3H), 2.13-1.94 (br, 4H). ¹³**C NMR** (100 MHz, CDCl₃): δ 153.9, 152.9, 150.2, 144.7, 137.7, 132.2, 130.1, 127.7, 121.0, 119.6, 49.0, 47.6, 26.2, 24.3, 21.7.

(E)-4-(9-(2-Tosylvinyl)-9H-purin-6-yl)morpholine (3d)

White solid.¹**H** NMR (400 MHz, CDCl₃): δ 8.36 (s, 1H), 8.09 (d, *J* = 13.7 Hz, 1H), 7.87-7.82 (m, 4H), 7.36 (d, *J* = 8.2 Hz, 2H), 4.28 (br, 4H), 3.27-3.99 (m, 4H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 153.8, 153.5, 151.0, 144.7, 137.7, 137.4, 131.9, 130.1, 127.7, 120.8, 120.0, 66.9, 21.7. (E)-N, N-Dimethyl-9-(2-tosylvinyl)-9H-purin-6-amine (3e)

White solid.¹**H** NMR (400 MHz, CDCl₃): δ 8.36 (s, 1H), 8.10 (d, *J* = 13.7 Hz, 1H), 7.86-7.81 (m, 4H), 7.37 (d, *J* = 8.2 Hz, 2H), 3.49 (br, 6H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 154.8, 153.5, 150.6, 144.7, 137.8, 137.1, 132.1, 130.1, 127.7, 120.9, 119.7, 21.7.

(E)-6-Methoxy-9-(2-tosylvinyl)-9H-purine (3f)

White solid.¹**H** NMR (400 MHz, CDCl₃): δ 8.59 (s, 1H), 8.13 (d, *J* = 13.7 Hz, 1H), 8.05 (s, 1H), 7.90-7.84 (m, 3H), 7.37 (d, *J* = 8.0 Hz, 2H), 4.20 (s, 3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.4, 153.5, 151.5, 144.9, 141.3, 137.4, 131.7, 130.2, 127.8, 122.7, 120.8, 54.6, 21.7.

(E)-6-Phenyl-9-(2-tosylvinyl)-9H-purine (3g)

White solid.¹**H NMR** (400 MHz, CDCl₃): δ 9.07 (s, 1H), 8.76-8.73 (m, 2H), 8.25 (s, 1H), 8.20 (d, *J* = 13.7 Hz, 1H), 7.96 (d, *J* = 13.7 Hz, 1H), 7.89 (d, *J* = 8.3 Hz, 2H), 7.60-7.53 (m, 3H), 7.39 (d, *J* = 8.1 Hz, 2H), 2.45 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 156.0, 153.6, 152.1, 145.0, 143.1, 137.4, 134.8, 132.0, 131.7, 131.4, 130.2, 130.0, 128.8, 127.8, 121.0, 21.7.

(E)-6-Chloro-9-(2-tosylvinyl)-9H-purin-2-amine (3h)

Red solid.¹**H NMR** (400 MHz, DMSO): δ 8.50 (s, 1H), 8.22 (d, *J* = 13.8 Hz, 1H), 7.81 (d, *J* = 8.3 Hz, 2H), 7.73 (d, *J* = 13.8 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.34 (s, 2H), 2.41 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 155.6, 155.1, 154.7, 153.2, 152.3, 145.6, 144.9, 136.6, 131.6, 130.4, 127.9, 124.6, 123.1, 21.7.

(E)-1-(2-Tosylvinyl)-1H-benzo[d]imidazole (3i)

White solid.¹**H** NMR (400 MHz, CDCl₃): δ 8.17 (d, J = 13.9 Hz, 1H), 8.11 (s, 1H), 7.90-7.79 (m, 3H), 7.59 (dd, J = 6.7, 2.0 Hz, 1H), 7.46-7.33 (m, 4H), 6.76 (d, J = 13.9 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 144.6, 141.8, 137.8, 133.4, 131.8, 130.2, 127.6, 125.3, 124.8, 121.4, 115.5, 111.1, 21.7.

(E)-2-Methyl-1-(2-tosylvinyl)-1H-benzo[d]imidazole (3j)

White solid.¹**H** NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 13.9 Hz, 1H), 7.85 (d, J = 8.3 Hz, 2H), 7.71-7.64 (m, 1H), 7.46 (dd, J = 6.4, 2.5 Hz, 1H), 7.35 (d, J = 8.2 Hz, 2H), 7.33-7.23 (m, 2H), 6.79 (d, J = 13.9 Hz, 1H), 2.73 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.3, 144.7, 143.5, 137.9, 133.8, 132.7, 130.2, 127.5, 124.6, 124.4, 120.3, 115.6, 111.7, 21.7, 14.8.

(2*R*,3*R*,4*R*,5*R*)-Methyl 3-(6-chloro-9H-purin-9-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylate (5aa)

Colorless oil; 23.0 mg, 90% yield, >20:1 dr, 98% ee. $[\alpha]_D^{25.5} = -123.7$ (c 0.97, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 31.642 min, 42.565 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.61 (s, 1H), 8.34 (s, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.54-7.48 (m, 2H), 7.29-7.27 (m, 3H), 7.13 (d, J = 8.1 Hz, 2H), 5.88 (dd, J = 6.6, 3.8 Hz, 1H), 4.81 (d, J = 7.9 Hz, 1H), 4.55 (d, J = 6.7 Hz, 1H), 4.18 (dd, J = 7.8, 3.7 Hz, 1H), 3.35 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.7, 151.7, 151.6, 151.0, 145.8, 144.9, 137.6, 134.0, 131.4, 130.0, 128.9, 128.5, 127.4, 74.4, 64.3, 62.1, 58.7, 52.6, 21.6. **HRMS:** exact mass calcd for $C_{24}H_{22}CIN_5O_4S$ (M+Na)⁺ 534.0973, found 534.0970.

