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1 Computational Details

In order to assess the performance of our approach, we performed AIMD simulations of several
chiral molecules. In particular, we studied a single 2-butanol molecule as well as bulk phase
systems of 2-butanol, propylene oxide, and α-pinene (see also table S1). For liquid 2-butanol,
we ran independent simulations of the two enantiomers to show that our method produces
mirror symmetric spectra as this is a basic property of VCD.
The AIMD simulations were carried out using the CP2K program package.1,2 Density func-

tional theory with the BLYP exchange-correlation functional3,4 and Grimme’s dispersion cor-
rection D35 was employed as electronic structure method. The molecularly optimized double-
zeta basis set (MOLOPT-DZVP-SR-GTH)6 and Goedecker–Teter–Hutter pseudopotentials7–9

were applied to all atoms with a plane wave cutoff of 280Ry. A timestep of 0.5 fs was chosen,
and the temperature was adjusted by a Nosé–Hoover thermostat chain10–12 with a coupling
time constant of 50 fs. The electron density was saved in Gaussian cube format with a stride
of 1 in each simulation step. Classical molecular dynamics simulations for pre-equilibration
were carried out with Lammps,13 employing parameters from the general Amber force field14

and atomic partial charges derived from a restrained electrostatic potential fit.15

The spectra were evaluated using Travis,16–19 where we have implemented the methodology
to calculate magnetic dipole moments and VCD intensities. In the main text, the following
partial differential equation is derived:

∂ρ(r, t)
∂t

= ∇ρ(r, t) ·∇α(r, t) + ρ(r, t)∆α(r, t). (1)

This equation is discretized on a regular grid by a finite difference method, so it is replaced
by a system of linear equations. If the electron density is saved in Gaussian cube format, a
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(R)-2-Butanol (gas) (R)-2-Butanol (liquid)
(S)-2-Butanol (liquid)

Composition 1 C4H9OH 16 C4H9OH
Cell size (pm) 1200.0 1345.0
Density (g/cm3) – 0.81
Average temperature (K) 400 400
Equilibration time (ps) 5.0 10.0
Physical time (ps) 30.0 30.0

(R)-Propylene oxide (1R, 5R)-α-pinene

Composition 16 C3H6O 16 C10H16
Cell size (pm) 1230.0 1615.0
Density (g/cm3) 0.83 0.86
Average temperature (K) 400 350
Equilibration time (ps) 10.0 5.0
Physical time (ps) 30.0 30.0

Table S1: Simulation parameters.

regular grid is already given by the input data. The time derivative and the gradient of the
electron density are calculated by second-order central finite differences, so their values are
known on the same grid. In a similar manner, the derivatives of the scalar field α(r, t) are
approximated by second-order central finite differences. If the grid consists of nx × ny × nz
points with spacings of hx, hy, and hz along the three axes, this leads to

(Dxα)i,j,k = αi+1,j,k − αi−1,j,k
2hx

, (2)

(Dyα)i,j,k = αi,j+1,k − αi,j−1,k
2hy

, (3)

(Dzα)i,j,k = αi,j,k+1 − αi,j,k−1
2hz

(4)

for the components of the gradient and to

(Lα)i,j,k = αi+1,j,k − 2αi,j,k + αi−1,j,k
h2
x

+ αi,j+1,k − 2αi,j,k + αi,j−1,k
h2
y

+ αi,j,k+1 − 2αi,j,k + αi,j,k−1
h2
z

(5)

for the Laplacian, where i, j, and k number the points along the x, y, and z axes, respectively.
The periodic boundary conditions are taken into account by i ∈ Z/nxZ, j ∈ Z/nyZ, and
k ∈ Z/nzZ, so, e. g., the successor of i = nx − 1 is i = 0 and the predecessor of i = 0 is
i = nx − 1. The grid is linearized in such a way that x lines and then xy planes of the grid
follow one after another, so l = i+ jnx +knxny becomes the new index in the one-dimensional
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arrays. This leads to the following matrix representation of the system of linear equations:

A


α0
...

αnxnynz−1

 =


(
∂ρ
∂t

)
0...(

∂ρ
∂t

)
nxnynz−1

 , (6)

where A = B + G ∈ Rnxnynz×nxnynz with the definitions

B =



C0 F0 0 F0

F1 C1 F1
. . .

0 F2 C2
. . . 0

. . . . . . . . . Fnz−2

Fnz−1 0 Fnz−1 Cnz−1


∈ Rnxnynz×nxnynz , (7)

Cm =



Dmny Emny 0 Emny

Emny+1 Dmny+1 Emny+1
. . .

