Studies Toward Australifungin. A Synthesis Dilemma of Regioselective Keto-Enol Tautomerization

David R. Williams, ${ }^{\text {, } \dagger ~ J . ~ C u l l e n ~ K l e i n, ~}{ }^{\dagger}$ Lucas C. Kopel, \dagger
Nhu Nguyen, \ddagger and Dean J. Tantillo*, \ddagger
${ }^{\dagger}$ Department of Chemistry, Indiana University
Bloomington, IN 47405, United States
williamd@indiana.edu
\#Department of Chemistry, University of California, Davis, California, 95616, United States
djtantillo@ucdavis.edu

Page
General Information S-2 - S-3
Experimental Procedures and Characterization Data S-4-S-27
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S-28-S-76
Computational Analysis S-77-S-89

General Methods

Solvents and Reagents

Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and tetrahydrofuran (THF) were distilled under argon from sodium-benzophenone ketyl immediately before use. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and toluene were distilled from calcium hydride. Hexanes and ethyl acetate (EtOAc) were distilled prior to their use for chromatography.

Triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$), N, N-diisopropylethylamine ($i-\mathrm{Pr}_{2} \mathrm{NEt}$), pyridine, and trimethylsilyl chloride were distilled from calcium hydride immediately prior to use. Cuprous iodide (CuI) was continuously washed with ether over 2 days with a Soxhlet extractor, dried under vacuum and stored in the dark. Potassium tert-butoxide was sublimed and tert-butyl acetate was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and activated $4 \AA$ molecular sieves prior to use. Purification of meta-chloroperbenzoic acid was accomplished by dissolution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washing repeatedly with pH 7 buffer (5 washes), and drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before being concentrated to a solid which was then used without subsequent recrystallization. Tert-butanol was dried by gently stirring a slightly warmed volume over activated $3 \AA$ molecular sieves. Dess-Martin periodinane was prepared from 2iodobenzoic acid by oxidation to IBX according to Santagostino ${ }^{1}$ and then converted to the periodinane according to Ireland. ${ }^{2}$ All other reagents were used as provided by the chemical supplier. Reactions were typically carried out in flame or oven dried glassware under a positive atmosphere of dry argon.

Chromatography

Analytical thin layer chromatography (TLC) was performed on precoated (0.25 mm thickness) glass plates (E. Merck, silica gel 60F-254). Developed plates were visualized by UV light (254 nm) and stained with either an acidic ethanolic solution of p anisaldehyde or an acidic solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot \mathrm{H}_{2} \mathrm{O}$ and ceric sulfate followed by heating. Preparative chromatography was performed using flash column chromatography with Kieselgel-60 (230-400 mesh) silica gel (E. Merck). Compounds were applied directly to silica gel and eluted under a positive pressure of in-house air. Removal of solvents from samples (in vacuo) was accomplished using a Büchi rotary-evaporator at aspirator pressure. All non-volatile compounds were evacuated to constant weight under high vacuum $(0.2-0.5 \mathrm{~mm} \mathrm{Hg})$ at room temperature.

Physical Data

Optical rotations were measured on a Perkin-Elmer 241 polarimeter at wavelength 589 nm (sodium, D-line) using a standard 10 cm cell (1 mL volume). Specific rotations, $[\alpha]_{D}^{\text {temp }}$, are reported in degree $\cdot \mathrm{mL} /(\mathrm{g} \cdot \mathrm{dm})$ at the specified temperature. Concentrations (c) are given in grams per 100 mL of the specified solvent. Proton ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ and carbon $\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ nuclear magnetic resonance spectra were recorded on Varian Gemini 300, Varian VXR-400, Varian Inova-400 and Varian Inova-500 spectrometers. The chemical shifts are reported in parts per million (δ, ppm) downfield from tetramethylsilane (TMS) using residual $\mathrm{CHCl}_{3}(\delta 7.26 \mathrm{ppm})$ as an internal reference. Coupling constants are reported in Hertz (Hz) and the data is presented in the following form: chemical shift (multiplicity, coupling constants, number of protons) for each resonance. Multiplicities are recorded by the following abbreviations: s , singlet; d , doublet; t , triplet; q , quartet; m ,

[^0]multiplet; br, broad. All carbon chemical shifts are reported in δ using CDCl_{3} as an internal reference ($\delta 77.16 \mathrm{ppm}$). Infrared (IR) spectra were recorded on a Nicolet Avatar 360 FT-IR as a neat film or as the residue of a dichloromethane solution as indicated. Infrared spectral data are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ and calibrated to the $1601 \mathrm{~cm}^{-1}$ absorption of polystyrene film. High resolution mass spectra were recorded on a Thermo Electron MAT 95XP mass spectrometer by use of electron ionization (EI), chemical ionization (CI), or electrospray ionization (ESI).

Compound 5 [Scheme 1, Step 1]

Epoxide 5 - To a solution of nitro-olefin $4(477 \mathrm{mg}, 0.912 \mathrm{mmol})$ and 4,4'-thiobis(6 -tert-butyl- m-cresol) ($3.1 \mathrm{mg}, 0.027 \mathrm{mmol}$) in methylene chloride (3.0 mL) at $0^{\circ} \mathrm{C}$ was added m-chloroperbenzoic acid ($472 \mathrm{mg}, 2.736 \mathrm{mmol}$) portionwise over 4.5 h (4 equal portions). The cooling bath was removed after the addition of the initial portion and the solution was allowed to come to room temperature. After the reaction was complete by TLC analysis (approx. 6 h) anhydrous KF ($318 \mathrm{mg}, 5.47 \mathrm{mmol}$) was added and the heterogeneous mixture was stirred for 5 min before 1:1 ether-pentane (12 mL) was added and mixture then filtered through Celite. The filtrant was washed with 1:1 ether-pentane $(24 \mathrm{~mL})$ and the resulting filtrate was washed in a separatory funnel with $2 \times 50 \mathrm{~mL}$ of a solution of 5 mL saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}, 50 \mathrm{~mL}$ of pH 7 buffer and 45 mL of water. The aqueous layer was extracted with ether $(20 \mathrm{~mL})$ and the organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography ($25 \mathrm{~g} \mathrm{SiO}_{2}$), eluting with gradient of 10:1-1:1 hexanes-ethyl acetate, provided epoxide $5(411 \mathrm{mg}, 0.770 \mathrm{mmol}, 84 \%$) as a colorless viscous oil (NMR shows 4 present in small amounts).

For epoxide 5:
$\mathrm{R}_{\mathrm{f}} 0.38$ (4:1 hexanes-EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{20}-11.4\left(c 0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.60(\mathrm{~m}$, 2 H), 4.51-4.35 (m, 3H), 3.81 (s, 3H), $3.64(\mathrm{td}, J=11.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.32(\mathrm{~m}, 2 \mathrm{H})$, $3.31(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=14.0,4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{ddd}, J=$ $13.6,11.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.46-$ $1.06(\mathrm{~m}, 12 \mathrm{H}), 1.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,130.4,129.23,113.8,96.3,86.7,76.2,73.0,71.8$, $56.0,55.4,52.0,50.3,43.8,42.7,35.3,35.2,32.5,32.2,32.0,30.7,29.9,28.9,28.8,22.9$, 22.8, 14.2;

IR (film) 3415 (br), 2954, 2924, 2853, 1612, 1586, 1551, 1513, 1463, 1377, 1032, 1248, 1209, 1172, 1137, 1097, 1039, 916, $823 \mathrm{~cm}^{-1}$;

HRMS (CI+) calc. for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{~N}[\mathrm{M}-\mathrm{H}]^{+}$532.3269. Found: 532.3260.

Compound 6
[Scheme 1, Step 2]

Enone 6: Epoxide 5 ($499.7 \mathrm{mg}, 0.936 \mathrm{mmol}$) was dissolved in dry THF (6.2 mL) and cooled to $10^{\circ} \mathrm{C}$. Solid potassium tert-butoxide ($157.6 \mathrm{mg}, 1.40 \mathrm{mmol}$) was added and the mixture was allowed to stir for 10 min during which the solution turned a bright yellow. A solution of dimethyldioxirane (freshly dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) was added in an amount until the solution turned colorless ($\sim 37 \mathrm{~mL}$ of a 0.05 M solution). The reaction mixture was allowed to stir for an additional 10 min at $10^{\circ} \mathrm{C}$ before sequentially adding ether (40 mL), and a $1: 1: 1$ solution of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{pH} 7$ buffer, and water (total 30 mL). The mixture was then stirred vigorously for 15 min and then poured into a separatory funnel. The layers separated and the aqueous layer back extracted with ether ($2 \times 40 \mathrm{~mL}$). The combined organic layers were then washed with saturated NaHCO_{3}, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was then redissolved in dry $1: 1 \mathrm{THF}-t-\mathrm{BuOH}(10 \mathrm{~mL})$ and a cooled to $-10^{\circ} \mathrm{C}$ before adding a solution of potassium tert-butoxide in $1: 1 \mathrm{THF}-t-\mathrm{BuOH}(1.5 \mathrm{~mL}, 0.1 \mathrm{M}, 0.15$ mmol) dropwise. The mixture was allowed to stir until TLC indicated the more polar component was completely formed. Ethyl acetate (50 mL) and pH 7 buffer (50 mL) were added and the layers separated. The aqueous layer was extracted with ethyl acetate (50 mL) and the combined organic layers were then washed with water (50 mL) and brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography $\left(25 \mathrm{~g} \mathrm{SiO}_{2}\right)$ eluting with gradient of 16:1-1:1 hexanes-EtOac provided enone $6(373 \mathrm{mg}, 0.742 \mathrm{mmol}, 79 \%)$ as a clear colorless oil along with starting material $5(35.2 \mathrm{mg})$ and epi-5 $(27.8 \mathrm{mg})$.

For ketone 6:
$\mathrm{R}_{\mathrm{f}} 0.21$ (2:1 hexanes-EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{23}+33.8\left(c 0.87, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=10.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.91 (dd, $J=10.1,1.9 \mathrm{Jz}, 1 \mathrm{H}$), 4.71 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.53$ (m, 2H), $4.42(\mathrm{dd}, J=22.2,11.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{td}, J=9.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.99$ $(\mathrm{m}, 2 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.05(\mathrm{~m}, 12 \mathrm{H}), 0.99(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.82$ (m, 6H);
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.4,159.6,153.0,129.8,129.0,126.8,114.0,95.6$, $75.2,74.9,73.1,66.7,56.1,55.3,53.2,51.7,43.4,41.6,32.6,32.5,32.0,31.6,29.9,28.9$, 22.7, 22.6, 14.2, 13.1;

IR (film) 3415 (br), 2954, 2929, 2872, 1678, 1612, 1513, 1465, 1382, 1302, 1248, 1101, 1040, $820 \mathrm{~cm}^{-1}$;

HRMS (ES+) calc. for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$525.3192. Found: 525.3199.

Compound 6a [Scheme 1, Step 6]

TBS ether 6a: In a flame dried round-bottomed flask fitted with a magnetic stirbar was placed alcohol $6(73.4 \mathrm{mg}, 0.146 \mathrm{mmol})$ dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. An argon atmosphere over the reaction mixture was generated and the reaction cooled to $-40^{\circ} \mathrm{C}$. At this point 2,6 -lutidine $(70 \mu \mathrm{~L}, 0.601 \mathrm{mmol})$ was added via syringe followed by TBSOTf ($40 \mu \mathrm{~L}, 0.174 \mathrm{mmol}$) which was also added via syringe. After a 4 h , additional quantities of 2,6-lutidine ($70 \mu \mathrm{~L}, 0.601 \mathrm{mmol}$) and TBSOTf ($40 \mu \mathrm{~L}, 0.174 \mathrm{mmol}$) were added. After another 2 h , the reaction mixture was quenched by the addition water (6 mL) and the cooling bath removed. After approximately 15 min the mixture was poured into ether (12 mL). The layers were separated and the aqueous layer extracted with ether ($2 \times 6 \mathrm{~mL}$). The combined organic portion was washed with brine (15 mL), dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The residue was then purified by flash chromatography ($5 \mathrm{~g} \mathrm{SiO}_{2}, 12: 1-4: 1$ hexanes-EtOAc) afforded silyl ether $\mathbf{6 a}$ (74.1 $\mathrm{mg}, 0.120 \mathrm{mmol}, 84 \%$) as a clear colorless oil.

For TBS ether 6a:
$\mathrm{R}_{\mathrm{f}} 0.41$ (4:1 hexanes-EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{23}+68.4\left(c 0.95, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.68(\mathrm{~B}$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.55(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.31$ $\left(\mathrm{B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.13(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{td}, J=11.2$ $\mathrm{Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dt}, J=12.8,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46(\mathrm{dd}, J=12.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{td}, J=12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.11(\mathrm{~m}, 8 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96$ (s, 9H), 0.89 (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.9,159.1,155.8,131.3,129.1,126.9,113.8,96.2$, $76.3,73.5,72.6,56.4,55.4,50.2,49.3,44.3,44.2,32.8,32.2,31.4,30.1,29.9,29.2,26.2$, $23.3,22.8,18.3,14.3,13.4,-3.1,-3.9$;

IR (film) 2954, 2926, 2855, 1682, 1514, 1463, 1384, 1362, 1249, 1171, 1075, 1043, 995, $854,835 \mathrm{~cm}^{-1}$;

HRMS (ES+) calc. for $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$639.4057. Found: 639.4076.