(2R,3R,4R,5R)-Ethyl

3-(6-chloro-9*H*-purin-9-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylate (5ab)

Colorless oil; 25.0 mg, 98% yield, >20:1 dr, 99% ee. $[\alpha]_D^{25.5} = -51.5$ (c 3.70, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 28.679 min, 33.667 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.62 (s, 1H), 8.36 (s, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.50 (dd, J = 6.4, 2.9 Hz, 2H), 7.30-7.26 (m, 3H), 7.13 (d, J = 8.1 Hz, 2H), 5.90 (dd, J = 6.8, 3.9 Hz, 1H), 4.79 (d, J = 8.0 Hz, 1H), 4.52 (d, J = 6.8 Hz, 1H), 4.18 (dd, J = 8.0, 3.8 Hz, 1H), 3.79 (dd, J = 12.4, 7.1 Hz, 2H), 3.33(s, 1H), 2.33(s, 3H), 0.77 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 151.7, 151.5, 151.1, 145.7, 144.9, 138.0, 134.1, 130.0, 128.8, 128.5, 127.3, 74.8, 64.6, 62.1, 61.7, 58.7, 21.6, 13.6. HRMS: exact mass calcd for C₂₅H₂₄ClN₅O₄S (M+H)⁺ 526.1310, found 526.1301.

(2*R*,3*R*,4*R*,5*R*)-Tert-butyl

3-(6-chloro-9*H*-purin-9-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylate (5ac)

Colorless oil; 25.5 mg, 93% yield, >20:1 dr, 97% ee. $[\alpha]_D^{25.5} = -123.0$ (c 0.67, DCM). HPLC CHIRALCEL ODH, n-hexane/2-propanol = 60/40, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 16.069 min, 24.214 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.66 (s, 1H), 8.40 (s, 1H), 7.58(d, J = 8.3 Hz, 2H), 7.46 (dd, J = 6.6, 2.9 Hz, 2H), 7.26 (t, J = 3.2 Hz, 3H), 7.11 (d, J = 8.1 Hz, 2H), 5.89 (dd, J = 6.9, 3.9 Hz, 1H), 4.72 (d, J = 8.1 Hz, 1H), 4.44 (d, J = 6.7 Hz, 1H), 4.16 (dd, J = 8.1, 3.8 Hz, 1H), 3.30 (s, 1H), 2.32 (s, 3H), 0.97 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃): δ 166.2, 151.7, 151.5, 151.2, 145.6, 145.0, 138.0, 134.2, 131.4, 130.0, 128.8, 128.5, 128.4, 127.4, 83.2, 75.1, 65.3, 62.3, 58.7, 27.4, 21.6. **HRMS:** exact mass calcd for C₂₇H₂₈ClN₅O₄S (M+Na)⁺ 576.1443, found 576.1437.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-chloro-9*H*-purin-9-yl)-5-(2-chlorophenyl)-4-tosylpyrrolidine-2-carboxylate

Colorless oil; 26.5mg, 98% yield, >20:1 dr, 99% ee. $[\alpha]_D^{25.5} = -82.3$ (c 3.10, DCM). HPLC CHIRALCEL ODH, n-hexane/2-propanol = 60/40, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 30.779 min, 58.954 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.28 (s, 1H), 7.61-7.48 (m, 3H), 7.30-7.21 (m, 1H), 7.15 (dd, J = 6.4, 2.9 Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 6.00 (dd, J = 7.5, 5.3 Hz, 1H), 5.10 (t, J = 9.3 Hz, 1H), 4.67 (dd, J = 9.5, 5.2 Hz, 1H), 4.49 (t, J = 8.3 Hz, 1H), 3.42(s, 1H), 3.30(s, 3H), 2.24(s,3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 167.7, 151.8, 151.0, 145.6, 145.5, 134.8, 134.2, 133.6, 131.9, 130.0, 129.7, 129.6, 128.2, 127.7, 127.3, 72.6, 65.0, 60.0, 59.8, 52.5, 29.7, 21.5. **HRMS:** exact mass calcd for C₂₄H₂₁Cl₂N₅O₄S (M+Na)⁺ 568.0584, found 568.0577.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-chloro-9*H*-purin-9-yl)-5-(3-chlorophenyl)-4-tosylpyrrolidine-2-carboxylate (5ae)

