1	SUPPORTING INFORMATION
2	
3	ENVIRONMENTAL SCIENCE AND TECHNOLOGY
4	
5	Arsenic biotransformation in solid waste residue: comparison of contributions from
6	bacteria with arsenate and iron reducing pathways
7	
8	Haixia Tian, Qiantao Shi, Chuanyong Jing*
9	
10	State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center
11	for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
12	
13	
14	
15	Tel: +86 10 6284 9523; Fax: +86 10 6284 9523
16	E-mail: cyjing@rcees.ac.cn
17	
18	January 16, 2015
19	• 7 Pages (including cover page)
20	• 4 Figures
21	• 6 Tables S1

22 LB broth (1L) 10 g tryptone, 5 g yeast extract, and 10 g NaCl were dissolved in 1 L deionized (DI)

23 water. The pH of the medium was adjusted to 7.0 using 1 mol/L NaOH.

CDM broth (1L) The CDM medium contained the following: K_2HPO_4 (0.225), KH_2PO_4 (0.225), NaCl (0.46), $(NH_4)_2SO_4$ (0.225), $MgSO_4 \cdot 7H_2O$ (0.117), yeast extract (1.0), Na lactate (2.24), Na_3AsO_4 \cdot 12H_2O (0.424), and NaHCO₃ (4.2) (all in grams per liter); trace element solution (1.0 mL); and vitamin solution (10 mL).¹

28 Metal resistant ability The purpose of choosing different solid to liquid ratios was to compare the effect of different bacteria on arsenic mobility at the maximum level of toxic metals they could 29 30 tolerate. The solid waste residue has various heavy metals with extremely high concentrations which 31 is toxic to bacteria cell and will affect bacteria growth. Therefore, we performed series of preliminary 32 experiments to find a maximum solid to liquid ratio where bacteria can survive and maintain their 33 functionality. As shown in Table S4-6, different residue concentrations (0.4-15 g/L) were applied for 34 strain IMH, OhILAs, and MR-1 in the preliminary incubation experiments. For the As(V) reducing 35 bacteria (IMH and OhILAs), the As(III) ratio in the aqueous phase was measured. For the iron reducer 36 (MR-1), the Fe(II) ratio was determined. The results show that the reduction capacity for $A_{S}(V)$ or 37 Fe(III) dramatically decreased when the solid concentration was higher than a threshold value. This 38 critical concentration (10 g/L for strain IMH, 1 g/L for OhILAs and 2 g/L for MR-1) was then used in 39 our incubation experiments.

SEM sample preparation The sample was first stabilized by 2.5% glutaraldehyde solution prepared
in 0.2 M phosphate buffer (pH 7.4) and then incubated at 4°C overnight. After the fixation step,
samples were rinsed with 0.1 M phosphate buffer (pH 7.4) three times for 20 min each time. Then,

43	samples were re-fixed by 1% osmic acid for 2-4 h and re-rinsed with 0.1 M phosphate buffer (pH 7.4)
44	three times for 15 min each time. After the double fixation step, samples were dehydrated with a
45	graded series of ethanol including 30%, 50%, 70%, 80%, 90% and 95% ethanol/water once for 15 min,
46	and 100% ethanol twice for 20 min. The third step is replacement. Samples were immersed in isoamyl
47	acetate twice for 15 min. The last step is drying. Samples were dried according to a procedure called
48	critical point drying (CPD). Finally, the powder samples were mounted on aluminum stubs using
49	double-sided tape and were ready to be viewed in the SEM (FESEM, Hitachi SU8020, Tokyo, Japan).
50	XRD analysis X-ray powder diffraction (XRD) patterns of the solid residual samples were recorded
51	using an X'Pert PRO (PANalytical, The Netherlands) instrument in Bragg-Brentano geometry with
52	iron-filtered Cu K α radiation (40 kV, 30 mA). Samples were placed on a rotating zero-background
53	holder made of single-crystal Si, gently pressed to obtain a sample thickness of about 0.5 mm, and
54	scanned in the 2θ range of 10° to 90° with a step size of 0.02° and a count time of 2 s per step. The
55	analyses of the XRPD patterns were performed using the PDF-2 reference database from the
56	International Center for Diffraction Data (ICDD).
57	Fe(III) reduction by strain OhILAs Ferrihydrite was prepared according to the method suggested by
58	Jiang and Lee, with slight modification. ² Briefly, ferric chloride solution (0.1 M FeCl ₃) was slowly

titrated with 1.0 M NaOH to pH 7, and the resulting dark brown precipitate was washed with DI water 59 ten times and stored after freeze-drying. The XRD analysis showed that the synthesized ferrihydrite is 60

the 2-line product (Fig. S3). 61

The capacity of iron reduction by strain OhILAs was measured under anaerobic conditions. Strain 62

OhILAs was inoculated in the CDM medium containing 100 mg/L ferrihydrite and incubated in the 63

- 64 darkness without agitation at 30°C for 120 h. Suspension samples were periodically collected to
- 65 determine the concentration of aqueous Fe(II).