Compound 7
[Scheme 1, Step 4]
$\boldsymbol{\alpha}$-Iodoketone 7: In a flame dried round-bottomed flask fitted with a magnetic stirbar and covered with aluminum foil was placed enone $\mathbf{6 a}(97.6 \mathrm{mg}, 0.158 \mathrm{mmol}$) dissolved in dry pyridine $(260 \mu \mathrm{~L})$ and $\mathrm{CCl}_{4}(260 \mu \mathrm{~L})$. To the solution was added 4 -
dimethylaminopyridine ($27.0 \mathrm{mg}, 0.22 \mathrm{mmol}$) and solid elemental iodine (200.7 mg , 0.791 mmol) which was added portionwise over 2 min . After a further 4 h , a 1:1:1 solution of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$:saturated $\mathrm{NaHCO}_{3}: \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added and the mixture vigorously stirred for 15 min . The mixture was then poured into ether $(20 \mathrm{~mL})$ and shaken. The layers were separated and the aqueous layer extracted with ether (2×10 $\mathrm{mL})$. The combined organic portion was washed with dilute $\mathrm{HCl}(40 \mathrm{~mL}, 0.1 \mathrm{~N} \mathrm{HCl})$ and saturated $\mathrm{NaHCO}_{3}(2 \times 60 \mathrm{~mL})$ and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was then filtered and concentrated in vacuo and the residue purified by flash chromatography ($15 \mathrm{~g} \mathrm{SiO}_{2}, 15: 1-6: 1$ hexanes-EtOAc) afforded iodide 7 (110.3 mg , $0.1485 \mathrm{mmol}, 94 \%$) as a clear pale yellow oil.

For α-iodo ketone 7:
$\mathrm{R}_{\mathrm{f}} 0.53$ (4:1 hexanes-EtOAc);
$[\alpha]_{D}^{22}+30.1\left(c 1.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.85$ $(\mathrm{m}, 2 \mathrm{H}), 4.75-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{dd}, J=9.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44\left(\mathrm{~A}\right.$ of $\mathrm{AB}, J_{\mathrm{AB}}=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30\left(\mathrm{~B}\right.$ of AB, $\left.J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.06(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60$ (td, $J=10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dt}, J=13.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=13.2,9.6, \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{td}, J=12.8 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.08(\mathrm{~m}, 11 \mathrm{H}), 1.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}$, $9 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.4,163.5,159.1,131.0,129.1,113.7,101.1,96.4$, $76.15,74.1,73.2,72.6,56.2,55.4,50.0,49.2,44.1,42.9,33.8,32.7,32.1,31.3,30.0$, $29.1,26.1,23.2,22.8,18.3,14.2,13.4,-3.2,-4.0$;

IR (film) 2953, 2927, 2854, 1683, 1610, 1513, 1464, 1362, 1303, 1250, 1080, 1040, 831 cm^{-1};

HRMS (ES+) calc. for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{IO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 765.3023$. Found: 765.3052.

Compound 8 [Scheme 1, Step 5]

Enone 8: In a flame dried round-bottomed flask fitted with a magnetic stirbar was placed iodide $7(160.1 \mathrm{mg}, 0.216 \mathrm{mmol})$ dissolved in dry DMF (2.1 mL). The solution was then degassed briefly by stirring under high vacuum and backfilled with argon before
$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(8.8 \mathrm{mg}, 0.0108 \mathrm{mmol})$, $\mathrm{CuI}(6.2 \mathrm{mg}, 0.0323 \mathrm{mmol})$, and $\mathrm{Me}_{4} \mathrm{Sn}$ $(208 \mu \mathrm{~L}, 1.51 \mathrm{mmol})$ were added. The flask was then fitted with a reflux condenser and the reaction warmed to $60^{\circ} \mathrm{C}$. After 1 h the reaction was complete and the mixture was then poured into half saturated NaCl solution $(15 \mathrm{~mL})$. Ether was added and the layers separated and the aqueous layer extracted again with ether ($2 \times 15 \mathrm{~mL}$). The combined organic portion was washed with half saturated $\mathrm{NaCl}(20 \mathrm{~mL})$ and then dried over anhydrous MgSO_{4}. The mixture was then filtered and concentrated in vacuo and the residue purified by flash chromatography ($12 \mathrm{~g} \mathrm{SiO}_{2}, 16: 1-6: 1$ hexanes-EtOAc) affording enone $8(127.1 \mathrm{mg}, 0.2012 \mathrm{mmol}, 94 \%)$ as a clear colorless oil.

For enone 8:
$\mathrm{R}_{\mathrm{f}} 0.50$ (4:1 hexanes-EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{23}+48.0\left(c 0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.76$ $\left(\mathrm{A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.69\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.50(\mathrm{td}, J=9.4,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.31\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.13(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{td}, J=11.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74(\mathrm{td}, J=13.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=12.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{td}, J=$ $12.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.32-1.12(\mathrm{~m}, 10 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.0,159.0,150.7,133.1,129.1,113.7,96.3,76.5,73.5$, $72.6,71.8,56.3,55.4,50.1,49.5,44.2,44.0,33.1,32.8,32.2,31.3,30.1,29.9,29.2,26.3$, $23.3,22.8,18.3,15.5,14.3,13.5,-3.1,-3.8$;

IR (film) 2955, 2927, 2855, 1676, 1613, 1513, 1465, 1364, 1301, 1249, 1080, 1044, 858, 836, $777 \mathrm{~cm}^{-1}$;

HRMS (CI+) calc. for $\mathrm{C}_{37} \mathrm{H}_{61} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}-\mathrm{H}]^{+}$629.4232. Found: 629.4219.

Compound 9 [Scheme 1, Step 6]

Ketone 9: In a flame dried round-bottomed flask fitted with a magnetic stirbar was placed enone 8 ($89.9 \mathrm{mg}, 0.142 \mathrm{mmol}$) dissolved in EtOAc (7.2 mL). Pd/C ($20 \mathrm{mg}, 5 \%$ $\mathrm{w} / \mathrm{w}, 140 \mathrm{mg} / \mathrm{mmol}$ enone) was added and the mixture degassed by applying vacuum and backfilling with argon before charging the flask with hydrogen using vacuum and backfilling from a ballon. The mixture was then stirred vigorously under a hydrogen filled balloon for 12 h . The balloon was removed and the mixture purged of hydrogen by applying vacuum and back filling with argon several times. The mixture was then passed through a plug of silica (2 g) with EtOAc washing $(3 \times 5 \mathrm{~mL})$ and the filtrates concentrated in vacuo to afford ketone $9(87.7 \mathrm{mg}, 0.139 \mathrm{mmol}, 98 \%)$ as a clear colorless oil.

For ketone 9:
$\mathrm{R}_{\mathrm{f}} 0.50$ (4:1 hexanes-EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{22}+13.7\left(c 0.52, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.72$, (A of AB, $\left.J_{\mathrm{AB}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.66\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.43\left(\mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.30\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.21(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.53$ (td, $J=11.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 2 \mathrm{H})$, $2.16-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.20(\mathrm{~m}, 11 \mathrm{H})$, $1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.82(\mathrm{~m}, 15 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13$ (s, 3H);
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.5,159.0,131.4,129.0,113.7,96.3,76.8,73.1,73.0$, $72.5,56.3,55.4,50.3,49.9,45.4,44.7,44.5,42.1,32.8,32.5,32.2,31.5,30.1,29.1,26.3$, $23.2,22.8,18.3,14.6,14.3,12.7,-3.4,-3.7$;

IR (film) 2954, 2926, 2854, 1718, 1513, 1462, 1248, 1083, 1039, 852, $843 \mathrm{~cm}^{-1}$;
HRMS (ES+) calc. for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$655.4370. Found: 655.4379.

Compound 9a [Scheme 1, Step 7]

Alcohol 9a: To a 50 mL round-bottom flask containing ketone 9 ($218 \mathrm{mg}, 0.344 \mathrm{mmol}$) under argon was added THF ($11.1 \mathrm{~mL}, 0.03 \mathrm{M}$). The reaction mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$, followed by the addition of L-selectride ${ }^{\circledR}(1.38 \mathrm{~mL}, 1.38 \mathrm{mmol}, 1 \mathrm{M}$ in THF). The solution was stirred at $-78^{\circ} \mathrm{C}$ until no starting material remained by TLC, approximately 2.5 h . At which time a solution of $\mathrm{NaOH}(7.5 \mathrm{~mL}, 1.0 \mathrm{M})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(6.0 \mathrm{~mL})$ was added to the reaction mixture at $-78^{\circ} \mathrm{C}$ and warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h . The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{EtOAc}(50 \mathrm{~mL})$. The layers were then separated and the aqueous layer was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 50 \mathrm{~mL})$, saturated $\mathrm{NH}_{4} \mathrm{Cl}(1 \times 50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was then purified by flash column chromatography (95:5-3:1 hexanes-EtOAc) to afford 9a (195 $\mathrm{mg}, 0.307 \mathrm{mmol}, 90 \%$) as a colorless oil.

For alcohol 9a:
$\mathrm{R}_{\mathrm{f}} 0.29$ (4:1 hexanes-EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{20}+23.7\left(c 0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~A}$ of AB, $\left.J_{\mathrm{AB}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.68\left(\mathrm{~B}\right.$ of AB, $\left.J_{\mathrm{AB}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.47\left(\mathrm{~A}\right.$ of AB, $\left.J_{\mathrm{AB}}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.31\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.55(\mathrm{~m}$, 2 H), $3.41-3.36(\mathrm{~m}, 4 \mathrm{H}), 3.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.60-1.08(\mathrm{~m}, 17 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~m}, 3 \mathrm{H}), 0.92-0.84(\mathrm{~m}$, $15 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,131.8,129.1,113.7,96.5,77.7,75.2,74.7,74.3$, $72.6,56.1,55.4,50.8,43.5,41.9,39.7,39.6,37.3,35.1,32.9,32.2,31.5,30.2,29.1,26.4$, $23.2,22.8,18.4,17.9,14.3,13.1,-3.3,-3.7$;

IR (film) 3446 (br), 2958, 2923, 2851, 1613, 1514, 1463, 1377, 1249, 1083, 1042, 834 cm^{-1};

HRMS (ES+) calc. for $\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$657.4526. Found: 657.4528.

Compound 10 [Scheme 1, Step 8]

Bis-TBS Ether 10: To a 50 mL round-bottom flask containing alcohol 9 a ($256 \mathrm{mg}, 0.403$ mmol) under argon was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.1 \mathrm{~mL}, 0.016 \mathrm{M})$ and 2,6-di-tert-butylpyridine $(0.712 \mathrm{~mL}, 3.22 \mathrm{mmol})$. The reaction mixture was cooled to $-40^{\circ} \mathrm{C}$, followed by the addition of TBSOTf ($0.612 \mathrm{~mL}, 0.575 \mathrm{mmol}$). The solution was allowed to slowly warm to $-10^{\circ} \mathrm{C}$ over 30 min and then recooled to $-40^{\circ} \mathrm{C}$. The reaction mixture was quenched by the addition of saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and the cooling bath removed. After 20 min the solution was diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The layers were then separated and the aqueous layer was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography ($98: 2-95: 5$ hexanes-ethyl acetate) provided $\mathbf{1 0}$ ($309 \mathrm{mg}, 0.395 \mathrm{mmol}, 98 \%$) as a colorless oil.

For TBS ether 10:
$\mathrm{R}_{\mathrm{f}} 0.54$ (6:1 hexanes-EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{23}+37.0\left(c 0.35 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.45$ $\left(\mathrm{A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}\right), 4.31(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{td}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (td, $J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (br s, 1H), 3.37 (s, 3H), 3.28 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18 (dd, $J=11.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.14(\mathrm{~m}, 16 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91-0.85(\mathrm{~m}, 24 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6,132.3,128.6,113.6,96.9,78.7,76.3,75.3,74.3$, $72.3,56.0,55.4,50.7,43.6,41.6,41.0,40.0,39,36.4,33.0,32.2,31.6,30.2,29.2,26.5$, $23.3,22.9,19.3,18.7,18.4,14.3,13.0,-2.9,-3.1,-3.4,-3.4$;

IR (film) 2954, 2928, 2855, 1617, 1514, 1463, 1361, 1249, 1172, 1147, 1099, 1045, $1000,921,935,773 \mathrm{~cm}^{-1}$;

HRMS (ES+) calc. for $\mathrm{C}_{43} \mathrm{H}_{80} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 771.5391$. Found: 771.5414.

Compound 11 [Scheme 2, Step 1]

Abstract

Alcohol 11:To a 50 mL round-bottom flask containing MOM ether $\mathbf{1 0}(150 \mathrm{mg}, 0.192$ mmol) under argon was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.0 \mathrm{~mL}, 0.016 \mathrm{M})$ and 2,6-di-tert-butylpyridine $(0.424 \mathrm{~mL}, 1.92 \mathrm{mmol})$. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, followed by the addition of B-bromocatecholborane ($0.612 \mathrm{~mL}, 0.575 \mathrm{mmol}, 0.94 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solution was stirred at $-78^{\circ} \mathrm{C}$ until no starting material remained by TLC, at which time the mixture was poured into a 1:1 mixture of THF/pH 7 buffer (100 mL) and agitated briefly. $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the combined organic layers washed with saturated $\mathrm{NaHCO}_{3}(75 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was then purified by flash column chromatography ($98: 2-6: 1$ hexanes-EtOAc) to afford alcohol 11 ($127 \mathrm{mg}, 0.180 \mathrm{mmol}, 94 \%$) as a colorless oil.