Colorless oil; 25.8 mg, 95% yield, >20:1 dr, 98% ee. $[\alpha]_D^{25.5} = -34.9$ (c 7.53, DCM). HPLC CHIRALCEL ODH, n-hexane/2-propanol = 60/40, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 31.651min, 45.603 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.65 (s, 1H), 8.29 (s, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.49-7.42 (m, 1H), 7.38 (s, 1H), 7.21 (dd, J = 4.8, 1.0 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 5.90 (dd, J = 6.8, 4.0 Hz, 1H), 4.68 (d, J = 7.6 Hz, 1H), 4.52 (d, J = 7.2 Hz, 1H), 4.23 (dd, J = 8.0, 4.0 Hz, 1H), 3.38(s, 1H), 3.35(s, 3H), 2.35 (s,3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 167.7, 151.8, 151.7, 151.0, 146.1, 144.9, 140.0, 134.6, 133.8, 131.5, 130.1, 128.5, 127.7, 125.5, 74.4, 64.5, 62.0, 59.0, 52.6, 21.6. **HRMS:** exact mass calcd for C₂₄H₂₁Cl₂N₅O₄S (M+Na)⁺ 568.0584, found 568.0580.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-chloro-9*H*-purin-9-yl)-5-(4-chlorophenyl)-4-tosylpyrrolidine-2-carboxylate (5af)

Colorless oil; 24.5 mg, 90% yield, >20:1 dr, >99% ee. $[\alpha]_D^{25.5} = -27.47$ (c 2.77, DCM).

HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 29.577 min, 54.932 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.60 (s, 1H), 8.27 (s, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.28-7.26 (m, 2H), 7.16 (d, J = 8.0 Hz, 2H), 5.84(dd, J = 6.8, 4.1 Hz, 1H), 4.79 (d, J = 7.8 Hz, 1H), 4.53 (d, J = 6.7 Hz, 1H), 4.15 (dd, J = 8.0, 4.0 Hz, 1H), 3.35(s, 3H), 3.33(s, 1H), 2.36 (s,3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 167.8, 151.7, 151.0, 146.0, 144.7, 136.6, 134.4, 134.0, 131.4, 130.1, 129.0, 128.8, 128.4, 74.4, 64.3, 61.4, 58.8, 52.5, 21.6. **HRMS:** exact mass calcd for C₂₄H₂₁Cl₂N₅O₄S (M+Na)⁺ 568.0584, found 568.0582.

(2*R*,3*R*,4*R*,5*R*)-Methyl

5-(4-bromophenyl)-3-(6-chloro-9*H*-purin-9-yl)-4-tosylpyrrolidine-2-carboxylate

Colorless oil; 28.9 mg, 99% yield, >20:1 dr, >99% ee. $[\alpha]_D^{25.5} = -106.3$ (c 1.90, DCM).

HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 30.407 min, 53.696 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.60 (s, 1H), 8.27 (s, 1H), 7.58 (d, J = 8.2 Hz, 2H), 7.42 (s, 4H), 7.16 (d, J = 8.1 Hz, 2H), 5.84 (dd, J = 6.8, 4.1 Hz, 1H), 4.77 (t, J = 7.3 Hz, 1H), 4.53 (t, J = 6.3 Hz, 1H), 4.16 (dd, J = 8.0, 4.0 Hz, 1H), 3.35 (s, 3H), 3.30 (s, 1H), 2.37 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 167.8, 151.7, 151.0, 146.1, 144.7, 137.1, 133.9, 131.9, 131.4, 130.1, 129.1, 128.4, 122.5, 74.3, 64.3, 61.5, 58.8, 52.6, 21.6. **HRMS:** exact mass calcd for C₂₄H₂₁BrClN₅O₄S (M+Na)⁺ 612.0078, found 612.0073.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-chloro-9*H*-purin-9-yl)-5-(4-fluorophenyl)-4-tosylpyrrolidine-2-carboxylate (5ah)

Colorless oil; 25.8 mg, 98% yield, >20:1 dr, >99% ee. $[\alpha]_D^{25.5} = -73.4$ (c 4.33, DCM).

HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 26.119 min, 44.094 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.61 (s, 1H), 8.28 (s, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.52 (dd, J = 8.6, 5.3 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.98 (t, J = 8.6 Hz, 2H), 5.85 (dd, J = 6.8, 4.0 Hz, 1H), 4.80 (d, J = 6.1 Hz, 1H), 4.53 (d, J = 5.0 Hz, 1H), 4.16 (dd, J = 8.0, 4.0 Hz, 1H), 3.35 (s, 3H), 3.31 (s, 1H), 2.35 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 167.9, 151.7, 151.6, 145.9, 144.7, 130.0, 129.1, 128.5, 115.8, 115.6, 74.5, 64.3, 61.5, 58.9, 52.5, 21.6. **HRMS:** exact mass calcd for C₂₄H₂₁ClFN₅O₄S (M+Na)⁺ 552.0879, found 552.0871.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-chloro-9*H*-purin-9-yl)-4-tosyl-5-(4-(trifluoromethyl)phenyl)pyrrolidine-2-ca rboxylate (5ai)

Colorless oil; 28.5 mg, 99% yield, >20:1 dr, 99% ee. $[\alpha]_D^{25.5} = -58.3$ (c 6.00, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 20.897 min, 26.945 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.61 (s, 1H), 8.27 (s, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.56 (dd, J = 11.8, 8.3 Hz, 4H), 7.13 (d, J = 8.1 Hz, 2H), 5.87 (dd, J = 6.9, 4.2 Hz, 1H), 4.85 (t, J = 7.9 Hz, 1H), 4.56 (t, J = 7.2 Hz, 1H), 4.25 (dd, J = 8.1, 4.1 Hz, 1H), 3.39 (s, 1H), 3.35 (s, 3H), 2.33 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 168.7, 151.7, 151.0, 146.1, 144.8, 142.0, 133.8, 131.4, 130.1, 128.4, 127.9, 125.7, 125.2, 74.2, 64.4, 61.7, 59.0, 52.6, 21.5. **HRMS:** exact mass calcd for C₂₅H₂₁ClF₃N₅O₄S (M+Na)⁺ 602.0847, found 602.0839.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-chloro-9H-purin-9-yl)-5-(p-tolyl)-4-tosylpyrrolidine-2-carboxylate (5aj)