	Oxygen	Growth	As(V)	Fe(III)	SO_4^{2-}	
Strain	condition	medium	reduction	reducing	reducing	Source
	condition	mearum	related genes	ability	ability	
Pantoea sp.	Aerobic	LB	arsC	No	No	Isolated from
IMH	ACIOUIC	LD	(KM233198)	INO	INU	soil ³
Shewanella						Donated from
oneidensis	Anaerobic	LB	arsC	Yes	Yes	Dr. Gao
MR-1			(SO_2871)			Haichun
Alkaliphilus						Obtained from
oremlandii	Anaerobic	CDM	$ArrA^4$	Yes	No	ATCC
OhILAs						(ВАА-1360тм)

Table S1. Basic properties of the bacteria used in the incubation experiments.

67

Table S2. Metal concentration in the solid waste residue.

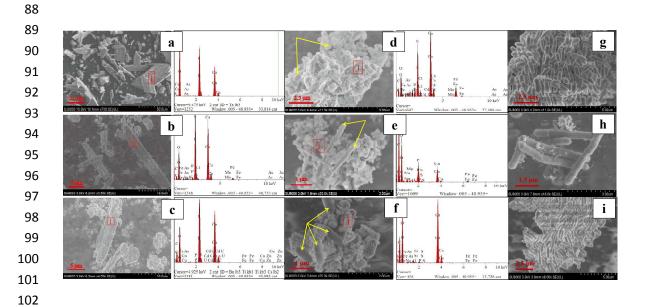
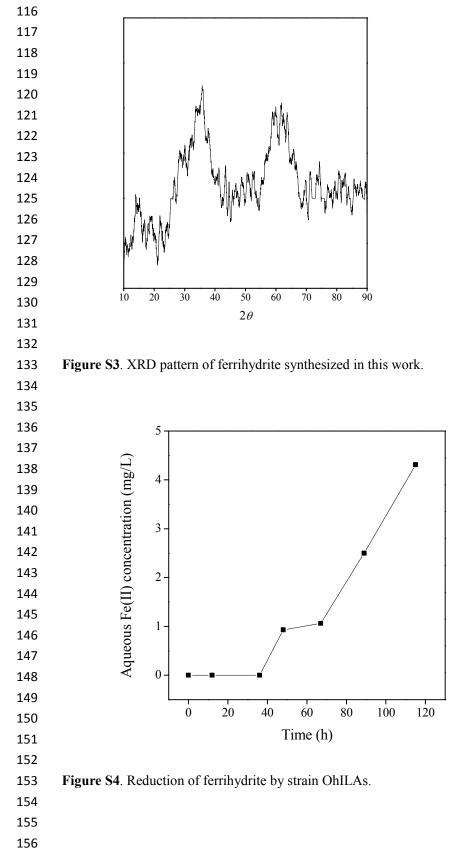



Figure S2. SEM images of the residue incubated with the three bacteria (a: raw residue; b: BK1; c:
BK2; d: IMH; e: OhILAs; f: MR-1) and the original bacteria cells (g: IMH; h:OhILAs; i: MR-1)

Table S3. Metal release percent in residue affected by the three bacteria (%)

Metal	IMH	OhILAs	MR-1
As	15.1	16.8	40.0
Fe	0.6	3.7	39.9
Ca	41.3	8.9	46.4
Cu	21.3	0.2	21.0
Zn	7.7	0.4	22.1
Cd	53.1	0.0	97.4
Pb	0.7	0.5	9.8