For alcohol 11:
$\mathrm{R}_{\mathrm{f}} 0.48$ (6:1 hexanes-EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{20}+21.0\left(c 0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~A}$ of AB, $\left.J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.33-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{td}, J=10.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.43 (br s, 1H), 3.27 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17 (dd, $J=11.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-$ $1.05(\mathrm{~m}, 19 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 24 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, 0.07 (s, 3H), 0.05 (s, 3H), 0.03 (s, 3H);
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,132.3,128.6,113.6,94.6,76.1,75.3,74.2,72.3$, $69.9,55.4,53.0,43.7,42.0,41.6,41.3,40.1,36.4,33.1,30.1,29.1,26.5,23.9,22.9,19.3$, 18.7, 18.4, 14.3, 13.0, -2.9, -3.0, -3.4;

IR (film) 3483 (br), 2954, 2927, 2855, 1614, 1513, 1463, 1378, 1301, 1248, 1171, 1140, 1064, 1040, 927, 882, 834, $774 \mathrm{~cm}^{-1}$;

HRMS (CI+) calc. for $\mathrm{C}_{41} \mathrm{H}_{77} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 705.5304$. Found: 705.5326.

Compound 12
[Scheme 2, Step 2]

Ketone 12: In a flame dried round-bottomed flask fitted with a magnetic stirbar was placed alcohol 11 ($5.1 \mathrm{mg}, 0.0071 \mathrm{mmol}$) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mu \mathrm{~L})$. To this was added powdered $4 \AA$ activated molecular sieves and the mixture was allowed to stir for 5 $\min . N$-methylmorpholine- N-oxide $(1.3 \mathrm{mg}, 0.011 \mathrm{mmol})$ and tetra- N -propylammonium perruthenate $(0.2 \mathrm{mg}, 0.0006 \mathrm{mmol})$ were added. The mixture was allowed to stir for 30 min before the the reaction mixture was taken up and filtered through a plug of Celite ${ }^{\circledR}$ and concentrated in vacuo. The residue was then purified by flash column chromatography ($1.5 \mathrm{~g} \mathrm{SiO}_{2}, 50: 1-20: 1$ hexanes-EtOAc) to afford ketone $\mathbf{1 2}(4.2 \mathrm{mg}$, $0.0058 \mathrm{mmol}, 80 \%$) as a clear colorless oil.

For ketone 12:
$\mathrm{R}_{\mathrm{f}} 0.52$ (6:1 hexanes-EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{21}+24.1\left(c 0.29, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~A}$ of AB, $J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~B}$ of $\mathrm{AB}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.66(\mathrm{td}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.60-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{dd}, J=12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.05(\mathrm{~m}, 15 \mathrm{H}), 0.93-0.85(\mathrm{~m}$, $30 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.8,209.0,170.3,131.8,128.7,113.6,75.4,74.7,74.3$, $72.2,59.8,55.4,48.3,47.4,44.5,43.2,40.1,35.9,34.1,32.2,30.8,29.5,26.5,26.4,22.9$, $20.8,19.3,18.8,18.5,14.7,14.3,-2.7,-3.1,-3.5,-4.8$;

IR (film) 2955, 2923, 2856, 1715, 1616, 1513, 1463, 1380, 1249, 1170, 1063, 1040, 1004, 884, 835, $774 \mathrm{~cm}^{-1}$;

HRMS (ES+) calc. for $\mathrm{C}_{41} \mathrm{H}_{74} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$725.4973. Found: 725.4993.

Compound 13
[Scheme 2, Step 3]

Ketol 13: A flame-dried 25 mL round-bottom flask charged with a magnetic stir bar was evacuated and back-filled with argon. A THF (3.0 mL) solution of ketone $12(228 \mathrm{mg}$, 0.324 mmol) was slowly added down the sides of the flask to a lithium diisopropylamide ($3.89 \mathrm{~mL}, 3.89 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) solution at $-78^{\circ} \mathrm{C}$. Additional THF (3.5 mL) was used to rinse the remaining ketone into the reaction flask. The solution was allowed to stir at $-78^{\circ} \mathrm{C}$ for 2 h before freshly distilled $\mathrm{TMSCl}(0.62 \mathrm{~mL}, 4.86 \mathrm{mmol})$ was added dropwise via syringe over 5 min . The mixture was allowed to stir for 3 h at $-78^{\circ} \mathrm{C}$. A solution of pH 7 buffer (75 mL) was cooled in an Erlenmeyer flask to $0^{\circ} \mathrm{C}$ and then the silyl enol ether solution was poured into the cooled buffer solution and agitated briefly. Pentane (150 mL) was added to the quenched reaction mixture and the layers were separated. The aqueous layer was extracted with pentane ($2 \times 100 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide a yellow oil. The crude product was used in the following reaction without purification. To a 50 mL round-bottom flask containing the crude silyl enol ether was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15.4 $\mathrm{mL}, 0.021 \mathrm{M}$). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, followed by addition of anhydrous $\mathrm{NaHCO}_{3}(544 \mathrm{mg}, 6.48 \mathrm{mmol})$ and m-chloroperoxybenzoic acid (227 mg , 1.30 mmol). The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , at which time a 10% solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(25 \mathrm{~mL})$ was added and the solution was stirred for an additional 15 min while warming to room temperature. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(75 \mathrm{~mL})$. The layers were then separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with saturated $\mathrm{NaHCO} 3(1 \times 50 \mathrm{~mL})$ and saturated $\mathrm{NaCl}(1 \times 50 \mathrm{~mL})$. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide a yellow oil. The crude product was used in the following reaction without purification. To a 50 mL roundbottom flask containing the crude TMS ether was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.2 \mathrm{~mL}, 0.02 \mathrm{M})$ and $\mathrm{MeOH}(0.77 \mathrm{~mL}, 0.42 \mathrm{M})$. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, followed by addition of camphorsulfonic acid ($7.5 \mathrm{mg}, 0.0324 \mathrm{mmol}$). The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ until no starting material remained by TLC, approximately 1 h 15 min . A saturated solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added to the reaction at $0{ }^{\circ} \mathrm{C}$. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$. The layers were then separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (95:5-9:1 hexanes-ethyl acetate) provided ketol 13 (201 mg, 0.279 $\mathrm{mmol}, 86 \%$ over 2 steps) as a colorless oil.

For ketol 13:
$\mathrm{R}_{\mathrm{f}} 0.62$ (6:1 hexanes-EtOAc);
$[\alpha]^{\mathrm{D}}{ }_{23}+12.0\left(\mathrm{c} 1.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~A}$ of AB, $\left.J_{\mathrm{AB}}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.46(\mathrm{~d}, J=8.8,1 \mathrm{H}), 4.30\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.97(\mathrm{bs}$, 1H) 3.93 (dd, $J=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.62$ (ddd, $J=10.4,10.4,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{bs}, 1 \mathrm{H}), 2.69$ (dd, $J=11.7,9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.83-0.77(\mathrm{~m}, 24 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10$ (s, 3H), $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.6,158.9,131.5,128.7,113.7,74.8,73.9,73.7,72.2$, $71.1,57.3,55.4,54.0,49.4,41.7,40.1,35.7,33.9,32.2,30.6,29.8,29.4,26.5,26.4,22.8$, $20.4,19.2,18.8,18.4,14.5,14.3,-2.9,-3.1,-3.7,-4.4$;

IR (film) $3468,2955,2928,2856,1712,1721,1613,1514,1463,1385,1251,1065$, 1040, 988, 836, $775 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{41} \mathrm{H}_{74} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 741.4916$. Found 741.4955.

Compound 13a
[Scheme 2, Step 4]

Diol 13a: To a 100 mL round-bottom flask containing $\mathbf{1 3}$ under argon was added MeOH ($36.1 \mathrm{~mL}, 0.02 \mathrm{M}$). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and NaBH_{4} ($682 \mathrm{mg}, 18.0 \mathrm{mmol}$) was added in two equal portions to the reaction. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ until no starting material was present by TLC, approximately 1 h . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added slowly to the reaction at $0^{\circ} \mathrm{C}$, followed by stirring for 15 min while warming to room temperature. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and EtOAc (75 mL). The layers were then separated and the aqueous layer was extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with saturated $\mathrm{NaCl}(1 \mathrm{x}$ 50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (98:2-9:1 hexanes-ethyl acetate) provided diol 13a ($460 \mathrm{mg}, 0.638$ mmol, 88%) as a viscous colorless oil.

For diol 13a:
$\mathrm{R}_{\mathrm{f}} 0.34$ (6:1 hexanes-EtOAc);
$[\alpha] \mathrm{D} 23+32.7\left(\mathrm{c} 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.43$ (A of AB, $\left.J_{\mathrm{AB}}=11.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.28\left(\mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=11.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-$ $4.09(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{bs}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{ddd}, J=10.5,10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (ddd, $J=11.0,8.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=11.6,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.95-0.81(\mathrm{~m}, 26 \mathrm{H}), 1.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.8,132.1,128.8,113.6,75.3,74.8,72.4,71.4,71.2$, $70.3,55.5,47.0,44.5,41.5,40.9,40.3,36.2,35.2,32.3,30.5,30.0,29.4,26.6,26.5,22.9$, $21.5,19.5,18.8,18.5,15.7,14.3,-3.0,-3.2,-3.5,-4.0$;

IR (film) 3445, 2955, 2928, 2856, 1614, 1514, 1463, 1386, 1301, 1249, 1171, 1089, 1063, 1037, 984, 940, 911, 831, 774, $674 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{41} \mathrm{H}_{76} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 743.5073$. Found 743.5093.

Compound 14
[Scheme 2, Step 5]
Triol 14: To a 100 mL round-bottom flask containing diol 13a was added a $1: 1$ solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{pH} 7$ buffer ($31.9 \mathrm{~mL}, 0.02 \mathrm{M}$). The solution was cooled to $0^{\circ} \mathrm{C}$, DDQ (434 $\mathrm{mg}, 1.91 \mathrm{mmol}$) was added to the reaction and the mixture was allowed to warm to room temperature. After stirring for 5 h , a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and EtOAc (75 mL). The layers were then separated and the aqueous layer was extracted with EtOAc (2 x 100 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (98:2-9:1 hexanesethylacetate) provided triol $\mathbf{1 4}(354 \mathrm{mg}, 0.589 \mathrm{mmol}, 92 \%)$ as a white foam.

For triol 14:
$\mathrm{R}_{\mathrm{f}} 0.34$ (6:1 hexanes-EtOAc);
$[\alpha]^{\mathrm{D}}{ }_{23}+33.0\left(\mathrm{c} 0.74, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{bs}, 1 \mathrm{H}), 3.84$ (ddd, $J=10.2$, $10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=12.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (ddd, $J=11.0,8.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=10.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-0.84(\mathrm{~m}, 25 \mathrm{H})$, $1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}$, 3 H), 0.13 ($\mathrm{s}, 3 \mathrm{H}$), 0.09 ($\mathrm{s}, 3 \mathrm{H}$);
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.2,71.6,71.5,69.9,66.8,48.4,43.3,43.1,42.3,38.3$, $35.0,35.0,32.2,31.7,29.9,29.3,26.6,26.5,22.9,21.7,19.5,19.0,18.5,16.1,14.3,-3.1$, $-3.3,-3.6,-3.7$;

IR (film) 3455, 2956, 2929, 2858, 1472, 1388, 1255, 1095, 1044, 983, 906, 836, 812, $775,674 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{33} \mathrm{H}_{68} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$623.4497. Found 623.4504.

Compound 14a
[Scheme 2, Step 6]

Benzyl acetal 14a: To a 25 mL round-bottom flask containing triol 14 under argon was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.2 \mathrm{~mL}, 0.02 \mathrm{M}), 4 \AA$ molecular sieves (260 mg), benzaldehyde dimethyl acetal $(0.064 \mathrm{~mL}, 0.429 \mathrm{mmol})$ and PTSA $\cdot \mathrm{H}_{2} \mathrm{O}(8.0 \mathrm{mg}, 0.043 \mathrm{mmol})$. The reaction mixture was stirred at room temperature until no starting material remained by TLC, approximately 13 minutes. A saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added to the reaction. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{EtOAc}(50 \mathrm{~mL})$. The layers were then separated and the aqueous layer was extracted with EtOAc ($2 \times 75 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (98:2-95:5 hexanes-ethyl acetate) provided benzyl acetal 14 ($95 \mathrm{mg}, 0.138 \mathrm{mmol}, 96 \%$) as a viscous colorless oil.