Colorless oil; 25.0 mg, 95% yield, >20:1 dr, 98% ee. $[\alpha]_D^{25.5} = -97.57$ (c 1.53, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 28.931 min, 35.204 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.60 (s, 1H), 8.33 (s, 1H), 7.60 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 7.11 (dd, J = 18.2, 8.0 Hz, 4H), 5.85(dd, J = 6.7, 3.9 Hz, 1H), 4.79 (t, J = 5.8 Hz, 1H), 4.53 (t, J = 5.1 Hz, 1H), 4.14 (dd, J = 7.9, 3.9 Hz, 1H), 3.34(s, 3H), 3.28 (s, 1H), 2.33 (d, J = 7.1 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃): δ 167.9, 151.7, 151.5, 151.1, 145.7, 144.8, 138.3, 135.0, 134.2, 131.3, 130.0, 129.5, 128.5, 127.2, 74.7, 64.3, 61.8, 58.8, 52.4, 21.6, 21.1. **HRMS:** exact mass calcd for C₂₅H₂₄ClN₅O₄S (M+Na)⁺ 548.1130 , found 548.1129.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-chloro-9*H*-purin-9-yl)-5-(4-methoxyphenyl)-4-tosylpyrrolidine-2-carboxylat e (5ak)

Colorless oil; 24.0 mg, 90% yield, >20:1 dr, 99% ee. $[\alpha]_D^{25.5} = -15.2$ (c 6.97, DCM). HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 28.722 min, 46.967 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.62 (s, 1H), 8.32 (s, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 6.81 (d, J = 8.7 Hz, 2H), 5.85(dd, J = 6.7, 4.1 Hz, 1H), 4.76 (d, J = 7.8 Hz, 1H), 4.51 (d, J = 6.7 Hz, 1H), 4.15 (dd, J = 8.0, 4.0 Hz, 1H), 3.79 (s, 3H), 3.34 (s, 3H), 3.25 (s, 1H), 2.34 (s,3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.9, 159.6, 151.7, 151.5, 151.0, 145.7, 144.8, 134.2, 131.3, 130.0, 128.5, 114.1, 74.6, 64.3, 61.7, 58.9, 55.3, 52.5, 21.6. **HRMS:** exact mass calcd for C₂₅H₂₄ClN₅O₅S (M+Na)⁺ 564.1079, found 564.1076.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-chloro-9*H*-purin-9-yl)-5-(naphthalen-2-yl)-4-tosylpyrrolidine-2-carboxylate (5al)

Colorless oil; 24.5 mg, 89% yield, >20:1 dr, 99% ee. $[\alpha]_D^{25.5} = -84.5$ (c 3.47, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 40.687 min, 79.443 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.67 (s, 1H), 8.41 (s, 1H), 7.86-7.75 (m, 3H), 7.75-7.65 (m, 2H), 7.56 (d, J = 8.3 Hz, 2H), 7.49 (dt, J = 5.4, 3.3 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 5.96 (dd, J = 6.9, 4.0 Hz, 1H), 4.90 (d, J = 8.1 Hz, 1H), 4.60 (d, J = 6.9 Hz, 1H), 4.32 (dd, J = 8.1, 4.0 Hz, 1H), 3.36 (s, 3H), 2.11 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 167.9, 151.8, 151.6, 151.1, 145.8, 145.0, 135.0, 133.9, 133.1, 133.0, 131.4, 129.9, 128.9, 128.0, 127.7, 127.1, 126.5, 124.2, 74.4, 64.5, 62.6, 58.8, 52.5, 29.7, 21.3. **HRMS:** exact mass calcd for C₂₈H₂₄ClN₅O₄S (M+Na)⁺ 584.1130, found 584.1127.

(2*R*,3*R*,4*R*,5*S*)-Methyl

3-(6-chloro-9H-purin-9-yl)-5-(thiophen-2-yl)-4-tosylpyrrolidine-2-carboxylate

Colorless oil; 23.0 mg, 90% yield, >20:1 dr, 97% ee. $[\alpha]_D^{25.5} = -111.2$ (c 1.13, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 33.299 min, 55.483 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.60 (s, 1H), 8.48 (s, 1H), 7.69 (d, J = 8.2 Hz, 2H), 7.25-7.19 (m, 3H), 6.96 (d, J = 3.3 Hz, 1H), 6.88 (dd, J = 5.0, 3.6 Hz, 1H), 5.90 (dd, J = 6.3, 3.0 Hz, 1H), 5.16 (s, 1H), 4.54 (s, 1H), 4.01 (dd, J = 7.3, 3.0 Hz, 1H), 3.47 (s, 1H), 3.37 (s, 3H), 2.38 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 167.5, 151.8, 151.4, 151.1, 146.0, 144.7, 142.1, 134.0, 131.1, 130.1, 128.7, 127.2, 126.5, 125.5, 75.9, 64.4, 57.8, 57.5, 52.5, 21.7. **HRMS:** exact mass calcd for C₂₂H₂₀ClN₅O₄S₂ (M+Na)⁺ 540.0537, found 540.0529.