S6

	Items		IN	ЛН		
	Solid waste concentration (g/L)	4		10	15	5
	As(III) ratio* (%)	10				
	*: As(III) ratio was determined after				, 10	
		50 H H	cuouno			
able S5. A	s(V) reduction ratio by OhILAs in dif	ferent s	olid wa	iste c	once	entra
	Items		Oh	ILAs		
	Solid waste concentration (g/L)	0.1	0.5	1	2	2
	As(III) ratio* (%)	10	0 87	83	2	20
	*: As(III) ratio was determined after	72 h in	cubatio	n.		
Cable Q.C. E	(III) advetice actic by MD 1 is diff.	mant as				trati
Table S6. F	e(III) reduction ratio by MR-1 in diffe	erent so	lid was	te coi	ncen	itrati
able S6. F	e(III) reduction ratio by MR-1 in diffe	erent so		te coi R-1	ncen	itratio
able S6. F	· ·	0.4			ncen 4	itratio
ıble S6. F 	Items		0.8	R-1		
-	Items Solid waste concentration (g/L)	0.4 100	M 0.8 100	R-1 2	4	6
-	Items Solid waste concentration (g/L) Fe(II) ratio* (%)	0.4 100	M 0.8 100	R-1 2	4	6
-	Items Solid waste concentration (g/L) Fe(II) ratio* (%)	0.4 100	M 0.8 100	R-1 2	4	6
- *: Eferenc	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h CES	0.4 100 incubati	M 0.8 100 ion.	R-1 2 96	4 30	6 10
EFERENC	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h CES , A. M.; Blum, J. S.; Schaefer, J. K.; Phillip	0.4 100 incubati	M 0.8 100 ion.	R-1 2 96 R.; OI	4 30	6 10
EFERENC) Laverman rain SES–3	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h CES	0.4 100 incubati	M 0.8 100 ion.	R-1 2 96 R.; OI	4 30	6 10
EFERENC) Laverman rain SES–3 556–3561.	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h CES , A. M.; Blum, J. S.; Schaefer, J. K.; Phillip with arsenate and other diverse electron acc	0.4 100 incubati s, E.; Lo eptors. A	M 0.8 100 ion. vley, D. <i>ppl. En</i>	R-1 2 96 R.; Or	4 30 remla <i>Micro</i>	6 10 and, F
EFERENC) Laverman rain SES–3 556–3561.) Jiang, S.;	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h SES , A. M.; Blum, J. S.; Schaefer, J. K.; Phillip with arsenate and other diverse electron acc Lee, JH.; Kim, D.; Kanaly, R. A.; Kim, M	0.4 100 incubati s, E.; Lo eptors. <i>A</i>	M 0.8 100 ion. vley, D. <i>ppl. Env</i>	R-1 2 96 R.; Or	4 30 remla <i>Micro</i> ntial	6 10 and, F <i>obiol.</i> arsen
EFERENC) Laverman rain SES–3 556–3561.) Jiang, S.; om As–bear	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h SES , A. M.; Blum, J. S.; Schaefer, J. K.; Phillip with arsenate and other diverse electron acc Lee, JH.; Kim, D.; Kanaly, R. A.; Kim, M ing ferrihydrite by iron–respiring Shewanella	0.4 100 incubati s, E.; Lo eptors. <i>A</i>	M 0.8 100 ion. vley, D. <i>ppl. Env</i>	R-1 2 96 R.; Or	4 30 remla <i>Micro</i> ntial	6 10 and, F <i>obiol.</i> arsen
EFERENC) Laverman rain SES–3 556–3561. 2) Jiang, S.; om As–bear <i>nviron. Sci.</i>	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h Fe(II) ratio was determined after 72 h CES , A. M.; Blum, J. S.; Schaefer, J. K.; Phillip with arsenate and other diverse electron acc Lee, JH.; Kim, D.; Kanaly, R. A.; Kim, M ing ferrihydrite by iron–respiring <i>Shewanella Technol.</i> 2013, 47 (15), 8616–8623.	0.4 100 incubati s, E.; Lo eptors. A G.; Hur, strains v	<u>M</u> 0.8 100 ion. vley, D. <i>ppl. Env</i> HG. I vith diffe	R-1 2 96 R.; Or <i>viron</i> .	4 30 remla <i>Micro</i> ntial rsenio	6 10 and, F obiol. arsen c–red