For 1:1.6 diastereomeric mixture of benzyl acetal 14a:
$\mathrm{R}_{\mathrm{f}} 0.61$ (6:1 hexanes-EtOAc);
$[\alpha]^{\mathrm{D}}{ }_{23}+11.7\left(\mathrm{c} 0.78, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.28\left(\mathrm{~m}_{\text {major/minor }}, 5 \mathrm{H}\right), 6.08\left(\mathrm{~s}_{\text {minor }}, 1 \mathrm{H}\right), 5.79\left(\mathrm{~s}_{\text {major }}\right.$, $1 \mathrm{H}), 4.43\left(\mathrm{dd}_{\text {major }}, J=5.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.26\left(\mathrm{dd}_{\text {minor }}, J=4.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.18-4.12$ $\left(\mathrm{m}_{\text {minor }}, 1 \mathrm{H}\right), 4.06\left(\mathrm{dd}_{\text {major }}, J=9.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.99\left(\mathrm{bs}_{\text {minor }}, 1 \mathrm{H}\right), 3.94-3.85\left(\mathrm{~m}_{\text {minor }}, 1 \mathrm{H}\right)$, 3.87 ($\mathrm{bs}_{\text {major }}, 1 \mathrm{H}$), 3.83 ($\mathrm{ddd}_{\text {major }}, J=10.6,9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.63-3.45$ ($\mathrm{m}_{\text {major/minor, }} 2 \mathrm{H}$), 3.14-3.02 ($\mathrm{m}_{\text {major/minor }}, 1 \mathrm{H}$), 2.17-1.96 ($\mathrm{m}_{\text {major/minor }}, 1 \mathrm{H}$), 1.93-0.82 ($\left.\mathrm{m}_{\text {major/minor }}, 22 \mathrm{H}\right), 1.10$ $\left(\mathrm{d}_{\text {major }}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.02\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.96\left(\mathrm{~s}_{\text {major }}, 9 \mathrm{H}\right), 0.96\left(\mathrm{~s}_{\text {minor }}, 9 \mathrm{H}\right), 0.93\left(\mathrm{~s}_{\text {minor }}\right.$, $9 \mathrm{H}), 0.92\left(\mathrm{~s}_{\text {major }}, 9 \mathrm{H}\right), 0.21\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 0.20\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.17\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.15\left(\mathrm{~s}_{\text {major }}\right.$, $3 \mathrm{H}), 0.15$ ($\left.\mathrm{s}_{\text {minor }}, 3 \mathrm{H}\right), 0.15$ ($\left.\mathrm{s}_{\text {minor }}, 3 \mathrm{H}\right), 0.11$ ($\left.\mathrm{s}_{\text {minor }}, 3 \mathrm{H}\right), 0.08\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right)$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.2,139.5,128.8,128.4,128.3,126.7,126.1,103.6$, $101.7,77.9,76.3,75.2,74.6,71.6,71.5,69.9,66.1,46.6,46.5,44.9,43.9,43.6,42.5$, $41.9,37.7,37.6,34.9,34.8,34.4,34.3,32.4,32.2,32.1,31.9,29.9,29.8,29.1,26.6,26.5$, $22.9,21.3,21.1,19.6,18.9,18.6,15.9,15.5,14.4,-3.1,-3.2,-3.3,-3.5,-3.6$;

IR (film) 3534, 2955, 2929, 2858, 1463, 1388, 1362, 1257, 1218, 1160, 1093, 1051, $1005,987,875,836,812,774,723,692,680,634 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{40} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 711.4810$. Found 711.4821.

Compound 15
[Scheme 3, Step 7]

Aldehyde 15: To a 25 mL round-bottom flask containing benzyl acetal $\mathbf{1 4 a}(173 \mathrm{mg}$, 0.251 mmol) under argon was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL}, 0.05 \mathrm{M})$ and powdered $4 \AA$ molecular sieves (270 mg). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, followed by addition of NMO ($60 \mathrm{mg}, 0.512 \mathrm{mmol}$) and TPAP ($10 \mathrm{mg}, 0.244 \mathrm{mmol}$). The solution was warmed to room temperature and stirred for 24 h . The reaction mixture was diluted with EtOAc and filtered through a plug of silica gel using EtOAc as the eluent and concentrated in vacuo. The crude NMR still showed the presence of alcohol, therefore the crude mixture was resubjected under the same conditions as previously described. The resulting residue was then purified by flash chromatography (98:2-95:5 hexanes-ethyl acetate) to provide aldehyde 15 ($168 \mathrm{mg}, 0.244 \mathrm{mmol}, 97 \%$) as a viscous colorless oil.

For 1:1.6 diastereomeric mixture of aldehyde $\mathbf{1 5}$:
$\mathrm{R}_{\mathrm{f}} 0.56$ \& 0.48 (95:5 hexanes-EtOAc; developed 2x);
$[\alpha]^{\mathrm{D}}{ }_{23}+16.6\left(\mathrm{c} 0.93, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.42\left(\mathrm{~s}_{\text {major }}, 1 \mathrm{H}\right), 9.41\left(\mathrm{~s}_{\text {minor }}, 1 \mathrm{H}\right), 7.54-7.30\left(\mathrm{~m}_{\text {major/minor }}\right.$, $5 \mathrm{H}), 6.09\left(\mathrm{~s}_{\text {minor }}, 1 \mathrm{H}\right), 5.84\left(\mathrm{~s}_{\text {major }}, 1 \mathrm{H}\right), 4.40\left(\mathrm{dd}_{\text {major }}, J=5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.28\left(\mathrm{dd}_{\text {minor }}, J\right.$ $=9.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23\left(\mathrm{dd}_{\text {minor }}, J=4.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.14\left(\mathrm{dd}_{\text {major }}, J=9.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.99\left(\mathrm{bs}_{\text {minor }}, 1 \mathrm{H}\right), 3.87\left(\mathrm{bs}_{\text {major }}, 1 \mathrm{H}\right), 3.64\left(\mathrm{ddd}_{\text {minor }}, J=9.7,9.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.55$ $\left(\mathrm{ddd}_{\text {major }}, J=10.2,10.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.98-1.90\left(\mathrm{~m}_{\text {major/minor }}, 1 \mathrm{H}\right), 1.80-0.84\left(\mathrm{~m}_{\text {major/minor }}\right.$, $22 \mathrm{H}), 1.29\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 1.23\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.97\left(\mathrm{~s}_{\text {major/minor }}, 9 \mathrm{H}\right), 0.89\left(\mathrm{~s}_{\text {minor }}, 9 \mathrm{H}\right), 0.87$ $\left(\mathrm{s}_{\text {major }}, 9 \mathrm{H}\right), 0.82\left(\mathrm{~d}_{\text {major }}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.75\left(\mathrm{~d}_{\text {minor }}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.21\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right)$, $0.19\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.12\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 0.09\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.08\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 0.07\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right)$, 0.05 ($\left.\mathrm{s}_{\text {major }}, 3 \mathrm{H}\right), 0.05$ ($\mathrm{s}_{\text {major }}, 3 \mathrm{H}$);
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.3,140.5,139.0,128.8,128.4,128.3,128.1,126.4$, $125.9,103.6,101.6,76.5,75.3,74.0,73.2,72.3,72.2,70.0,69.9,49.8,47.8,47.6,45.6$, $45.5,44.1,41.4,37.2,37.1,35.6,35.5,34.1,34.0,32.0,31.9,31.8,29.7,29.6,27.4,27.3$, $26.4,26.3,26.1,22.7,21.4,19.4,18.7,18.2,14.1,11.5,11.3,-3.0,-3.3,-3.4,-3.9$;

IR (film) 2955, 2929, 2857, 1727, 1471, 1463, 1407, 1384, 1361, 1254, 1218, 1155, $1137,1095,1065,1006,992,940,909,870,837,812,776,724,696 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{40} \mathrm{H}_{70} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$709.4654. Found 709.4651.

Compound 16
[Scheme 3, Step 9]

TMS-Ynone 16: To a flame-dried 50 mL round-bottom flask charged with a magnetic stir bar, evacuated and back-filled with argon was added trimethylsilyl acetylene (1.04 $\mathrm{mL}, 7.32 \mathrm{mmol})$ and THF (7.3 mL). The solution was cooled to $-78^{\circ} \mathrm{C}$, followed by the addition of $n-\mathrm{BuLi}(3.47 \mathrm{~mL}, 6.11 \mathrm{mmol}, 1.76 \mathrm{M})$ and the reaction was allowed to stir for 40 min at $-78{ }^{\circ} \mathrm{C}$. A THF (4.0 mL) solution of aldehyde $15(168 \mathrm{mg}, 0.244 \mathrm{mmol})$ was slowly added down the sides of the flask to the TMS lithium acetylide solution at - 78 ${ }^{\circ} \mathrm{C}$. The cooling bath was removed and the reaction mixture was allowed to warm to room temperature and stirred for 18 h . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ was added to the reaction at $0{ }^{\circ} \mathrm{C}$. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and EtOAc $(75 \mathrm{~mL})$. The layers were then separated and the aqueous layer was extracted with EtOAc (2×75 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to provide a yellow oil. The crude product was used in the following reaction without purification. To a 50 mL round-bottom flask containing crude alcohol under argon was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.2 \mathrm{~mL}, 0.02 \mathrm{M})$. The reaction was cooled to 0 ${ }^{\circ} \mathrm{C}$, followed by the addition of $\mathrm{NaHCO}_{3}(210 \mathrm{mg}, 2.44 \mathrm{mmol})$ and Dess-Martin periodinane ($311 \mathrm{mg}, 0.732 \mathrm{mmol}$) to the reaction mixture. The solution was warmed to room temperature and stirred for 20 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$ were added. The mixture was warmed to room temperature and stirred for 15 min . The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL})$. The layers were then separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 75 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (98:2-95:5 hexanes-ethyl acetate) provided TMS-ynone 16 ($175 \mathrm{mg}, 0.223 \mathrm{mmol}, 92 \%$ over 2 steps) as a viscous colorless oil.

For 1:1.3 diastereomeric mixture of TMS-ynone 16:
$\mathrm{R}_{\mathrm{f}} 0.63$ \& 0.57 (95:5 hexanes-EtOAc; developed 2x);
$[\alpha]^{\mathrm{D}}{ }_{23}+30.4\left(\mathrm{c} 0.57, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.30\left(\mathrm{~m}_{\text {major/minor }}, 5 \mathrm{H}\right), 6.09\left(\mathrm{~s}_{\text {minor }}, 1 \mathrm{H}\right), 5.83\left(\mathrm{~s}_{\text {major }}\right.$, $1 \mathrm{H}), 4.40\left(\mathrm{dd}_{\text {major }}, J=5.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.29\left(\mathrm{dd}_{\text {minor }}, J=9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22\left(\mathrm{dd}_{\text {minor }}, J\right.$ $=4.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18\left(\mathrm{dd}_{\text {major }}, J=9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.01\left(\mathrm{bs}_{\text {minor }}, 1 \mathrm{H}\right), 3.89\left(\mathrm{bs}_{\text {major }}\right.$, $1 \mathrm{H}), 3.56\left(\mathrm{ddd}_{\text {minor }}, J=10.2,10.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.46\left(\mathrm{ddd}_{\text {major }}, J=10.3,10.3,4.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.52-2.41\left(\mathrm{~m}_{\text {major/minor }}, 1 \mathrm{H}\right), 2.04\left(\mathrm{dd}_{\text {major }}, J=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.94\left(\mathrm{dd}_{\text {minor }}, J=2.3\right.$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.75\left(\mathrm{~m}_{\text {major/minor }}, 1 \mathrm{H}\right), 1.70-0.81\left(\mathrm{~m}_{\text {major/minor }}, 23 \mathrm{H}\right), 1.26\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right)$,
$1.20\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 1.00\left(\mathrm{~s}_{\text {major }}, 9 \mathrm{H}\right), 0.99\left(\mathrm{~s}_{\text {minor }}, 9 \mathrm{H}\right), 0.89\left(\mathrm{~s}_{\text {minor }}, 9 \mathrm{H}\right), 0.87\left(\mathrm{~s}_{\text {major }}, 9 \mathrm{H}\right), 0.23$ $\left(\mathrm{s}_{\text {minor }}, 3 \mathrm{H}\right), 0.22\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.21\left(\mathrm{~s}_{\text {major }}, 9 \mathrm{H}\right), 0.19\left(\mathrm{~s}_{\text {minor }}, 9 \mathrm{H}\right), 0.13\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 0.11$ $\left(\mathrm{s}_{\text {major }}, 3 \mathrm{H}\right), 0.06\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 0.03\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 0.02\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.00\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right)$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.5,140.6,139.1,128.7,128.3,128.1,126.3,125.9$, $103.8,101.9,101.8,96.9,75.8,75.7,74.4,72.6,72.1,71.9,70.1,70.0,53.6,47.0,46.9$, $46.8,46.6,44.8,42.3,37.6,37.5,35.5,34.6,32.6,32.1,32.0,29.7,29.6,28.5,26.5,26.3$, $22.7,22.6,21.3,19.6,19.5,18.7,18.2,14.2,11.4,11.3,-0.6,-2.8,-3.7,-3.8,-4.1$;

IR (film) 2956, 2928, 2857, 1672, 1463, 1407, 1385, 1360, 1252, 1155, 1133, 1096, $1179,1067,1005,940,840,812,775,697,677,629,574 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{45} \mathrm{H}_{78} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$805.5049. Found 805.5090.

Compound 16a
[Scheme 3, Step 10]

Dimethyl Acetal 16a: To a culture tube containing TMS-ynone 16 ($98 \mathrm{mg}, 0.125 \mathrm{mmol}$) under argon was added anhydrous $\mathrm{MeOH}(6.3 \mathrm{~mL}, 0.02 \mathrm{M})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(346 \mathrm{mg}, 2.50$ $\mathrm{mmol})$. The reaction was heated to $65^{\circ} \mathrm{C}$ and stirred for 20 h . The solution was cooled to room temperature and diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and EtOAc $(100 \mathrm{~mL})$. The layers were then separated and the aqueous layer was extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (98:295:5 hexanes-ethyl acetate) provided dimethyl acetal $\mathbf{1 6 a}(95 \mathrm{mg}, 0.123 \mathrm{mmol}, 98 \%)$ as a viscous colorless oil.