(2R,3R,4R,5R)-Ethyl

3-(6-chloro-9*H*-purin-9-yl)-2-methyl-5-phenyl-4-tosylpyrrolidine-2-carboxylate (5ap)

Colorless oil; 23.0 mg, 87% yield, >20:1 dr, 97% ee. $[\alpha]_D^{25.5} = -156.0$ (c 0.33, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 70/30, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 32.291 min, 69.952 min. ¹**H NMR** (400 MHz, CDCl₃): δ 8.72 (s, 1H), 8.14 (s, 1H), 7.58-7.50 (m, 2H), 7.39 (d, J = 8.2 Hz, 2H), 7.33-7.24 (m, 3H), 6.94 (d, J = 8.1 Hz, 2H), 5.48 (d, J = 7.0 Hz, 1H), 4.84 (s, 2H), 3.76-3.71 (m, 1H), 3.63-3.51 (m, 1H), 2.24 (s, 3H), 1.78 (s, 3H), 0.76 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 171.0, 151.5, 151.3, 151.0, 145.3, 134.0, 129.4, 128.5, 128.2, 127.7, 127.3, 69.4, 61.9, 29.5, 21.3, 13.2. **HRMS:** exact mass calcd for C₂₆H₂₆ClN₅O₄S (M+Na)⁺ 540.1467, found 540.1464.

(2*R*,3*R*,4*R*,5*R*)-Methyl

5-phenyl-3-(6-(piperidin-1-yl)-9*H*-purin-9-yl)-4-tosylpyrrolidine-2-carboxylate (5ba)

Colorless oil; 26.0 mg, 93% yield, >20:1 dr, >99% ee. $[\alpha]_D^{25.5} = -75.5$ (c 2.00, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 24.555 min, 42.088 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.20 (s, 1H), 7.75 (s, 1H), 7.52 (dd, J = 9.2, 5.9 Hz, 4H), 7.24-7.18 (m, 3H), 7.07 (d, J = 8.1 Hz, 2H), 5.78 (dd, J = 7.2, 4.3 Hz, 1H), 4.61 (d, J = 8.6 Hz, 1H), 4.45-4.37 (m, 2H), 4.19 (br, 3H), 3.35 (s, 3H), 2.30 (s, 3H), 1.70 (dd, J = 11.4, 5.8 Hz, 7H). ¹³**C NMR** (100 MHz, CDCl₃): δ 168.0, 153.8, 152.0, 149.9, 145.3, 138.1, 137.9, 134.3, 129.8, 128.5, 128.3, 128.1, 127.7, 119.7, 74.5, 65.1, 63.6, 59.7, 52.2, 26.1, 24.7, 21.6. **HRMS:** exact mass calcd for C₂₉H₃₂N₆O₄S (M+H)⁺ 561.2279, found 561.2286.

(2*R*,3*R*,4*R*,5*R*)-Methyl

5-phenyl-3-(6-(pyrrolidin-1-yl)-9*H*-purin-9-yl)-4-tosylpyrrolidine-2-carboxylate

Colorless oil; 25.5 mg, 95% yield, >20:1 dr, >99% ee. $[\alpha]_D^{25.5} = -137.9$ (c 3.80, DCM).

HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 29.846 min, 44.969 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.23 (s, 1H), 7.73 (s, 1H), 7.57-7.50 (m, 4H), 7.24-7.18 (m, 3H), 7.07 (d, J = 8.0 Hz, 2H), 5.77 (dd, J = 7.2, 4.3 Hz, 1H), 4.62 (d, J = 8.6 Hz, 1H), 4.42 (dd, J = 8.5, 4.2 Hz, 2H), 4.11 (d, J = 7.1 Hz, 2H), 3.76 – 3.68 (m, 2H), 3.35 (s, 3H), 2.29 (s, 3H), 2.03 (br, 4H). ¹³**C NMR** (100 MHz, CDCl₃): δ 168.0, 153.0, 152.4, 149.3, 145.3, 138.9, 137.9, 134.4, 129.8, 128.6, 128.3, 128.1, 127.7, 120.1, 74.5, 65.1, 63.7, 59.8, 52.2, 29.7, 21.5. **HRMS:** exact mass calcd for C₂₈H₃₀N₆O₄S (M+Na)⁺ 569.1941, found 569.1950.

(2R,3R,4R,5R)-Methyl

3-(6-morpholino-9H-purin-9-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylate (5da)

Colorless oil; 26.0 mg, 93% yield, >20:1 dr, 99% ee. $[\alpha]_D^{25.5} = -55.1$ (c 4.10, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 45.010 min, 60.022 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.22 (s, 1H), 7.81 (s, 1H), 7.56-7.46 (m, 4H), 7.23-7.16 (m, 3H), 7.07 (d, J = 8.1 Hz, 2H), 5.80 (dd, J = 7.1, 4.2 Hz, 1H), 4.62 (d, J = 8.6 Hz, 1H), 4.44 (d, J = 7.2 Hz, 1H), 4.37 (dd, J = 8.5, 4.2 Hz, 1H), 4.26 (br, 4H), 3.85-3.77 (m, 4H), 3.35 (s, 3H), 2.30 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 167.9, 153.8, 151.9, 150.1, 145.3, 138.7, 137.8, 134.3, 129.8, 128.6, 128.4, 128.1, 127.7, 119.8, 74.5, 67.0, 65.0, 63.5, 59.5, 52.3, 21.6. **HRMS:** exact mass calcd for C₂₈H₃₀N₆O₅S (M+H)⁺ 563.2071, found 563.2072.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-(dimethylamino)-9*H*-purin-9-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylate (5ea)