0 Emny+2 Dmny+2
. . . 0

. . . . . . . . . Emny+ny−2

Emny+ny−1 0 Emny+ny−1 Dmny+ny−1


∈ Rnxny×nxny , (8)

Dn =



−2h2ρnnx
ρnnx
h2
x

0 ρnnx
h2
x

ρnnx+1
h2
x

−2h2ρnnx+1
ρnnx+1
h2
x

. . .

0 ρnnx+2
h2
x

−2h2ρnnx+2
. . . 0

. . . . . . . . . ρnnx+nx−2
h2
x

ρnnx+nx−1
h2
x

0 ρnnx+nx−1
h2
x

−2h2ρnnx+nx−1


∈ Rnx×nx , (9)

h2 = 1
h2
x

+ 1
h2
y

+ 1
h2
z

, (10)

En =



ρnnx
h2
y

0 · · · 0

0 ρnnx+1
h2
y

. . . ...
... . . . . . . 0
0 · · · 0 ρnnx+nx−1

h2
y


∈ Rnx×nx , (11)

Fm =



ρmnxny
h2
z

0 · · · 0

0 ρmnxny+1
h2
z

. . . ...
... . . . . . . 0
0 · · · 0 ρmnxny+nxny−1

h2
z

 ∈ Rnxny×nxny , (12)
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G =



H0 K0 0 −K0

−K1 H1 K1
. . .

0 −K2 H2
. . . 0

. . . . . . . . . Knz−2

Knz−1 0 −Knz−1 Hnz−1


∈ Rnxnynz×nxnynz , (13)

Hm =



Imny Jmny 0 −Jmny
−Jmny+1 Imny+1 Jmny+1

. . .

0 −Jmny+2 Imny+2
. . . 0

. . . . . . . . . Jmny+ny−2

Jmny+ny−1 0 −Jmny+ny−1 Imny+ny−1


∈ Rnxny×nxny , (14)

In =



0
( ∂ρ∂x)

nnx
2hx 0 −

( ∂ρ∂x)
nnx

2hx

−
( ∂ρ∂x)

nnx+1
2hx 0

( ∂ρ∂x)
nnx+1

2hx
. . .

0 −
( ∂ρ∂x)

nnx+2
2hx 0 . . . 0
. . . . . . . . . ( ∂ρ∂x)

nnx+nx−2
2hx

( ∂ρ∂x)
nnx+nx−1
2hx 0 −

( ∂ρ∂x)
nnx+nx−1
2hx 0


∈ Rnx×nx ,

(15)

Jn =



(
∂ρ
∂y

)
nnx

2hy 0 · · · 0

0
(
∂ρ
∂y

)
nnx+1

2hy
. . . ...

... . . . . . . 0

0 · · · 0
(
∂ρ
∂y

)
nnx+nx−1
2hy


∈ Rnx×nx , (16)

Km =



( ∂ρ∂z )mnxny
2hz 0 · · · 0

0
( ∂ρ∂z )mnxny+1

2hz
. . . ...

... . . . . . . 0

0 · · · 0
( ∂ρ∂z )mnxny+nxny−1

2hz


∈ Rnxny×nxny . (17)

For the BiCGstab(l) algorithm, we have adapted the Fortran code from reference 20. The
convergence is improved by employing an incomplete LU factorization for preconditioning.21

For memory efficiency, the compressed row storage format is used to store the matrices.22 The
convergence threshold for the BiCGstab(l) iterations is chosen in the following way: In the
first simulation step, the solution guess for α(r, t) is set to zero on the whole grid and the
residual is computed. The threshold for all steps is selected relative to this residual. A relative
convergence criterion of 1 · 10−2 proves to be sufficient to converge the molecular magnetic
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dipole moments within a few percent (see below). In order to improve the stability of the
solution algorithm in a gas phase simulation where large regions of the cell are empty, it is
possible to add a background electron density in the order of 10−2 e/nm3. As shown below,
this does not significantly distort the magnetic dipole moment.
Saving the electron density in each simulation step yields huge amounts of data. The com-

plete electron density along the α-pinene trajectory in Gaussian cube format would, e. g.,
occupy about 4.2TB of disk space. Since the handling of such files is still not a routine task on
modern computer systems, we have implemented a streaming scheme where Travis runs at
the same time as the AIMD simulation, directly consumes the Gaussian cube files written by
CP2K, and just saves the molecular moments. This requires that the differential equation (1)
is solved on the fly and, thus, it is a limiting factor for the speed of the AIMD simulation.
At the moment, the code in Travis is strictly serial, but we were still able to run CP2K in
parallel on 16 cores while Travis could keep up in processing the electron density. A more
detailed analysis of the scaling behavior of the solution algorithm is necessary in the future,
but these numbers show that the solution of the differential equation (1) provides only a mi-
nor contribution to the computational requirements for the simulation of VCD spectra when
system sizes as in this work are investigated.

