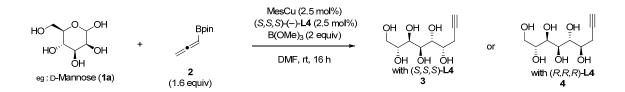
Supporting Information

An Expeditious Synthesis of Sialic Acid Derivatives by Copper(I)-Catalyzed Stereodivergent Propargylation of Unprotected Aldoses

Xiao-Feng Wei,¹ Yohei Shimizu,^{1,*} and Motomu Kanai^{1,2,*}

¹Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

²ERATO, Japan Science Technology Agency, Kanai Life Science Catalysis Project, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan


Table of Contents

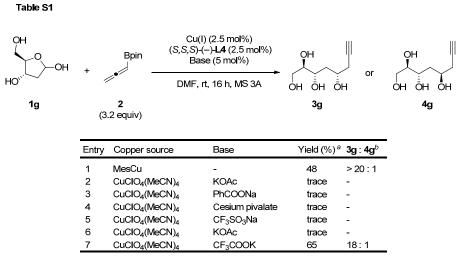
1.	General Information	S2
2.	Copper-Catalyzed Stereodivergent Propargylation of Aldoses	
	2-1. General procedure for the stereodivergent propargylation of aldoses (Co	ondition
	A)	\cdots S2
	2-2. Optimization for the stereodivergent propargylation of 2-deoxy aldoses	···S3
	2-3. General procedure for the stereodivergent propargylation of 2-deoxy	aldoses
	(Condition B)	···S3
	2-4. Gram-scale synthetic procedure for the stereodivergent propargyla	ation of
	D-mannose	\cdots S4
	2-5. Effect of B(OMe) ₃	\cdots S4
	2-6. Characterization of propargylation products	S6
3.	Rapid Synthesis of Sialic Acid Derivatives	
	3-1. General procedure for sialic acid synthesis	…S16
	3-2. Characterization of sialic acids	···S16
4.	NMR spectra	···S21

1. General Information

NMR spectra were recorded on JEOL JNM-LA500 (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR), JEOL ECX500 (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR), and JEOL ECX400 (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR). Chemical shifts were reported in ppm on the δ scale relative to residual CHCl₃ (δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR), CHD₂OD (δ = 3.31 for ¹H NMR and δ = 49.0 for ¹³C NMR), or HDO ($\delta = 4.79$ for ¹H NMR) as an internal reference. Infrared spectra (IR) were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. ESI-mass spectra were measured on a Waters ZQ4000 spectrometer (for LRMS) and a JEOL JMS-T100LC AccuTOF spectrometer (for HRMS). Preparative HPLC were conducted by using a JASCO HPLC system equipped with a UV-2075 spectrometer, PU-2086 pumps, a DG-2080-53 degasser, and an MX-2080-32 mixer. Reactions were carried out in dry solvents under argon atmosphere, unless otherwise stated. Reagents were purchased from Aldrich, Tokyo Chemical Industry Co., Ltd. (TCI), or Wako Pure Chemical Industries, Ltd., and used after purification by distillation or used without purification for solid substrates. Water for the HPLC analysis was purified using a Millipore MilliQ water purification system.

2. Copper-Catalyzed Stereodivergent Propargylation of Aldoses

2-1. General procedure for the stereodivergent propargylation of aldoses (Condition A)


A flame-dried 20-mL test tube was charged with mesitylcopper (0.5 mg, 0.0027 mmol), (*S,S,S*)-Ph-SKP (1.7 mg, 0.0026 mmol), and D-mannose **1a** (18 mg, 0.10 mmol) under argon atmosphere. B(OMe)₃ (22 μ L, 0.20 mmol) and dry DMF (125 μ L) were then added to this mixture. The mixture was stirred for 10 min at room temperature. Allenylboronate **2** (29 μ L, 0.16 mmol) was added. After stirring for 16 h at room temperature, the reaction was quenched by the addition of MeOH and concentrated *in vacuo*. The process of MeOH addition followed by evaporation was repeated two-times to give a crude product. The diastereoselectivity was determined by ¹H NMR analysis.

Products were purified by preparative reverse phase HPLC using a gradient of acetonitrile versus 0.1% TFA in water, affording **3a** as a white solid (19.8 mg, 90% yield). Preparative HPLC was carried out as follows: YMC-Triart C18 (20 mm I.D. \times 250 mm) column using a linear gradient of 0-50% acetonitrile in 0.1% aqueous TFA over 30 min at room temperature with a flow rate of 7.0 mL min⁻¹.

The configurations of **3a** and **3j** were determined after converting to KDN (**6a**) and Neu5Ac (**6j**), respectively. The NMR data of synthesized KDN (**6a**) and Neu5Ac (**6j**) were identical to the reported ones (KDN: Nakamura, M.; Furuhata, K.; Yamasaki, T.; Ogura, H. *Chem. Pharm. Bull.* **1991**, *39* 3140., Neu5Ac: Lorpitthaya, R.; Suryawanshi, S. B.; Wang, S.; Pasunooti, K. K.; Cai, S.; Ma, J.; Liu, X.-W. *Angew. Chem. Int. Ed.* **2011**, *50*, 12054). The configurations of other products were tentatively assigned accordingly.