Colorless oil; 24.3 mg, 96% yield, >20:1 dr, >99% ee. $[\alpha]_D^{25.5} = -53.0$ (c 6.40, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 28.193 min, 77.964 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.21 (s, 1H), 7.75 (s, 1H), 7.53 (d, J = 8.2 Hz, 4H), 7.24-7.19 (m, 3H), 7.07 (d, J = 8.1 Hz, 2H), 5.77 (dd, J = 7.2, 4.4 Hz, 1H), 4.61 (d, J = 6.9 Hz, 1H), 4.41 (dd, J = 8.5, 4.3 Hz, 2H), 3.83 (s, 1H), 3.50(br, 5H), 3.34 (s, 3H), 2.29 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 168.0, 154.9, 152.0, 149.7, 145.3, 138.3, 137.9, 134.3, 129.8, 128.6, 128.3, 128.1, 127.7, 120.0, 74.5, 65.1, 63.6, 59.7, 52.2, 21.5. **HRMS:** exact mass calcd for C₂₆H₂₈N₆O₄S (M+Na)⁺ 543.1785, found 543.1782.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(6-methoxy-9H-purin-9-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylate (5fa)

Colorless oil; 23.5 mg, 93% yield, >20:1 dr, 95% ee. $[\alpha]_D^{25.5} = -126.6$ (c 2.87, DCM). HPLC CHIRALCEL ODH, n-hexane/2-propanol = 60/40, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 29.198 min, 40.576 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.43 (s, 1H), 7.95 (s, 1H), 7.54 (dd, J = 9.5, 5.1 Hz, 4H), 7.32-7.22 (m, 3H), 7.09 (d, J = 8.1 Hz, 2H), 5.82 (dd, J = 7.1, 4.3 Hz, 1H), 4.70 (d, J = 8.3 Hz, 1H), 4.47 (d, J = 6.9 Hz, 1H), 4.37 (dd, J = 8.5, 4.3 Hz, 1H), 4.16 (s, 3H), 3.30 (s, 3H), 2.30 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 167.9, 161.2, 151.9, 151.1, 145.5, 142.1, 137.8, 134.3, 129.9, 128.7, 128.3, 127.6, 121.5, 74.4, 64.9, 63.2, 59.7, 54.4, 52.3, 21.5. **HRMS:** exact mass calcd for C₂₅H₂₅N₅O₅S (M+Na)⁺ 530.1469, found 530.1480.

(2*R*,3*R*,4*R*,5*R*)-Methyl

5-phenyl-3-(6-phenyl-9H-purin-9-yl)-4-tosylpyrrolidine-2-carboxylate (5ga)

Colorless oil; 26.0 mg, 95% yield, >20:1 dr, 99% ee. $[\alpha]_D^{25.5} = -106.4$ (c 2.50, DCM). HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 31.553 min, 44.134 min.

¹**H** NMR (400 MHz, CDCl₃): δ 8.88 (s, 1H), 8.73 (dd, J = 7.7, 1.9 Hz, 2H), 8.28 (s,

1H), 7.65-7.50 (m, 7H), 7.34-7.22 (m, 3H), 7.11 (d, J = 8.1 Hz, 2H), 5.92 (dd, J = 6.9, 4.1Hz, 1H), 4.80 (d, J = 8.2 Hz, 1H), 4.55 (d, J = 7.0 Hz, 1H), 4.34 (dd, J = 8.2, 4.1 Hz, 1H), 3.30 (s, 3H), 2.30 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 168.0, 155.3, 152.0, 151.7, 145.6, 144.1, 138.1, 135.2, 134.2, 131.3, 130.8, 130.0, 129.8, 128.8, 128.4, 128.3, 127.5, 74.5, 64.6, 62.5, 59.0, 52.3, 21.6. **HRMS:** exact mass calcd for C₃₀H₂₇N₅O₄S (M+Na)⁺ 576.1676, found 576.1675.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(2-amino-6-chloro-9*H*-purin-9-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylate (5ha)

Colorless oil; 23.2 mg, 90% yield, >20:1 dr, 99% ee. $[\alpha]_D^{25.5} = -102.9$ (c 3.50, DCM). HPLC CHIRALCEL ODH, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 15.843 min, 25.663 min.