EFERENC) Laverman rain SES–3 556–3561.) Jiang, S.; om As–bear <i>wiron. Sci.</i>) Wu, Q.; E	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h SES , A. M.; Blum, J. S.; Schaefer, J. K.; Phillip with arsenate and other diverse electron acc Lee, JH.; Kim, D.; Kanaly, R. A.; Kim, M ing ferrihydrite by iron–respiring <i>Shewanella Technol.</i> 2013, 47 (15), 8616–8623. vu, J.; Zhuang, G.; Jing, C. <i>Bacillus</i> sp. SXE	0.4 100 incubati s, E.; Lo eptors. <i>A</i> -G.; Hur, strains v and <i>Par</i>	M 0.8 100 ion. vley, D. <i>ppl. Env</i> HG. I vith diffe	R-1 2 96 R.; Or <i>piron</i> . A Different a IMH,	4 30 cemla <i>Micro</i> ntial rsenio , aero	6 10 and, F obiol. arsen c-red
REFERENC 1) Laverman rain SES–3 556–3561. 2) Jiang, S.; rom As–bear <i>Inviron. Sci.</i> 3) Wu, Q.; E acteria isolat	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h SES , A. M.; Blum, J. S.; Schaefer, J. K.; Phillip with arsenate and other diverse electron acc Lee, JH.; Kim, D.; Kanaly, R. A.; Kim, M ing ferrihydrite by iron–respiring <i>Shewanella Technol.</i> 2013, 47 (15), 8616–8623. Du, J.; Zhuang, G.; Jing, C. Bacillus sp. SXE ed from arsenic–contaminated soil. J. Appl. N	0.4 100 incubati s, E.; Lo eptors. A -G.; Hur, strains v and Par Aicrobiol	M 0.8 100 ion. vley, D. <i>ppl. Env</i> , HG. I vith diffe <i>ntoea</i> sp . 2013 , <i>I</i>	R-1 2 96 R.; Or <i>viron</i> .	4 30 remla <i>Micro</i> ntial rsenio , aero , 713	6 10 and, F obiol. arsen c-red obic A 5-721
REFERENC 1) Laverman train SES–3 556–3561. 2) Jiang, S.; from As–bear <i>Environ. Sci.</i> 3) Wu, Q.; E pacteria isolat 4) Fisher, E.;	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h Fe(II) ratio was determined after 72 h CES , A. M.; Blum, J. S.; Schaefer, J. K.; Phillip with arsenate and other diverse electron acc Lee, JH.; Kim, D.; Kanaly, R. A.; Kim, M ing ferrihydrite by iron–respiring <i>Shewanella Technol.</i> 2013, 47 (15), 8616–8623. Du, J.; Zhuang, G.; Jing, C. <i>Bacillus</i> sp. SXE ed from arsenic–contaminated soil. <i>J. Appl. N</i> Dawson, A. M.; Polshyna, G.; Lisak, J.; Crai	0.4 100 incubati s, E.; Lo eptors. <i>A</i> -G.; Hur, strains v and <i>Par</i> <i>Aicrobiol</i> ble, B.; P	M 0.8 100 ion. ion. <i>ppl. Env</i> , HG. I vith diffe <i>ntoea</i> sp 2013, <i>I</i> erera, E.	R-1 2 96 R.; Or <i>viron</i> . A Different a IMH, 14 (3) ; Rang	4 30 cemla <i>Micro</i> ntial rsenio , aero , 713 ganatl	6 10 and, F obiol. arsen c-red obic A 5-721 han, 1
EFERENC (1) Laverman rain SES–3 (2) Jiang, S.; om As–bear <i>nviron. Sci.</i> (3) Wu, Q.; E acteria isolat (4) Fisher, E.; (1.; Basu, P.; 5)	Items Solid waste concentration (g/L) Fe(II) ratio* (%) Fe(II) ratio was determined after 72 h SES , A. M.; Blum, J. S.; Schaefer, J. K.; Phillip with arsenate and other diverse electron acc Lee, JH.; Kim, D.; Kanaly, R. A.; Kim, M ing ferrihydrite by iron–respiring <i>Shewanella Technol.</i> 2013, 47 (15), 8616–8623. Du, J.; Zhuang, G.; Jing, C. Bacillus sp. SXE ed from arsenic–contaminated soil. J. Appl. N	0.4 100 incubati s, E.; Lo eptors. <i>A</i> -G.; Hur, strains v and <i>Par</i> <i>Aicrobiol</i> ble, B.; P rganic ar	M 0.8 100 ion. ion. <i>ppl. Env</i> , HG. I vith diffe <i>ntoea</i> sp 2013, <i>I</i> erera, E.	R-1 2 96 R.; Or <i>viron</i> . A Different a IMH, 14 (3) ; Rang	4 30 cemla <i>Micro</i> ntial rsenio , aero , 713 ganatl	6 10 and, F obiol. arsen c-red obic A 5-721 han, 1

Table S4. As(V) reduction ratio by IMH in different solid waste concentrations