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I. EQUATIONS OF MOTION

To derive the equations of motion for the two modes we treat the nanowire as an isotropic
inextensible singly clamped Euler-Bernoulli beam. Following the approach used by Crespo
da Silva and Glynn 2 we obtain two nonlinear equations describing the flexural vibrations

of the beam, for the displacement u:
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and a symmetric one for the displacement w. Here the dots and primes stand for derivative
in time ¢ and in arc length s respectively, m is the mass per unit length (= pdid, with d;
and dy dimensions of the cross section and p the density), 7; 2 the damping coefficient, D 5
the bending, and Dj the torsional stiffnesses of the beam, e/md QLQ the generalized forces
along the two directions. We define F; = < f Q- ds) )

Eq. 1 can be rewritten in a dimensionless form ? substituting v = @/dy,w = w/d;,z =
s/L,m = L*/(Dy7) and scaling time with 7 = L2y/m/D;.

Applying the Galerkin method for the first mode in the two directions u(x,t) = a(t)&(x)
and w(z,t) = b(t)¢(x) with £(z) the first flexural mode shape, equal in both directions, we

obtain:
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where F is the scaled dimensionless version of F, and
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From our COMSOL simulations, the ~ 0.5 % difference in the cross section of the
nanowire is already enough to produce a frequency splitting of the two perpendicular modes
similar to what is observed, such that D;/Dy ~ 1.01. We also consider the beam to have
high torsional rigidity compared to the flexural rigidity, such that Dy > D; 5. Finally, we
find that nonlinear damping is negligible by evaluating the critical frequency at which the
bistability of the Duffing regime starts to occur. As a result, we obtain the final simplified

equation of motion in one direction:
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Note that, from equation 1 the coupling coefficient with dimensions would be defined as:
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II. MECHANICAL LOGIC

Due to the Duffing nonlinearity, when sweeping the driving amplitude at fixed frequency
f2, we observe a high jump between two levels in the response amplitude of mode 2, at a
critical driving amplitude. These two levels in the response are used to encode logical 0 and
1 output states®®. The two inputs correspond to two signal voltages which are summed and

subsequently applied to the driving PZT. Logical 0 and 1 input states are defined by low
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and high driving voltages, respectively (See Fig. 1a). As shown in Fig. 1b (upper panel), we
obtain a high response when one or both inputs are high (01, 10, or 11) and a low response
when both input signals are low (00). This is therefore a realization of a logical OR gate.
This OR gate is converted into a NOR gate by taking as output the response amplitude of
mode 1 at f; (lower panel Fig. 1b). When mode 2 is at the low level (for input 00) there is
almost no interaction between the two modes and we have the maximum response (logical
1) of mode 1 at the readout frequency. When instead the amplitude of mode 2 is high (for
01, 10, and 11), mode 1 shifts to a higher frequency and the logical output is 0.
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FIG. 1: (a) Simulated amplitude response curve of a Duffing oscillator, displaying its bistable
regime of motion. Dashed black lines highlight the driving amplitudes needed to created OR and
NOR gates. (b) Top panel: response amplitude of mode 2 as a function of time, for the four
combinations of two logical inputs, as indicated by the numbers on top. Bottom panel: response

amplitude of mode 1 as a function of time, for the same logical inputs.
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