¹**H NMR** (400 MHz, CDCl₃): δ 7.83 (s, 1H), 7.63 (d, J = 8.3 Hz, 2H), 7.49 (dd, J = 7.3, 2.1 Hz, 2H), 7.32-7.26 (m, 3H), 7.17 (d, J = 8.0 Hz, 2H), 5.62 (dd, J = 6.7, 3.7 Hz, 1H), 4.93 (s, 2H), 4.80 (d, J = 8.0 Hz, 1H), 4.46 (d, J = 6.7 Hz, 1H), 4.24 (dd, J = 7.9, 3.6 Hz, 1H), 3.43 (s, 3H), 2.34 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 168.0, 158.6, 152.8, 151.8, 145.7, 141.7, 138.3, 134.3, 130.0, 128.7, 128.5, 128.2, 127.3, 124.9, 74.2, 64.8, 62.5, 59.3, 52.5, 29.7, 21.6. **HRMS:** exact mass calcd for C₂₄H₂₃ClN₆O₄S (M+Na)⁺ 549.1082, found 549.1077.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(1*H*-benzo[d]imidazol-1-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylate (5ia)

Colorless oil; 23.0 mg, 98% yield, >20:1 dr, >99% ee. $[\alpha]_D^{25.5} = -18.6$ (c 7.67, DCM). HPLC CHIRALCEL ODH, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 14.683 min, 30.872 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.40 (s, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 7.8 Hz, 2H), 7.31 (dd, J = 6.3, 2.9 Hz, 2H), 7.25-7.13 (m, 8H), 5.52 (dd, J = 6.1, 2.2 Hz, 1H), 4.84 (s, 1H), 4.62 (d, J = 5.1 Hz, 1H), 3.79 (d, J = 5.6 Hz, 1H), 3.32 (s, 3H), 2.90 (s, 1H), 2.37 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 168.3, 145.9, 138.9, 134.1, 130.2, 128.7, 128.5, 128.3, 127.2, 123.2, 122.6, 120.3, 109.8, 64.1, 60.7, 56.7, 53.5, 52.2, 21.6. **HRMS:** exact mass calcd for C₂₆H₂₅N₃O₄S (M+H)⁺ 476.1639, found 476.1649.

(2*R*,3*R*,4*R*,5*R*)-Methyl

3-(2-methyl-1*H*-benzo[d]imidazol-1-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylat e (5ja)

Colorless oil; 22.3 mg, 94% yield, >20:1 dr, 97% ee. $[\alpha]_D^{25.5} = -78.2$ (c 4.83, DCM). HPLC CHIRALCEL ODH, n-hexane/2-propanol = 60/40, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 15.248 min, 21.406 min.

¹**H** NMR (400 MHz, CDCl₃): δ 8.20-8.13 (m, 1H), 7.69-7.62 (m, 1H), 7.29 (dd, J = 5.8, 4.2 Hz, 3H), 7.25-7.10 (m, 6H), 6.88 (d, J = 8.1 Hz, 2H), 5.90 (dd, J = 8.8, 6.3 Hz,

1H), 4.56-4.40 (m, 3H), 3.14 (s, 3H), 2.76 (s, 3H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 153.3, 145.1, 143.1, 137.0, 134.3, 132.1, 129.5, 128.6, 128.4, 127.9, 127.8, 127.1, 122.4, 122.1, 119.4, 112.4, 70.4, 63.4, 62.1, 56.9, 52.2, 29.7, 21.4, 14.4. HRMS: exact mass calcd for C₂₇H₂₇N₃O₄S (M+H)⁺ 490.1795, found 490.1801.

(2R,3R,4S,5R)-methyl

3-(6-chloro-9H-purin-9-yl)-5-phenyl-4-tosylpyrrolidine-2-carboxylate (6aa)

Colorless oil; 65.8 mg, 86% yield, >20:1 dr, 94% ee.

HPLC CHIRALCEL IA, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 20.390 min, 26.206 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.46 (s, 1H), 8.40 (s, 1H), 7.51 (d, J = 7.2 Hz, 2H), 7.41-7.32 (m, 3H), 7.16 (d, J = 8.2 Hz, 2H), 6.86 (d, J = 8.1 Hz, 2H), 5.52-5.44 (m, 1H), 5.38 (d, J = 3.8 Hz, 1H), 5.07 (d, J = 9.3 Hz, 1H), 4.34 (dd, J = 7.8, 5.0 Hz, 1H), 3.74 (s, 3H), 2.90 (s, 1H), 2.22 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 170.5, 151.7, 151.6, 150.8, 145.0, 144.4, 140.8, 134.0, 130.8, 129.1, 129.0, 128.4, 126.9, 126.7, 69.7, 61.0, 60.6, 57.4, 53.1, 21.3. **HRMS:** exact mass calcd for C₂₄H₂₂ClN₅O₄S (M+Na)⁺ 534.0973, found 534.0976.

(2*R*,3*R*,4*S*,5*R*)-Methyl

3-(6-chloro-9*H*-purin-9-yl)-5-phenyl-1,4-ditosylpyrrolidine-2-carboxylate (7aa)

White solid; 200.0 mg, 75% yield, $[\alpha]_D^{25.5} = -81.8$ (c 0.73, DCM).

¹**H NMR** (400 MHz, CDCl₃): δ 8.64 (s, 1H), 8.00 (s, 1H), 7.59-7.48 (m, 2H), 7.26-7.14 (m, 7H), 7.08 (d, J = 8.1 Hz, 2H), 6.85 (d, J = 8.1 Hz, 2H), 5.73 (dd, J = 11.0, 9.3 Hz, 1H), 5.49-5.23 (m, 3H), 3.22 (s, 3H), 2.36 (s, 3H), 2.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 168.9, 151.9, 151.4, 145.9, 144.1, 136.8, 135.4, 133.8, 131.3, 129.4, 129.3, 129.0, 128.6,128.4, 127.7, 127.6, 62.9, 61.7, 55.5, 52.9, 21.6, 21.4.