For 1:1.6 diastereomeric mixture of dimethyl acetal 16a:
$\mathrm{R}_{\mathrm{f}} 0.67$ (6:1 hexanes-EtOAc);
$[\alpha]^{\mathrm{D}}{ }_{23}+28.9\left(\mathrm{c} 0.71, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.30\left(\mathrm{~m}_{\text {major/minor }}, 5 \mathrm{H}\right), 6.08\left(\mathrm{~s}_{\text {minor }}, 1 \mathrm{H}\right), 5.84$ ($\mathrm{s}_{\text {major }}$, $1 \mathrm{H}), 4.97-4.92\left(\mathrm{~m}_{\text {major/minor }}, 1 \mathrm{H}\right), 4.40\left(\mathrm{dd}_{\text {major }}, J=5.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.28-4.21\left(\mathrm{~m}_{\text {minor }}\right.$, $1 \mathrm{H}), 4.28-4.21\left(\mathrm{~m}_{\text {minor }}, 1 \mathrm{H}\right), 4.13\left(\mathrm{dd}_{\text {major }}, J=9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.01$ ($\left.\mathrm{bs}_{\text {minor }}, 1 \mathrm{H}\right), 3.89$ ($\mathrm{bs}_{\text {major }}, 1 \mathrm{H}$), 3.63 ($\mathrm{m}_{\text {minor }}, 1 \mathrm{H}$), 3.50-3.38 ($\mathrm{m}_{\text {major }}, 1 \mathrm{H}$), 3.41 ($\mathrm{s}_{\text {major }}, 3 \mathrm{H}$), 3.39 ($\mathrm{s}_{\text {minor }}, 3 \mathrm{H}$), $3.33\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 3.32\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 3.00-2.88\left(\mathrm{~m}_{\text {major/minor }}, 1 \mathrm{H}\right), 2.88-2.79\left(\mathrm{~m}_{\text {major/minor }}, 1 \mathrm{H}\right)$, 2.30-2.19 ($\mathrm{m}_{\text {major/minor }}, 1 \mathrm{H}$), 1.92-1.79 ($\left.\mathrm{m}_{\text {major/minor }}, 1 \mathrm{H}\right), 1.71-0.79\left(\mathrm{~m}_{\text {major/minor }}, 24 \mathrm{H}\right), 1.28$ $\left(\mathrm{s}_{\text {minor }}, 3 \mathrm{H}\right), 1.23\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.99\left(\mathrm{~s}_{\text {major }}, 9 \mathrm{H}\right), 0.98\left(\mathrm{~s}_{\text {minor }}, 9 \mathrm{H}\right), 0.87\left(\mathrm{~s}_{\text {minor }}, 9 \mathrm{H}\right), 0.85$ $\left(\mathrm{s}_{\text {major }}, 9 \mathrm{H}\right), 0.21\left(\mathrm{~s}_{\text {major/minor }}, 3 \mathrm{H}\right), 0.13\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 0.11\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.05\left(\mathrm{~s}_{\text {minor }}, 3 \mathrm{H}\right), 0.05$ $\left(\mathrm{s}_{\text {minor }}, 3 \mathrm{H}\right), 0.02\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right), 0.02\left(\mathrm{~s}_{\text {major }}, 3 \mathrm{H}\right)$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.7,209.6,140.7,139.2,128.8,128.5,128.4,128.3$, $126.4,126.0,104.0,103.4,102.1,77.4,76.0,75.7,74.7,73.1,73.0,72.6,70.7,70.5,56.5$, $56.4,53.6,53.0,46.7,46.6,45.4,44.2,43.9,42.7,41.4,38.6,38.5,35.9,35.8,34.9,34.8$, $32.6,32.5,32.2,32.1,29.9,29.8,29.2,29.1,26.5,26.4,22.8,21.0,20.9,19.5,18.8,18.5$, $18.4,14.3,12.5,12.4,-2.6,-3.7,-3.8,-4.3$;

IR (film) 2955, 2929, 2857, 1708, 1463, 1385, 1294, 1254, 1218, 1154, 1125, 1195, $1095,1064,1006,947,870,812,777,744,696,671,575 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{44} \mathrm{H}_{78} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+797.5178$. Found 797.5181.

Compound 17
[Scheme 3, Step 11]

Diol 17: To a 50 mL round-bottom flask containing benzyl acetal 16 ($95 \mathrm{mg}, 0.123$ mmol) dissolved in EtOAc ($9.4 \mathrm{~mL}, 0.013 \mathrm{M}$) was added Pd/C ($206 \mathrm{mg}, 5 \% \mathrm{w} / \mathrm{w}$). The mixture was degassed by applying vacuum and backfilling with argon before charging the flask with hydrogen using vacuum and backfilling from a balloon. The mixture was then stirred vigorously under a hydrogen filled balloon for 18 h . The balloon was removed and the mixture was purged of hydrogen by applying vacuum and back filling with argon several times. The reaction mixture was diluted with EtOAc and filtered through a plug of silica gel using EtOAc as the eluent and concentrated in vacuo. Purification by flash chromatography (95:5-6:1 hexanes-ethyl acetate) provided diol $\mathbf{1 7}$ $(76 \mathrm{mg}, 0.111 \mathrm{mmol}, 90 \%)$ as a white solid.

For diol 17:
$\mathrm{R}_{\mathrm{f}} 0.38$ (6:1 hexanes-EtOAc);
$[\alpha]^{\mathrm{D}}{ }_{23}+40.4\left(\mathrm{c} 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.91$ (dd, $\left.J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.19$ (bs, 1H), 4.06 (bs, 1 H), 3.53 (ddd, $J=10.1,10.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (ddd, $J=11.2,8.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (s, $3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{dd}, J=16.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=16.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (dd, $J=11.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (ddd, $J=11.2,11.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-0.80(\mathrm{~m}, 24 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.9,103.2,72.8,71.0,69.8,56.2,54.3,52.5,48.5$, $44.0,43.7,41.2,38.6,35.7,35.2,32.4,32.1,29.9,29.3,26.5,26.3,22.8,20.9,19.5,18.9$, $18.4,14.2,13.6,-3.3,-3.8,-3.9,-4.2$;

IR (film) 3483, 2955, 2929, 2858, 1706, 1463, 1380, 1255, 1193, 1125, 1096, 1061, $1038,1006,985,948,885,837,813,777,679 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{37} \mathrm{H}_{74} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 709.4865$. Found 709.4899.

Compound 19
[Scheme 3, Step 1]
Ketol 19: To a culture tube containing diol $\mathbf{1 7}(35 \mathrm{mg}, 0.051 \mathrm{mmol})$ under argon was added anhydrous DMSO ($5.1 \mathrm{~mL}, 0.01 \mathrm{M}$) and IBX ($143 \mathrm{mg}, 0.509 \mathrm{mmol}$). The reaction was stirred at room temperature for 16 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20$ $\mathrm{mL})$ and EtOAc (50 mL). The layers were then separated and the aqueous layer was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ ($2 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.
Purification by flash chromatography (98:2-9:1 hexanes-ethyl acetate) provided ketol 19 ($31 \mathrm{mg}, 0.045 \mathrm{mmol}, 89 \%$) as a viscous colorless oil.

For ketol 19:
$\mathrm{R}_{\mathrm{f}} 0.69$ (4:1 hexanes-EtOAc);
$[\alpha]^{\mathrm{D}}{ }_{23}-2.9\left(\mathrm{c} 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.94(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=10.4,3.3 \mathrm{~Hz}$, 1 H), 3.98 (bs, 1H), 3.57 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (ddd, $J=9.8,9.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (s, 3 H), $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{dd}, J=17.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=17.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (bs, 1H), 1.69-0.79 (m, 24H), $1.01(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.15$ (s, 3H), $0.12(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.3,205.3,102.9,73.9,72.9,70.8,58.7,57.9,56.2$, 53.7, 53.0, 44.7, 41.2, 38.8, 35.9, 32.9, 32.2, 31.4, 29.7, 29.2, 26.5, 26.3, 22.9, 20.2, 19.3, $18.8,18.4,14.3,12.1,-3.0,-3.7,-4.3,-4.4$;

IR (film) 3479, 2955, 2929, 2857, 1716, 1463, 1385, 1298, 1254, 1164, 1125, 1061, 1039, 1007, 988, $876 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{37} \mathrm{H}_{72} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 707.4709$. Found 707.4681.

Compound 20
[Scheme 3, Step 2]

Compound 21
[Scheme 3, Step 2]

Diketone 20/Keto-Enol 21: To a culture tube containing ketol 19 ($15 \mathrm{mg}, 0.219 \mathrm{mmol}$) under argon was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.7 \mathrm{~mL}, 0.008 \mathrm{M})$, sodium acetate ($23 \mathrm{mg}, 0.280 \mathrm{mmol}$) and powdered $4 \AA$ molecular sieves $(100 \mathrm{mg})$. The reaction mixture was stirred for 5 min and then PCC ($23 \mathrm{mg}, 0.105 \mathrm{mmol}$) was added. The reaction was stirred until no starting material remained by TLC. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a plug of silica gel using $\mathrm{Et}_{2} \mathrm{O}$ as the eluent and concentrated in vacuo. The resulting residue was then purified by flash chromatography ($98: 2-9: 1$ hexanes-ethyl acetate) to provide keto-enol $21(12 \mathrm{mg}, 0.176 \mathrm{mmol}, 80 \%)$ as a colorless oil.

For diketone 20:
$\mathrm{R}_{\mathrm{f}} 0.60$ (6:1 hexanes-EtOAc);
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.98$ (dd, $\left.J=6.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.50(\mathrm{bs}, 1 \mathrm{H}), 3.57$ (ddd, J $=9.4,9.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=11.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-$ $3.01(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{bs}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=11.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-0.77(\mathrm{~m}, 26 \mathrm{H}), 0.90(\mathrm{~s}$, $9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H})$.

For keto-enol 21:
$\mathrm{R}_{\mathrm{f}} 0.60$ ($6: 1$ hexanes-EtOAc);
$[\alpha]^{\mathrm{D}}{ }_{23}-7.1\left(\mathrm{c} 0.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=7.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{ddd}, J=10.9,10.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=16.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=17.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}$, $1 \mathrm{H}), 1.78-0.84(\mathrm{~m}, 27 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H})$;

13C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.9,194.9,141.6,125.3,103.2,72.6,66.9,56.2,54.6$, $53.8,46.0,42.4,37.2,34.3,33.5,32.1,31.8,29.9,29.8,29.4,26.3,25.9,22.9,21.9,18.5$, $18.4,17.8,14.3,14.2,-3.6,-3.9,-4.7,-5.1$;

IR (film) 3411, 2955, 2929, 2857, 1712, 1685, 1663, 1463, 1377, 1289, 1258, 1201, $1124,1090,1056,1028,938,889,836,814,778,720,666 \mathrm{~cm}^{-1}$;

HRMS (ESI+) calc. for $\mathrm{C}_{37} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$705.4552. Found 705.4540.

Compound 27
[Scheme 3, Step 3]
Keto-enol 27: To a plastic culture tube containing keto-enol 21 ($4 \mathrm{mg}, 0.0059 \mathrm{mmol}$) was added THF $(0.700 \mathrm{~mL}, 0.008 \mathrm{M})$. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{HF} \cdot p$ pyridine (0.050 mL of a $70 \% \mathrm{HF} / 30 \%$ pyridine) was added dropwise. The reaction was stirred for 72 h at room temperature. A saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc (30 mL). The layers were then separated and the aqueous layer was extracted with EtOAc (2 x 30 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash chromatography (9:1-6:1 hexanes-ethyl acetate) provided keto-enol $27(1.0 \mathrm{mg}, 0.0018 \mathrm{mmol}, 31 \%$; at 50% conversion) as a colorless oil.

For keto-enol 27:
$\mathrm{R}_{\mathrm{f}} 0.55$ (6:1 hexanes-EtOAc);
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=7.1,3.1 \mathrm{~Hz}$, 1 H), 3.93 (ddd, $J=11.8,9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (s, 3H), 3.36 (s, 3 H), $3.27-3.20(\mathrm{~m}, 1 \mathrm{H})$, $3.09(\mathrm{dd}, J=17.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=17.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.02$ (ddd, $J=13.0,4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.04(\mathrm{~m}, 16 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, 7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$;

HRMS (ESI+) calc. for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$573.3582. Found 573.3560.

