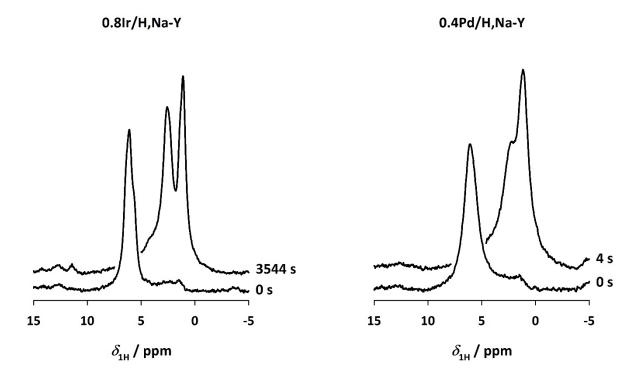

Relationships between the Hydrogenation and Dehydrogenation Properties of Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Studied by In Situ MAS NMR Spectroscopy and Conventional Heterogeneous Catalysis

Utz Obenaus, Felix Neher, Matthias Scheibe, Michael Dyballa, Swen Lang, and Michael Hunger*


Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart, Germany

Scheme S1. Scheme of the in situ flow MAS NMR probe (left) and the reactant injection system for the in situ MAS NMR rotor (right). For further details, see references 1 to 4.

Figure S1. Temperature-programmed desorption of hydrogen (H_2 -TPD) from the noble metalcontaining zeolites Y with high metal contents. The high temperature (HT) peaks are marked with their temperature values.

Figure S2. In situ ¹H MAS NMR spectra recorded during the hydrogenation of acrylonitrile on the zeolites 0.8Ir/H,Na-Y and 0.4Pd/H,Na-Y at reaction times of 0 s (bottom) and at reaction times of 3544 s and 4 s (top), respectively, under semibatch conditions at 298 K.

Table S1. Sample Designations, Noble Metal (NM) Contents in wt.% and per Unit Cell (u.c.⁻¹), Noble Metal Dispersions, *D*, and Densities of Acidic OH Groups (acOH), Taken from Ref. 5.

samples	NM content ^{a)}	NM content ^{a)}	$D^{\mathrm{b})}$	densities of	
	/ wt.%	/ u.c. ⁻¹	/ %	acOH ^{c)} / u.c. ⁻¹	
0.4Rh/H,Na-Y	0.4	0.4	54	0.15	
2.3Rh/H,Na-Y	2.3	2.9	80	3.14	
0.8Ir/H,Na-Y	0.8	0.6	121	0.27	
4.7Ir/H,Na-Y	4.7	3.3	130	4.24	
0.4Pd/H,Na-Y	0.4	0.5	19	0.12	
2.8Pd/H,Na-Y	2.8	3.4	43	2.10	
0.8Pt/H,Na-Y	0.8	0.5	73	0.20	
4.5Pt/H,Na-Y	4.5	3.1	92	2.54	

^{a)} Determined by chemical analysis using ICP-OES with an accuracy of $\pm 10\%$.

^{b)} Dispersion, *D*, determined by H_2 chemisorption assuming a stoichiometry of 1 H atom per Rh, Ir, Pd, and Pt atom with an accuracy of ±5%.

^{c)} Determined by quantitative ¹H MAS NMR spectroscopy of ammonia-loaded samples with an accuracy of $\pm 10\%$.

Table S2. Selectivities to Propene, *S*_{C3=}, Methane, *S*_{C1}, Ethene, *S*_{C2=}, and Ethane, *S*_{C2}, in the Dehydrogenation of Propane on the Noble Metal-Containing Zeolites Y under Study, Determined under Atmospheric Pressure, at 828 K, and after TOS = 35 and 140 min.

samples	$S_{\rm C3=}{}^{\rm a)}$ / %		$S_{ m C1}$ ^{a)} / %		$S_{\rm C2=}{}^{\rm a)}$ / %		$S_{\rm C2}~^{ m a)}$ / %	
TOS / min	35	140	35	140	35	140	35	140
0.4Rh/H,Na-Y	74	84	4	5	3	4	< 1	< 1
2.3Rh/H,Na-Y	80	84	6	5	4	5	< 1	< 1
0.8Ir/H,Na-Y	63	74	25	19	5	5	2	1
4.7Ir/H,Na-Y	57	74	29	21	3	2	1	< 1
0.4Pd/H,Na-Y	49	46	25	24	27	30	< 1	< 1
2.8Pd/H,Na-Y	62	64	24	18	12	17	1	< 1
0.8Pt/H,Na-Y	69	76	23	18	3	5	4	2
4.5Pt/H,Na-Y	51	68	37	28	2	2	7	2

^{a)} Determined by gas chromatography with an accuracy of $\pm 2\%$.

REFERENCES

- Hunger, M.; Horvath, T. A New MAS NMR Probe for in situ Investigations of Hydrocarbon Conversion on Solid Catalysts Under Continuous-flow Conditions. J. Chem. Soc., Chem. Commun. 1995, 1423-1424.
- (2) Buchholz, A.; Wang, W.; Arnold, A.; Xu, M.; Hunger, M. Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. *Microporous Mesoporous Mater.* 2003, 57, 157-168.
- (3) Hunger, M. In situ flow MAS NMR spectroscopy: State of the art and applications in heterogeneous catalysis. *Prog. Nucl. Magn. Reson. Spectrosc.* **2008**, *53*, 105-127.
- (4) Henning, H.; Dyballa, M.; Scheibe, M.; Klemm, E.; Hunger, M. In situ CF MAS NMR study of the pairwise incorporation of Parahydrogen into olefins on rhodium-containing zeolites. *Chem. Phys. Lett.* **2013**, *555*, 258-262.
- (5) Obenaus, U.; Dyballa, M.; Lang, S.; Scheibe; M.; Hunger, M. Generation and Properties of Brønsted Acid Sites in Bifunctional Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Investigated by Solid-State NMR Spectroscopy. J. Phys. Chem. C 2015, 119, 15254-15262.