((2*R*,3*R*,4*R*,5*R*)-3-(6-chloro-9*H*-purin-9-yl)-5-phenyl-4-tosylpyrrolidin-2-yl)metha nol (8aa)

Colorless oil; 68.5 mg, 95% yield, >20:1 dr, >99% ee. $[\alpha]_D^{25.5} = -49.3$ (c 1.12, DCM). HPLC CHIRALCEL AS, n-hexane/2-propanol = 50/50, flow rate = 0.5 mL/min, λ = 254 nm, retention time: 84.709 min, 123.198 min.

¹**H NMR** (400 MHz, CDCl₃): δ 8.65 (s, 1H), 8.22 (s, 1H), 7.49-7.47 (m, 4H), 7.34-7.24 (m, 3H), 7.08 (d, J = 8.1 Hz, 2H), 5.74 (dd, J = 6.5, 4.5 Hz, 1H), 4.81 (d, J = 8.0 Hz, 1H), 4.22 (dd, J = 7.8, 4.3 Hz, 1H), 3.89 (q, J = 6.3 Hz, 1H), 3.47 (dd, J = 11.2, 5.6 Hz, 1H), 3.29 (dd, J = 11.2, 6.5 Hz, 1H), 2.29 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 151.7, 151.4, 145.7, 145.6, 138.6, 134.2, 131.3, 129.9, 128.8, 128.3, 127.2, 74.8, 62.8, 62.1, 60.6, 58.6, 21.5. **HRMS:** exact mass calcd for C₂₃H₂₂ClN₅O₃S (M+Na)⁺ 506.1024, found 506.1031.

6. References

(1) (a) Nishibayashi, Y.; Segawa, K.; Ohe, K.; Uemura. S. Organometallics 1995, 14, 5486–5487. (b) Nishibayashi, Y.; Segawa, K.; Takada, H.; Ohe, K.; Uemura, S. Chem. Commun. 1996, 847–848. (c) Herbert, S. A.; Castell, D. C.; Clayden, J.; Arnott, G. E. Org. Lett 2013, 15, 3334–3337.

(2) (a) Grigg, R.; Guaratne, H. Q. N.; Kemp, J. J. Chem. Soc., Perkin Trans. 1, 1984, 41–46. (b)
Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400–13401.

(3) Eisch, J. J.; Shafii, B.; Odom, J. D.; Rheingo, A. L. J. Am. Chem. Soc. 1990, 112, 1847-1853.

(4) Zhou, J.; Shevlin, P. B. Synth. Commun. 1997, 27, 3591-3597.

7. Copies of ¹H and ¹³C NMR spectra.

¹H NMR of 3a

¹³C-NMR for 3a

¹H NMR of 3a

¹³C-NMR for 3a

¹H NMR of 3b

¹³C-NMR for 3b

¹H NMR of 3c

¹³C-NMR for 3c

¹H NMR of 3d

¹³C-NMR for 3d

¹H NMR of 3e

¹³C-NMR for 3e

¹H NMR of 3f

¹³C-NMR for 3f

¹H NMR of 3g

¹³C-NMR for 3g

¹H NMR of 3h

¹³C-NMR for 3h

¹H NMR of 3i

¹³C-NMR for 3i

¹H NMR of 3j

¹³C-NMR for 3j

¹H NMR of 11

¹³C-NMR for 11

¹H NMR of 5aa

¹³C-NMR for 5aa

¹H NMR of 5ab

¹³C-NMR for 5ab

¹H NMR of 5ac

¹³C-NMR for 5ac

¹H NMR of 5ad

¹³C-NMR for 5ad

¹H NMR of 5ae

¹³C-NMR for 5ae

¹H NMR of 5af

¹³C-NMR for 5af

¹H NMR of 5ag

¹³C-NMR for 5ag

¹H NMR of 5ah

¹³C-NMR for 5ah

¹H NMR of 5ai

¹³C-NMR for 5ai

¹H NMR of 5aj

¹³C-NMR for 5aj

¹H NMR of 5ak

¹³C-NMR for 5ak

¹H NMR of 5al

¹³C-NMR for 5al

¹H NMR of 5am

¹³C-NMR for 5am

¹H NMR of 5ap

¹³C-NMR for 5ap

¹H NMR of 5ba

¹³C-NMR for 5ba

¹H NMR of 5ca

¹³C-NMR for 5ca

¹H NMR of 5da

¹³C-NMR for 5da

¹H NMR of 5ea

¹³C-NMR for 5ea

¹H NMR of 5fa

¹³C-NMR for 5fa

¹H NMR of 5ga

¹³C-NMR for 5ga

¹H NMR of 5ha

¹³C-NMR for 5ha

¹H NMR of 5ia

¹³C-NMR for 5ia

¹H NMR of 5ja

¹³C-NMR for 5ja

¹H NMR of 6aa

¹³C-NMR for 6aa

¹H NMR of 7aa

¹³C-NMR for 7aa

¹H NMR of 8aa

¹³C-NMR for 8aa

¹H NMR of D-5ag

8. Copies of HPLC spectra for Racemic and Chiral Compounds

Scale up of cycloadduct 5aa

----|-----|-----| 1 54.707 BBA 2.5140 1.37233e4 69.61293 100.0000 Totals : 1.37233e4 69.61293

Totals :

2.27938e5 3197.83081

S95