	Parameter	Value
1	Title	jck-3-295
2	Origin	Varian
3	Spectrometer	inova
4	Author	jcklein
5	Solvent	cdcl3
6	Temperature	25.0
7	Pulse Sequence	s2pul
8	Number of Scans	16
9	Receiver Gain	48
10	Relaxation Delay	1.0000
11	Pulse Width	0.0000
12	Acquisition Time	2.0031
13	Acquisition Date	$2006-11-13 T 09: 17: 05$
14	Spectrometer Frequency	400.12
15	Spectral Width	6402.0
16	Lowest Frequency	-809.0
17	Nucleus	$1 H$
18	Acquired Size	12824
19	Spectral Size	65536

Compound 5 [Scheme 1, Step 1]

\footnotetext{

	11	11.	10	1	1	1	1	1	1.	1	1	1	T 1	1	1	1	1	1	1	1	1	1	1	1	1	
. 0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1

	Parameter	Value
1	Title	jck-4-207
2	Origin	Varian
3	Spectrometer	inova
4	Author	jcklein
5	Solvent	cdcl3
6	Temperature	25.0
7	Pulse Sequence	s2pul
8	Number of Scans	8
9	Receiver Gain	30
10	Relaxation Delay	1.0000
11	Pulse Width	0.0000
12	Acquisition Time	2.7304
13	Acquisition Date	$2008-02-15 \mathrm{~T} 15: 59: 38$
14	Spectrometer Frequency	399.71
15	Spectral Width	6000.6
16	Lowest Frequency	-993.2
17	Nucleus	1 H
18	Acquired Size	16384
19	Spectral Size	65536

Compound 6 [Scheme 1, Step 2]

$\stackrel{+}{\underset{\sim}{j}} \stackrel{+}{\square}$

Compound 6 [Scheme 1, Step 2]

Parameter	Value	
1	Title	jck-4-207-2dgdqcosy
2	Origin	Varian
3	Spectrometer	inova
4	Author	jcklein
5	Solvent	d2o
6	Temperature	25.0
7	Pulse Sequence	iugdqcosy
8	Number of Scans	4
9	Receiver Gain	20
10	Relaxation Delay	1.0000
11	Pulse Width	670.0000
12	Acquisition Time	0.1277
13	Acquisition Date	$2008-02-15 T 01: 48: 51$
14	Spectrometer Frequency	$(499.81,499.81)$
15	Spectral Width	$(4009.8,4009.8)$
16	Lowest Frequency	$(132.7,132.7)$
17	Nucleus	$(1 \mathrm{H}, 1 \mathrm{H})$
18	Acquired Size	$(512,200)$
19	Spectral Size	$(512,512)$

Parameter		Value
1	Title	jck-4-86
2	Origin	Varian
3	Spectrometer	inova
4	Author	jcklein
5	Solvent	cdcl3
6	Temperature	25.0
7	Pulse Sequence	s2pul
8	Number of Scans	16
9	Receiver Gain	36
10	Relaxation Delay	1.0000
11	Pulse Width	0.0000
12	Acquisition Time	2.0031
13	Acquisition Date	$2007-03-20 \mathrm{~T} 18: 03: 47$
14	Spectrometer Frequency	400.12
15	Spectral Width	6402.0
16	Lowest Frequency	-810.0
17	Nucleus	1 H
18	Acquired Size	12824
19	Spectral Size	65536

Compound 7 [Scheme 1, Step 4]

	Parameter	Value
1	Title	jck-4-86-13C
2	Origin	Varian
3	Spectrometer	inova
4	Author	jcklein
5	Solvent	cdcl3
6	Temperature	25.0
7	Pulse Sequence	s2pul
8	Number of Scans	1489
9	Receiver Gain	60
10	Relaxation Delay	1.5000
11	Pulse Width	0.0000
12	Acquisition Time	0.6513
13	Acquisition Date	$2007-03-20 T 18: 08: 37$
14	Spectrometer Frequency	100.62
15	Spectral Width	25157.2
16	Lowest Frequency	-1503.6
17	Nucleus	$13 C$
18	Acquired Size	16384
19	Spectral Size	32768

	Parameter	Value
1	Title	jck-4-69
2	Origin	Varian
3	Spectrometer	inova
4	Author	jcklein
5	Solvent	cdcl3
6	Temperature	25.0
7	Pulse Sequence	s2pul
8	Number of Scans	32
9	Receiver Gain	48
10	Relaxation Delay	1.0000
11	Pulse Width	0.0000
12	Acquisition Time	2.0031
13	Acquisition Date	$2007-02-13 \mathrm{~T} 11: 08: 00$
14	Spectrometer Frequency	400.12
15	Spectral Width	6402.0
16	Lowest Frequency	-810.4
17	Nucleus	1 H
18	Acquired Size	12824
19	Spectral Size	65536

Compound 8 [Scheme 1, Step 5]

Parameter	Value	$\mathrm{MOMO} \mathrm{CH}_{3}$
1 Title	jck-4-89	-
2 Origin	Varian	
3 Spectrometer	inova	-
4 Author	jcklein	H CH_{3}
5 Solvent	cdcl3	Me OTBS
6 Temperature	25.0	
7 Pulse Sequence	s2pul	Compound 9
8 Number of Scans	16	[Scheme 1, Step 6]
9 Receiver Gain	20	
10 Relaxation Delay	1.0000	
11 Pulse Width	0.0000	
12 Acquisition Time	2.0032	
13 Acquisition Date	2007-04-06T21:15:02	
14 Spectrometer Frequency	400.12	
15 Spectral Width	3507.4	
16 Lowest Frequency	-319.6	
17 Nucleus	1H	
18 Acquired Size	7026	
19 Spectral Size	65536	

Compound 9
[Scheme 1, Step 6]

Parameter

Value
jck-4-204-B
2 Origin
Varian
Spectrometer
inova
jcklein
$\begin{array}{ll}4 & \text { Author } \\ 5 & \text { Solvent }\end{array}$
cdcl3
6 Temperature 25.0
7 Pulse Sequence s2pul
8 Number of Scans 16
9 Receiver Gain
16
52
10 Relaxation Delay 1.0000
11 Pulse Width
0.0000
12 Acquisition Time 2.7304
13 Acquisition Date 2008-02-18T11:36:43
14 Spectrometer Frequency 399.71
15 Spectral Width 6000.6
16 Lowest Frequency -993.5
17 Nucleus 1H
18 Acquired Size 16384
19 Spectral Size
65536

Compound 9a
[Scheme 1, Step 7]

Compound 10 [Scheme 1, Step 8]

	Parameter	Value
1	Title	jck-4-227-A-2dgdqcosy
2	Origin	Varian
3	Spectrometer	inova
4	Author	jcklein
5	Solvent	cdcl3
6	Temperature	25.0
7	Pulse Sequence	gDQCOSY
8	Number of Scans	4
9	Receiver Gain	48
10	Relaxation Delay	1.0000
11	Pulse Width	0.0000
12	Acquisition Time	0.1571
13	Acquisition Date	$2008-03-31 \mathrm{~T} 22: 45: 36$
14	Spectrometer Frequency	$(400.12,400.12)$
15	Spectral Width	$(3258.1,3258.1)$
16	Lowest Frequency	$(-171.6,-171.6)$
17	Nucleus	$(1 \mathrm{H}, 1 \mathrm{H})$
18	Acquired Size	$(512,200)$
19	Spectral Size	$(512,512)$

Compound 19 [Scheme 3, Step 1]

Parameter	Value	
1	Title	III-lck-127H_19-27_COSY_vi500
2	Origin	Varian
3	Spectrometer	inova
4	Author	jcklein
5	Solvent	cdcl3
6	Temperature	25.0
7	Pulse Sequence	gCOSY
8	Number of Scans	4
9	Receiver Gain	32
10	Relaxation Delay	1.0000
11	Pulse Width	0.0000
12	Acquisition Time	0.1500
13	Acquisition Date	$2010-07-04 \mathrm{~T} 15: 21: 01$
14	Spectrometer Frequency	$(499.81,499.81)$
15	Spectral Width	$(4152.0,4152.0)$
16	Lowest Frequency	$(-229.4,-229.4)$
17	Nucleus	$(1 \mathrm{H}, 1 \mathrm{H})$
18	Acquired Size	$(623,128)$
19	Spectral Size	$(1024,1024)$

Parameters		
	Parameter	Value
1	Title	SAB-4-292
2	Origin	Varian
3	Spectrometer	inova
4	Solvent	cdd3
5	Temperature	25.0
6	Pulse Sequence	s2pul
7	Number of Scans	64
8	Receiver Gain	30
9	Relaxation Delay	1.0000
10	Pulse Width	0.0000
11	Acquisition Time	1.7046
12	Acquisition Date	2015-10-30T19:27:06
13	Spectrometer Freq	599.80
14	Spectral Width	9611.9
15	Lowest Frequency	-1192.2
16	Nucleus	1H
17	Acquired Size	16384
18	Spectral Size	65536

Compound 21
[Scheme 3]

ボ

Parameters		
	Parameter	Value
1	Title	SAB－4－292－C2
2	Origin	Varian
3	Spectrometer	inova
4	Solvent	cdcl3
5	Temperature	25.0
6	Pulse Sequence	s2pul
7	Number of Scans	20112
8	Receiver Gain	60
9	Relaxation Delay	1.5000
10	Pulse Width	0.0000
11	Acquisition Time	1.0428
12	Acquisition Date	$2015-12-01 T 18: 49: 10$
13	Spectrometer Frequency	125.69
14	Spectral Width	31421.8
15	Lowest Frequency	-1882.3
16	Nucleus	$13 C$
17	Acquired Size	32768
18	Spectral Size	65536

Compound 21
［Scheme 3］

．

230	220	210	200	190	180	170	160	150	140	130	120	$\$-70$	100	90	80	70	60	50	40	30	20	10	0	－10

Parameters 1		Title Value
2	Origin	SAB－4－302－2
3	Spectrometer	Varian
4	Solvent	inova
5	Temperature	25.0
6	Pulse Sequence	s2pul
7	Number of Scans	32
8	Receiver Gain	50
9	Relaxation Delay	1.0000
10	Pulse Width	0.0000
11	Acquisition Time	1.7046
12	Acquisition Date	$2015-12-01 T 18: 35: 59$
13	Spectrometer Frequency	599.78
14	Spectral Width	9611.9
15	Lowest Frequency	-1197.7
16	Nucleus	1 H
17	Acquired Size	16384
18	Spectral Size	65536

Compound 27
［Scheme 2，Step 1］

230	220	210	200	190	180	170	160	150	140	130	120	$9-70$ f1 (ppm)	100	90	80	70	60	50	40	30	20	10	0	-10

Additional Computational data:

Cartesian coordinates for the computed structures mentioned in the main text:

Routecard includes: m062x/6-31+g(d,p) scrf=(smd,solvent=n-hexane)
1

```
Imaginary Frequencies: none found
Zero-point correction = 0.571920 (Hartree/Particle)
```

Temperature 298.150 kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies =
-1348.487062 hartrees ($-846189.11627562 \mathrm{kca1} / \mathrm{mol}$)

C	-3.633393	-2.038665	-0.181123
C	-2.390346	-1.445940	0.502652
C	-2.193115	0.047600	0.197410
C	-3.467596	0.800397	0.634424
C	-4.681954	0.238689	-0.094453
C	-4.887578	-1.248722	0.190024
C	-0.864089	0.602790	0.818646
C	-1.169951	-2.238894	0.123842
C	0.148279	-1.585165	0.177529
C	0.342274	-0.273751	0.445186
C	-6.124439	-1.798259	-0.513766
C	-0.976884	0.682395	2.353067
C	-0.652425	2.011678	0.237697
C	-0.416624	2.157147	-1.180300
C	-0.221567	3.395331	-1.708920
C	1.800112	0.199417	0.456324
C	2.394635	0.163971	-0.975914
C	3.907250	0.405486	-1.037776
C	4.739902	-0.565777	-0.201177

Imaginary Frequencies: none found zero-point correction $=0.572237$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermai Free Energies $=$
-1348.481264 hartrees $(-846185.47797264 \mathrm{kca1} / \mathrm{mol})$
C
C
C
C
C
C
C
C

6.242127	-0.398390	-0.423938
7.090531	-1.336055	0.433324
8.587443	-1.155578	0.195047
2.122491	1.548274	1.111447
-3.478450	-2.010310	-1.593659
-3.424824	2.185401	0.336952
-1.226680	-3.416765	-0.216376
1.188850	-2.425438	-0.059742
-0.703248	3.004278	0.986879
-0.222512	4.515548	-1.012966
-2.515302	-1.584639	1.588778
-3.749388	-3.077448	0.154528
-3.613927	0.652435	1.716987
-5.563599	0.809330	0.215733
-4.550657	0.399793	-1.172188
-5.017739	-1.374575	1.275612
-2.123025	0.148824	-0.893886
-6.262200	-2.863269	-0.297829
-7.023143	-1.267342	-0.184565
-6.032359	-1.682193	-1.597039
-0.037949	0.995655	2.808632
-1.735936	1.404026	2.664916
-1.232249	-0.296849	2.765573
1.893286	0.931633	-1.575886
2.173940	-0.805988	-1.431148
4.215141	0.319110	-2.088160
4.142014	1.435975	-0.741222
4.524946	-0.422547	0.867044
4.444362	-1.597688	-0.438782
6.474617	-0.568818	-1.484749
6.526080	0.642250	-0.209789
6.805683	-2.375142	0.222150
6.861733	-1.161113	1.492780
9.181102	-1.826618	0.823172
8.845080	-1.361012	-0.849830
8.897689	-0.128611	0.417651
1.893472	2.392307	0.453242
1.609984	1.712303	2.059921
3.195484	1.587827	1.321300
2.325697	-0.576691	1.029024
0.803602	-3.299534	-0.243509
-2.851115	2.647481	0.961213
-2.891558	-2.735445	-1.842696
-0.407664	4.258638	-0.069456
-0.399063	1.292233	-1.830376
-0.042623	3.546095	-2.771372

3.573197	-2.048858	0.470276
2.226142	-1.428441	0.160452
2.177284	0.069480	-0.056555
3.310752	0.475055	-1.037011
4.657552	-0.070562	-0.586666
4.651640	-1.595443	-0.511792
0.768212	0.609240	-0.509144
1.118169	-2.184778	0.162986