2 Convergence of the Molecular Magnetic Dipole Moments

Several parameters enter the numerical solution of the partial differential equation (1). In
this section, we show that the molecular magnetic dipole moments are reasonably converged
with respect to the timestep at which the electron density has to be sampled, the convergence
threshold in the BiCGstab(l) algorithm, and the background electron density for gas phase
simulations.
The timestep of the simulation has to be sufficiently small to allow to approximate the time

derivative of the electron density well. For that reason, we performed a short simulation of the
single 2-butanol molecule with a timestep of 0.1 fs and saved the electron density in all steps.
At first, the magnetic dipole moment was calculated in each step by evaluating the whole
trajectory. Afterwards, only every fifth snapshot and every tenth snapshot of the trajectory
were processed, so the time derivative was computed with step sizes of 0.5 fs and 1.0 fs. The
comparison of the resulting magnetic dipole moment vectors (see figure S1) shows that the
difference between 0.1 fs and 0.5 fs is in the order of 10−5 µB, which corresponds to a relative
error of about 1% here. For a step size of 1.0 fs, the deviation to 0.1 fs reaches the order of
10−4 µB, corresponding to a relative error of about 5%. This result indicates that a timestep
of 0.5 fs is sufficient for the AIMD simulation if the electron density is processed in every step.
Smaller timesteps do not significantly improve the magnetic dipole moment.
The selection of the convergence threshold in the BiCGstab(l) algorithm was described above.

Three different values of the relative convergence criterion are compared in figure S2. The value
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Figure S1: Vector components of the magnetic dipole moment of (R)-2-butanol for different timesteps.

Figure S2: Vector components of the magnetic dipole moment of (R)-2-butanol for different convergence
thresholds in the BiCGstab(l) algorithm.
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Figure S3: Vector components of the magnetic dipole moment of (R)-2-butanol for different values of
the background electron density.

of 1 · 10−3 is very tight, since in some snapshots, the algorithm is not able to completely reach
this value. However, it is obvious that less tight criteria are sufficient to reasonably converge
the magnetic dipole moment. Even with 5 · 10−2, the relative deviations are in the order of a
few percent, and a value of 1 · 10−2 appears to be a proper choice.
An important issue while solving equation (1) are large empty regions in the simulation cell.

At points where the electron density and its gradient vanish, the scalar field α(r, t) can take
arbitrary values without violating the equation. This strongly hampers the convergence of
the solution algorithm, and for the 2-butanol molecule, it is impossible to obtain a reasonable
result in any snapshot of the trajectory. In order to avoid this problem, a small constant
background electron density was added to the system. This allows a small electric current to
flow everywhere in the simulation cell, making the solution of the partial differential equation
much more stable. For 2-butanol, we found that a background electron density of at least
7·10−3 e/nm3 (equal to 10−6 in atomic units) is necessary to sufficiently stabilize the algorithm.
Still, this value is by several orders of magnitude lower than the maximal electron density in the
molecule. The negligible influence on the magnetic dipole moment is confirmed by a comparison
of the result with two larger values of the background electron density (see figure S3). Clear
effects start to be visible with a background electron density of 7 ·10−1 e/nm3. Since the result
with 7 · 10−2 e/nm3 is almost equal to 7 · 10−3 e/nm3, it can be assumed that the magnetic
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Figure S4: Vector components of the magnetic dipole moment of (R)-2-butanol for different choices of
the reference point.

Figure S5: Simulated VCD spectra of (R)-2-butanol in the gas phase for different choices of the reference
point for the magnetic dipole moment.

dipole moment is not affected by the latter in an unacceptable manner. It has to be noted
that the background density is only needed for the gas phase simulation of 2-butanol. In all
the bulk phase simulations carried out here, the unmodified electron density from the AIMD
provides stable magnetic dipole moments.