C	-0.238411	-1.592259	0.104953
C	-0.359829	-0.089426	0.314794
C	6.020196	-2.159445	-0.141963
C	0.525031	0.368340	-2.005486
C	0.770707	2.117151	-0.198940
C	0.818818	2.570049	1.175500
C	0.837911	3.903233	1.449069
C	-1.842301	0.334599	0.107862
C	-2.617062	-0.016385	1.394014
C	-4.135093	0.181069	1.326953
C	-4.815402	-0.578562	0.187812
C	-6.339217	-0.480033	0.238275
C	-7.032482	-1.217264	-0.906590
C	-8.553167	-1.096722	-0.849607
C	-2.113722	1.791002	-0.277150
0	3.981958	-1.630154	1.776026
0	3.452873	1.881718	-1.122064
0	1.140886	-3.536079	0.284155
0	-1.189549	-2.347766	-0.018460
0	0.762336	2.938658	-1.134402
0	0.804878	4.857772	0.541967
H	3.485025	-3.140828	0.441056
H	3.087038	0.053595	-2.028592
H	5.416783	0.275227	-1.296241
H	4.906782	0.352122	0.394807
H	4.357742	-1.992024	-1.494929
H	2.442533	0.546091	0.899947
H	-0.108905	0.047048	1.379272
H	5.991871	-3.252195	-0.072483
H	6.763421	-1.887588	-0.897986
H	6.351164	-1.767363	0.823471
H	-0.507538	0.601812	-2.275993
H	1.163601	0.988981	-2.636426
H	0.710853	-0.679949	-2.259892
H	-2.214903	0.605221	2.208124
H	-2.413703	-1.060061	1.658012
H	-4.561823	-0.155163	2.280937
H	-4.378516	1.248718	1.249007
H	-4.467654	-0.190954	-0.779658
H	-4.511590	-1.634412	0.221874
H	-6.699392	-0.880181	1.196726
H	-6.634635	0.579024	0.217105
H	-6.744897	-2.276358	-0.879763
H	-6.667185	-0.822199	-1.863496
H	-9.031886	-1.629604	-1.676740
H	-8.945115	-1. 511316	0.085739
H	-8.865477	-0.047923	-0.902824
H	-1.860833	2.485275	0.531865
H	-1.583352	2.106985	-1.176648
H	-3.181241	1.909086	-0.485957
H	-2.228932	-0.295546	-0.701941
H	0.218930	-3.837740	0.219018
H	3.395665	-2.037802	2.424659
H	2.722153	2.269177	-1.620958
H	0.783866	4.401408	-0.342522
H	0.851027	1.872913	2.001500
H	0.878520	4.277098	2.469903

23 Imaginary Frequencies: none found Zero-point correction $=0.656143$ (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies $=$
-1503.384254 hartrees ($-943388.65322754 \mathrm{kcal} / \mathrm{mol}$)

C	-3.821132	-2.232682	-0.554563
C	-2.578722	-1.863714	0.274606
C	-2.330000	-0.349097	0.334906
C	-3.596385	0.324921	0.900232
C	-4.806507	-0.003879	0.035747
C	-5.062779	-1.509706	-0.036996
C	-1.014151	0.011758	1.106871
C	-1.372125	-2.569142	-0.279535
C	-0.043033	-1.991872	-0.028642
C	0.181583	-0.813369	0.597294
C	-6.291304	-1.837267	-0.880271
C	-1.184989	-0.231463	2.616681
C	-0.750544	1.518959	0.865279
C	-0.669098	2.023358	-0.559948
C	0.052266	3.356581	-0.654178
C	1.790675	4.134056	0.790775
C	0.618045	4.979292	-2.257642
C	1.658660	-0.456561	0.786179
C	2.270151	0.003920	-0.562692
C	3.802025	0.077203	-0.571984
C	4.501884	-1.209541	-0.133854
C	6.004578	-1.194407	-0.409870
C	6.718268	-2.457737	0.067658
C	8.215529	-2.440721	-0.229192
C	2.039463	0.511503	1.909400
O	-3.627208	-1.872638	-1.915295
O	-3.487482	1.741446	0.938505
O	-1.450484	-3.616586	-0.914494
O	0.983736	-2.768848	-0.463126
O	-0.675827	2.292737	1.801232
O	1.379882	3.212118	-0.203979
O	0.020917	3.723593	-2.000821
H	-2.723517	-2.255843	1.294271
H	-3.977076	-3.316719	-0.478727
H	-3.783658	-0.062248	1.914119
H	-5.678675	0.508989	0.455277
H	-4.643756	0.397259	-0.973002
H	-5.230399	-1.879939	0.985950
H	-2.217581	-0.012643	-0.704448
H	-6.461790	-2.918294	-0.926275
H	-7.186766	-1.371571	-0.457028
H	-6.162004	-1.471835	-1.902483
H	-0.271452	0.004027	3.159388
H	-1.969568	0.399984	3.041928
H	-1.434212	-1.278949	2.806999
H	-1.698953	2.157780	-0.910903
H	-0.194217	1.292667	-1.221889
H	-0.451886	4.122951	-0.042391
H	2.840643	3.919699	1.001995
H	1.706341	5.171200	0.439884
H	1.201853	4.012909	1.707955
H	1.693244	4.957774	-2.046537
H	0.465462	5.192477	-3.316802
H	0.142126	5.771336	-1.661179
H	1.882217	0.995898	-0.809098
H	1.948454	-0.693715	-1.344097
H	4.112366	0.319924	-1.596938
H	4.147606	0.914480	0.048828
H	4.343482	-1.376979	0.940841
H	4.041714	-2.065704	-0.647686
H	6.173929	-1.068637	-1.488621
H	6.456341	-0.317424	0.076376

6.257734	-3.332690	-0.409516
6.558524	-2.575550	1.147482
8.706338	-3.352900	0.123703
8.401327	-2.356716	-1.305610
8.702812	-1.589247	0.258662
1.697162	1.531368	1.721496
1.674919	0.188527	2.886758
3.131146	0.543865	1.980378
2.131054	-1.418157	1.021433
0.584227	-3.553580	-0.875598
-3.009908	2.021370	1.729408
-3.048020	-2.532074	-2.318024

Imaginary Frequencies: none found
Zero-point correction $=0.656902$ (Hartree/Particle)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -1503.375174 hartrees ($-943382.95543674 \mathrm{kca1} / \mathrm{mol}$)

		0.398670	-0.575498
H	-1.261322	-0.238533	2.952309
H	-0.858466	-1.757389	2.175870
H	-2.164540	2.753663	-0.090472
H	-1.170626	1.794128	-1.192331
H	0.198143	3.862885	0.549662
H	2.740328	3.445203	-1.875264
H	1.643819	4.854548	-1.895040
H	-0.312677	4.260990	-0.345932
H	-1.909528	5.925412	0.509340
H	-2.287015	6.262435	-0.847250
H	2.202715	0.961907	0.307637
H	2.375697	-0.909637	-1.593065
H	4.547330	0.107839	-1.668398
H	4.363074	1.064991	-0.43979
H	4.407115	-0.976144	0.963535
H	4.386448	-1.996580	-0.466573
H	6.610456	-1.065025	-1.157793
H	6.620267	-0.022894	0.258758
H	6.558750	-3.081770	0.330264
H	6.582390	-2.038038	1.743664
H	8.887153	-2.881739	1.235995
H	8.800476	-2.176140	-0.383275
H	8.824985	-1.125166	1.038041
H	1.816389	2.008395	0.621555
H	1.521757	1.065222	2.091413
H	3.126421	1.103320	1.381436
H	2.148263	-1.024553	0.805957
H	-0.253731	-4.049846	-1.192130
H	-3.437202	-1.774232	-2.715399
H	-2.870574	1.254101	2.398367

25TMS-TMS Imaginary Frequencies: none found Zero-point correction $=0.859882$ (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -2320.441503 hartrees ($-1456100.24754753 \mathrm{kcal} / \mathrm{mol}$)

Si
Si
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

-3.359432	-3.198591	-0.799338
-1.881038	3.856520	1.581985
-2.736228	2.445769	-0.683082
-1.598119	1.660519	-1.358382
-1.437713	0.278334	-0.717904
-2.755658	-0.489708	-0.925830
-3.931011	0.279967	-0.319530
-4.061948	1.702544	-0.870197
-0.165596	-0.485525	-1.206304
-0.322546	2.455034	-1.317639
0.952107	1.747125	-1.126863
1.086798	0.400818	-1.065623
-5.215358	2.455253	-0.214598
-0.319211	-0.905782	-2.677492
-0.007405	-1.754174	-0.330475
-0.026111	-1.582693	1.176803
0.565617	-2.775424	1.901957
2.355542	-4.170415	1.159602
0.843302	-3.595608	4.087296
2.532028	-0.096626	-0.975597
3.084885	0.134760	0.455059
4.589589	-0.119227	0.599190
5.471605	0.714009	-0.329855

C	6.962552	0.502726	-0.072104
C	7.860923	1.330633	-0.989016
C	9.346321	1.086638	-0.734510
C	2.853153	-1.521120	-1.439009
C	-0.042054	3.635875	1.884654
C	-2.795616	3.772113	3.214011
C	-2.240319	5.465142	0.692818
C	-2.662405	-4.467665	0.380149
C	-5.228406	-3.084670	-0.656071
C	-2.912286	-3.613286	-2. 572187
0	-2.470133	2.555588	0.700447
0	-2.646075	-1.758999	-0.313390
0	-0.303706	3.672915	-1.466715
0	2.034708	2.569813	-1.102610
0	0.116660	-2.852281	-0.834891
0	1.936686	-2.889284	1.597368
0	0.375782	-2.543336	3.267999
H	-1.854311	1.556894	-2.424920
H	-2.797551	3.441296	-1.143986
H	-2.928470	-0.603660	-2.010963
H	-4.855817	-0.278637	-0. 503949
H	-3.784887	0.322504	0.767280
H	-4.244076	1.649182	-1.954197
H	-1.329538	0.453521	0.359745
H	-5.313760	3.465732	-0.626364
H	-6.164995	1.934046	-0.372106
H	-5.047468	2.540595	0.863747
H	0.576932	-1.401462	-3.047839
H	-1.144813	-1.610628	-2.794515
H	-0. 503394	-0.028712	-3.304885
H	-1.073745	-1.475167	1.476422
H	0.494580	-0.667313	1.478578
H	0.056193	-3.707750	1.606868
H	3.430868	-4.105621	0.978406
H	2.173456	-4.940157	1.921385
H	1.846363	-4.454176	0.230576
H	1.932393	-3.698874	4.019601
H	0.572238	-3.345610	5.114367
H	0.366870	-4.548532	3.812963
H	2.565095	-0.537798	1.144478
H	2.864796	1.166080	0.753882
H	4.866332	0.100024	1.638886
H	4.806883	-1.185495	0.450577
H	5.257566	0.466391	-1.378788
H	5.222836	1.778161	-0.209572
H	7.190108	0.748219	0.975049
H	7.203137	-0.563258	-0.197067
H	7.632238	2.395467	-0.850772
H	7.622677	1.096451	-2.034901
H	9.974407	1.698651	-1.388996
H	9.610524	1.326375	0.301473
H	9.605709	0.036358	-0.908376
H	2.560100	-2.267746	-0.698753
H	2.392769	-1.777703	-2.394283
H	3.936150	-1.601164	-1.576640
H	3.083052	0.587184	-1.633552
H	0.189607	2.591230	2.125545
H	0.556204	3.924857	1.015435
H	0.287070	4.248180	2.732364
H	-2.434702	4.534756	3.913079
H	-3.870652	3.927620	3.072723
H	-2.657858	2.793712	3.687026
H	-1.921368	6.309921	1.314764
H	-1.701048	5.528299	-0.257651

H	-3.311481	5.588984	0.497268
H	-2.780872	-4.145724	1.420717
H	-3.167335	-5.433443	0.267080
H	-1.596385	-4.615569	0.177742
H	-5.656032	-2.401478	-1.398552
H	-5.676906	-4.070747	-0.826785
H	-5.538623	-2.746745	0.338450
H	-3.205942	-2.826540	-3.276682
H	-1.837531	-3.793299	-2.676420
H	-3.438258	-4.526638	-2.875697
	1.697278	3.470594	-1.247630

26TMS-TMS Imaginary Frequencies: none found
Zero-point correction $=0.860248$ (Hartree/Particle)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Sum of electronic and thermal Free Energies = -2320.434841 hartrees ($-1456096.06707591 \mathrm{kca1} / \mathrm{mol}$)

Si	-3.241012	-3.062219	-1.473889
Si	-2.198422	3.623969	1.774776
C	-2. 597327	2.533887	-0.716048
C	-1.304035	1.758111	-0.843945
C	-1.345739	0.281375	-0.532079
C	-2.559114	-0.379470	-1.225446
C	-3.848326	0.398541	-0.979128
C	-3.744221	1.845882	-1.457169
C	-0.005970	-0.485183	-0.824290
C	-0.150087	2.393353	-1.083058
C	1.162623	1.728849	-0.916208
C	1.200291	0.346543	-0.274509
C	-5.055896	2.602669	-1.272261
C	0.179346	-0.736721	-2.324532
C	-0.080308	-1.828766	-0.065264
C	-0.421659	-1.832547	1.422139
C	0.504575	-2.717746	2.248238
C	2.630306	-2.644080	3.255937
C	-0.943840	-4.309676	3.221818
C	2.660790	-0.194948	-0.379644
C	3.463081	0.430184	0.780938
C	4.971700	0.164026	0.763284
C	5.669287	0.578914	-0.532051
C	7.190202	0.461934	-0.447798
C	7.899006	0.815069	-1.754166
C	9.417378	0.693538	-1.653363
C	2.877805	-1.709429	-0.404014
C	-0.488403	3.006115	2.254463
C	-3.328609	3.578517	3.263773
C	-2.074480	5.344613	1.044388
C	-2.958729	-4.426594	-0.229620
C	-5.066521	-2.880831	-1.874788
C	-2.301605	-3.402298	-3.058838
0	-2.941094	2.601912	0.664868
0	-2.667561	-1.687983	-0.696659
0	-0.078984	3.715454	-1.385551
0	2.158684	2.367960	-1.221418
0	0.098071	-2.888173	-0.630982
0	1.585253	-1.925356	2.622937
0	-0.118785	-3.182390	3.424042
H	-2.456126	3.545784	-1.117696
H	-2.375428	-0.418326	-2.311718
H	-4.671426	-0.109958	-1.493689

H	-4.070869	0.380907	0.095102
H	-3.474380	1.850009	-2.523923
H	-1.569982	0.205455	0.542616
H	0.988014	0.539543	0.791777
H	-4.961534	3.644770	-1. 597113
H	-5.858241	2.138558	-1.854411
H	-5.349084	2.601173	-0.218377
H	1.191777	-1.081778	-2.544137
H	-0.505983	-1. 504551	-2.684153
H	0.006213	0.181851	-2.894908
H	-1.446812	-2.218062	1.471676
H	-0.416228	-0.840570	1.879693
H	0.845896	-3.588450	1.657917
H	3.447274	-1.937931	3.416846
H	2.302667	-3.050075	4.217654
H	2.984178	-3.464589	2.615552
H	-0.392523	-5.125950	2.734430
H	-1.277442	-4.641291	4.206508
H	-1.826640	-4.069813	2.614567
H	3.040007	0.043893	1.718794
H	3.302851	1.514829	0.777510
H	5.423367	0.714485	1.599423
H	5.175362	-0.897087	0.959651
H	5.312244	-0.042228	-1.365108
H	5.391365	1.612908	-0.780601
H	7.561208	1.115967	0.354227
H	7.459418	-0.564172	-0.157540
H	7.628964	1.838460	-2.045600
H	7.529190	0.158412	-2.552530
H	9.906330	0.949187	-2.598400
H	9.813834	1.361772	-0.880968
H	9.712214	-0.328442	-1.390692
H	2.592355	-2.171320	0.544849
H	2.339914	-2.213761	-1.206542
H	3.943568	-1.905928	-0.558986
H	3.061791	0.202396	-1.319306
H	-0.488572	1.923320	2.427786
H	0.266332	3.239408	1.495953
H	-0.170406	3.483840	3.189120
H	-2.958457	4.236689	4.057704
H	-4.339628	3.903881	2.997734
H	-3.398907	2.565130	3.673133
H	-1.684402	6.048553	1.788691
H	-1.396674	5.363307	0.184094
H	-3.055043	5.710829	0.719807
H	-3.525660	-4.245477	0.689978
H	-3.274630	-5.396248	-0.630573
H	-1.892316	-4.491949	0.014388
H	-5.244363	-2.153549	-2.674793
H	-5.467366	-3.842440	-2.217858
H	-5.644923	-2.573840	-0.996827
H	-2.358402	-2.576140	-3.776757
H	-1.248525	-3.613492	-2.847728
H	-2.730837	-4.284000	-3.550540
H	0.863758	3.917217	-1.516583
25TBS-TMS			
Si	2.293432	4.184622	-0.587810
Si	2.473397	-3.320960	0.536817
C	2.808965	-1.401472	-1.476900
C	1.478161	-0.772384	-1.925394

C	1.111747	0.417055	-1.032447
C	2.225858	1.469950	-1.174819
C	3.583202	0.875316	-0.793401
C	3.937579	-0.374326	-1.603905
C	-0.327360	0.965845	-1.293405
C	0.394309	-1.813739	-1.954480
C	-0.970061	-1.433426	-1.559353
C	-1.360766	-0.175818	-1.242798
C	5.274978	-0.965539	-1.169665
C	-0.403676	1.650047	-2.668415
C	-0.646307	2.006902	-0.190660
C	-0.447387	1.592589	1.255167
C	-1.188991	2.494260	2.222436
C	-3.282346	3.584021	1.860209
C	-1.408533	2.858316	4.534314
C	-2.859890	-0.017276	-0.974959
C	-3.214215	-0.597152	0.419374
C	-4.718115	-0.694684	0.699001
C	-5.504911	-1.527304	-0.312461
C	-6.975903	-1.682131	0.069912
C	-7.778522	-2.515113	-0.927672
C	-9.250863	-2.636725	-0.542786
C	-3.499002	1.364347	-1.147326
C	3.422337	-3.464049	2.149638
C	3.205958	-4.496555	-0.723507
C	0.647344	-3.654563	0.785022
C	1.478336	5.061253	0.845621
C	4.153100	4.445710	-0. 581802
C	1.602748	4.787214	-2.223274
C	4.804970	-2.796438	2.030385
C	2.673350	-2.806454	3.323601
C	3.655043	-4.941979	2.514565
0	2.705842	-1.795795	-0.123794
0	1.928536	2.566130	-0.333285
0	0.601374	-2.965370	-2.324187
0	-1.861716	-2.458372	-1.621532
0	-1.032863	3.122767	-0.475417
0	-2.578641	2.365396	2.027923
0	-0.824949	2.081462	3.508144
H	1.603734	-0.439355	-2.968083
H	3.020032	-2.269693	-2.116361
H	2.266244	1.798430	-2.228779
H	4.357349	1.639541	-0.927460
H	3.554943	0.620957	0.273755
H	3.999103	-0.102409	-2.668495
H	1.145753	0.044524	-0.001048
H	5.529952	-1.848576	-1.765933
H	6.083340	-0.236597	-1.285730
H	5.233095	-1.264291	-0.117386
H	-1.411659	2.000212	-2.885863
H	0.251445	2.522810	-2.703363
H	-0.112319	0.949805	-3.456811
H	0.625007	1.660057	1.465619
H	-0.745567	0.550491	1.414002
H	-0.904489	3.549172	2.073969
H	-4.336260	3.324887	1.735827
H	-3.182148	4.235726	2.738396
H	-2.932067	4.120852	0.970271
H	-2.497929	2.739036	4.553105
H	-0.994752	2.502364	5.479266
H	-1.158252	3.922606	4.412012
H	-2.772476	0.044472	1.188139
H	-2.767178	-1.593893	0.508936
H	-4.843570	-1.138882	1.695282

H	-5.154673	0.311070	0.763066
H	-5.447116	-1.067488	-1.308762
H	-5.040825	-2.519613	-0.405839
H	-7.047477	-2.142458	1.065680
H	-7.432823	-0.685543	0.158539
H	-7.332144	-3.515339	-1.002336
H	-7.694168	-2.063632	-1.924932
H	-9.806774	-3.248797	-1.259539
H	-9.360410	-3.097375	0.445312
H	-9.727797	-1.651017	-0.503885
H	-3.288094	2.020852	-0.301260
H	-3.193527	1.869109	-2.065061
H	-4.584693	1.235739	-1.201794
H	-3.326815	-0.681618	-1.713036
H	3.183472	-5.531258	-0.363696
H	2.653056	-4.457258	-1.668284
H	4.249539	-4.239265	-0.935000
H	0.504918	-4.681248	1.142556
H	0.212652	-2.979039	1.528597
H	0.086560	-3.553424	-0.151064
H	1.758743	4.601522	1.799812
H	1.769600	6.116855	0.882152
H	0.389523	5.012453	0.739094
H	4.632528	4.002911	-1.462127
H	4.379697	5.518619	-0.594647
H	4.619229	4.018832	0.312624
H	1.975589	4.210021	-3.077297
H	0.508654	4.750998	-2. 227043
H	1.906312	5.828766	-2.384506
H	-1.369182	-3.230084	-1.950418
H	4.682263	-1.739175	1.920673
H	5.376366	-2.999608	2.911934
H	5.316940	-3.186673	1.175690
H	3.035373	-1.809387	3.463938
H	1.625788	-2.778428	3.107432
H	2.838488	-3.374649	4.215107
H	2.719921	-5.462004	2.509947
H	4.314003	-5.386702	1.798400
H	4.092890	-5.004104	3.488901
26TBS-TMS			
Si	2.114381	4.166856	-1.126440
Si	2.707495	-3.122732	0.563545
C	2.611538	-1.472522	-1.631724
C	1.190656	-0.971256	-1.488138
C	0.992502	0.382266	-0.849029
C	1.975307	1.410591	-1.454334
C	3.406070	0.881320	-1.483189
C	3.518990	-0.421877	-2.272547
C	-0.490689	0.899861	-0.863858
C	0.155212	-1.765771	-1.786309
C	-1.230488	-1.437116	-1.380803
C	-1.451118	-0.259902	-0.437693
C	4.960761	-0.913256	-2.357697
C	-0.888634	1.419011	-2.249666
C	-0.581485	2.038399	0.176502
C	-0.080125	1.798092	1.597696
C	-1.054747	2.278021	2.667139
C	-3.001391	1.555934	3.775644
C	0.173818	3.892068	3.877710
C	-2.989100	-0.021786	-0.314255
C	-3.524260	-1.029898	0.724363

C	-5.048137	-1.083248	0.872808
C	-5.799026	-1.349817	-0.431706
C	-7.295626	-1.569764	-0.217749
C	-8.070185	-1.777319	-1.518012
C	-9.563269	-1.995891	-1.287119
C	-3.484959	1.385466	0.025021
C	3.907237	-3.410650	1.982605
C	2.831380	-4.527026	-0.664914
C	0.966849	-2.927698	1.228040
C	1.726754	5.149097	0.414454
C	3.884276	4.455059	-1.683678
C	0.954366	4.632862	-2.521936
C	5.365909	-3.199108	1.536370
C	3.789010	-4.864249	2.477250
C	3.621956	-2.492493	3.185602
0	3.116500	-1.758425	-0.330569
0	1.898171	2.571326	-0.647906
0	0.297016	-2.979609	-2.378760
0	-2.118618	-2.188771	-1.754959
0	-1.016586	3.133278	-0.116973
0	-1.919792	1.218761	2.923678
0	-0.399119	2.602069	3.872183
H	2.616052	-2.383510	-2.244321
H	1.665462	1.639392	-2.487235
H	4.056558	1.645758	-1.922890
H	3.741981	0.717053	-0.451692
H	3.135255	-0.256047	-3.290409
H	1.319300	0.273937	0.196191
H	-1.087008	-0.625843	0.538416
H	5.025322	-1.859665	-2.905922
H	5.591562	-0.181223	-2.871773
H	5.366311	-1.074060	-1.354550
H	-1.965808	1.586129	-2.313499
H	-0.403183	2.370024	-2.469840
H	-0.613816	0.697719	-3.026384
H	0.854467	2.367511	1.663377
H	0.150767	0.752559	1.814382
H	-1.616629	3.164188	2.317710
H	-3.649344	0.678679	3.826193
H	-2.647809	1.808167	4.779854
H	-3.571885	2.402138	3.366952
H	-0.571225	4.661139	3.630242
H	0.549643	4.069615	4.886722
H	1.011042	3.973455	3.171979
H	-3.076582	-0.771750	1.694276
H	-3.166813	-2.032341	0.460775
H	-5.291791	-1.879081	1.589341
H	-5.421695	-0.153028	1.321301
H	-5.660504	-0. 506636	-1.122458
H	-5.363951	-2.227772	-0.929768
H	-7.445191	-2.440691	0.436288
H	-7.716002	-0.706363	0.318388
H	-7.649640	-2.637707	-2.054724
H	-7.921853	-0.904904	-2.167810
H	-10.100324	-2.141306	-2.229430
H	-9.738400	-2.879376	-0.663346
H	-10.011017	-1.135889	-0.776937
H	-3.184395	1.685109	1.032514
H	-3.144764	2.147922	-0.675447
H	-4.579255	1.385988	-0.006501
H	-3.413387	-0.285556	-1.289988
H	2.558300	-5.480711	-0.199681
H	2.163464	-4.361933	-1.516636
H	3.851559	-4.622010	-1.051804

H	0.643954	-3.847408	1.729590
H	0.909470	-2.114272	1.959424
H	0.254226	-2.718727	0.422142
H	2.418150	4.898709	1.226337
H	1.809459	6.225417	0.226094
H	0.701485	4.939868	0.740176
H	4.102087	3.966025	-2.639700
H	4.057955	5.528991	-1.823574
H	1.605518	4.095582	-0.941926
H	-0.081721	4.007034	-3.412604
H	1.153715	4.572669	-2.195572
H	-0.600523	-3.667727	-2.826445
H	5.386539	-2.569244	-2.487049
H	5.917345	-2.735799	0.671246
H	5.807336	-4.144750	1.327675
H	2.762469	-5.090712	2.676143
H	4.161071	-5.528281	1.7252317
H	4.361347	-4.983720	3.373385
H	4.352588	-1.711510	3.219382
H	2.646630	-2.064316	3.084097
H	3.668434	-3.063715	4.089176

Full Gaussian09 Citation:

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.;

Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;
Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;
Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.
W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

[^0]: ${ }^{1}$ Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538.
 ${ }^{2}$ Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.