3 Influence of the Reference Point

In order to investigate the influence of the reference point for the magnetic dipole moment on
the VCD spectrum, we performed a short AIMD simulation (1.5 ps) of a single (R)-2-butanol
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molecule with a timestep of 0.5 fs, and we calculated the magnetic dipole moments with the
molecular center of mass and with the origin of the simulation cell as two different reference
points. The comparison of these two choices (see figure S4) shows that the magnetic dipole
moment is certainly dependent on the reference point, but the general oscillations due to the
vibrations of the molecule are the same in both cases. Since just the time derivative of the
magnetic dipole moment enters the expression for VCD, only minor differences are expected in
the resulting spectra. This is confirmed by the spectra obtained from the small trajectory (see
figure S5). Due to the much shorter trajectory length of 1.5 ps, these spectra are not converged
as in the main text with a trajectory length of 30 ps, but it is clearly visible that the choice
of the reference point for the magnetic dipole moment has only a minor influence on the VCD
spectrum.

4 Further Applications

Besides 2-butanol, which is discussed in the main text, we studied also (R)-propylene oxide,
which is one of the smallest chiral molecules in general. The IR and VCD spectra obtained
from an AIMD simulation of 16 molecules are compared to experimental data23–25 in figure S6.
Furthermore, we performed a static calculation of the VCD spectrum of a single molecule using
Dalton201626–28 with the BLYP exchange-correlation functional3,4 and the def2-TZVP basis
set.29 The general agreement of simulation, static calculation, and experiment is very good. In
the IR spectrum from the AIMD, only the intensity of the band at 782 cm−1 is overestimated
and many fingerprint bands are slightly red-shifted again, but this is also in line with the shifts
observed in an analysis of the Raman spectrum of propylene oxide by AIMD.30 Several bands
in the IR spectrum are merged, so the AIMD produces only two distinct peaks instead of four
between 1300 cm−1 and 1550 cm−1, and the splitting of the two signals around 1100 cm−1 is
less pronounced. This effect is directly transferred to the VCD spectrum, where the simulated
intensities of the negative–positive–negative band feature around 1100 cm−1 and the weak
bands at 1458 cm−1 and 1499 cm−1 are lower than in the experiment. It should be noted that
the peaks of shifted modes are just merged in the IR spectrum, while the intensities of peaks
with opposite sign can cancel each other in the VCD spectrum. Thus the VCD spectrum is
more sensitive to a shift of the wavenumbers by the underlying electronic structure method.
The simulation also predicts a positive peak at 782 cm−1 with no counterpart in the experiment,
but this is found in the same way in the static calculation, so it is not a particular issue of
our VCD model in the AIMD. Most importantly, the intense experimental bands at 895 cm−1,
950 cm−1, and 1407 cm−1 are reproduced very well by the simulation.
Another example is the biomolecule (1R, 5R)-α-pinene. The IR and VCD spectra obtained

from an AIMD simulation of 16 molecules are compared to experimental data31,32 in figure S7.
The IR spectrum of α-pinene possesses a lot of bands in the fingerprint region and it is difficult
to find a fully unambiguous assignment between simulation and experiment due to the shifts of
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Figure S6: Simulated IR and VCD spectra of (R)-propylene oxide. The experimental IR spectrum is
reproduced from reference 23. The experimental VCD spectrum is the inverted spectrum of
the (S)-enantiomer reproduced from reference 24.

wavenumbers and intensities. A more accurate, but also more expensive, electronic structure
method could probably reduce the deviations. Nevertheless, a combined analysis of IR and
VCD spectra allows to match simulation and experiment as indicated by the dotted lines. This
shows that many distinct features of the experimental VCD spectrum are reproduced very well.
Considerable differences concern only the negative peak at 1265 cm−1 in the experiment, which
is partially merged with another negative band at 1197 cm−1 in the simulation, the negative
peak at 1063 cm−1 in the experiment, which is missing in the simulation, and the predicted
negative band at 1143 cm−1, for which no counterpart is observed in the experiment. Since
the deviations are not limited to the VCD spectrum, but occur to the same extent in the IR
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Figure S7: Simulated IR and VCD spectra of (1R, 5R)-α-pinene. The experimental IR spectrum is
reproduced from reference 31. The experimental VCD spectrum is reproduced from reference
32. The dotted lines indicate the assignment between simulation and experiment.

spectrum, they are unlikely to be a primary issue of our VCD model. It is important to note
that the calculated spectra would clearly be sufficient to identify the correct enantiomer of
α-pinene, so the combination of experiment and AIMD could readily be used to determine the
absolute configuration of the molecule.
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