2-2. Optimization for the stereodivergent propargylation of 2-deoxy aldoses

The propargylation reaction between 2-deoxy-D-ribose (**1g**) and allenylboronate **2** was studied as a model reaction for 2-deoxy sugar substrates. Combinations of cationic copper salts and weak bases were examined to suppress protonolysis of allenylcopper species. A variety of mild bases, such as KOAc, PhCOONa, cesium pivalate, CF_3SO_3Na , and KOAc were examined, but the desired product was obtained only in trace amounts (Table S1, entries 2-6). Ultimately, CF_3COOK was identified as the optimum base, providing the product in 65% yield with an 18:1 diastereoselectivity (entry 7).

^alsolated yield. ^bDetermined by ¹H NMR

2-3. General procedure for the stereodivergent propargylation of 2-deoxy aldoses (Condition B)

A flame-dried 20-mL test tube was charged with CuClO₄(MeCN)₄ (0.8 mg, 0.0025 mmol), (*S*,*S*,*S*)-Ph-SKP (1.7 mg, 0.0026 mmol), CF₃COOK (0.8 mg, 0.0053 mmol), MS 3A 40 mg and 2-deoxy-D-ribose (**1g**: 13.4 mg, 0.10 mmol) under argon atmosphere. B(OMe)₃ (22 μ L, 0.20 mmol) and dry DMF (125 μ L) were then added to this mixture. The mixture was stirred at room temperature for 10 min. Allenylboronate **2** (58 μ L, 0.32 mmol) was added. After stirring for 16 h at room temperature, the reaction was quenched by the addition of MeOH and concentrated in *vacuo*. The process of MeOH addition followed by evaporation was repeated two-times to give a crude product. The diastereoselectivity was determined by ¹H NMR analysis. Products were purified by preparative reverse phase HPLC using a gradient of acetonitrile versus 0.1% TFA in water, affording **3g** as a white solid (11.3 mg, 65% yield). Preparative HPLC was carried out as follows: YMC-Triart C18 (20 mm I.D × 250 mm) column using a linear gradient of 0-50% acetonitrile in 0.1% aqueous TFA over 30 min at room temperature with a flow rate of 7.0 mL min⁻¹.

2-4. Gram-scale synthetic procedure for the stereodivergent propargylation of D-mannose

A flame-dried 20-mL bottle was charged with mesitylcopper (3.7 mg, 0.02 mmol), (S,S,S)-Ph-SKP (13.2 mg, 0.02 mmol), and D-Mannose **1a** (1.8 g, 10 mmol) under argon atmosphere. B(OMe)₃ (2.2 mL, 20 mmol) and dry DMF (6.3 mL) were then added to this mixture. The mixture was stirred for 10 min at room temperature. Allenylboronate **2** (2.7 mL, 15 mmol) was added. After stirring for 16 h at room temperature, the reaction was quenched by the addition of MeOH and concentrated *in vacuo*. Addition of MeOH-concentration process was repeated two-times to give a crude product. The crude solid was washed successively with EtOAc and MeOH to provide **3a** as a white solid (1.91 g, 87% yield).

2-5. Effect of B(OMe)₃

The ¹H NMR spectra in DMSO- d_6 of a sample containing D-mannose and 2 equiv of B(OMe)₃ (Figure S1) indicates the existence of complicated complexation between mannose and B(OMe)₃. The most notable difference between Figure S1 (mannose + 2 equiv of B(OMe)₃) and Figure S2 (mannose only) is the appearance of an aldehyde C-H proton (9.66 ppm) in Figure S1. The ratio of the aldehyde form to other species was determined to be 0.15% by ¹H NMR analysis using MeCN as internal standard. Thus, the addition of B(OMe)₃ significantly increased the aldehyde form. Although the concentration of the aldehyde form was still low, this observation indicates that the

addition of $B(OMe)_3$ facilitates the propargylation reaction by stabilizing the aldehyde form of aldoses (see Fig. 2 in the text).

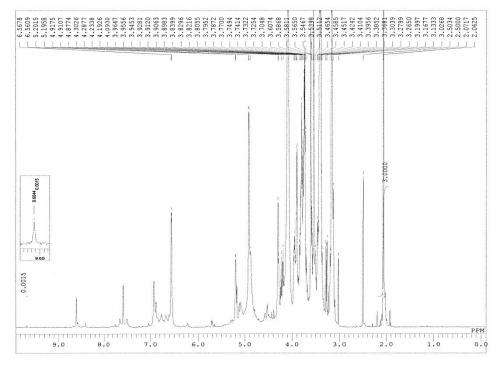
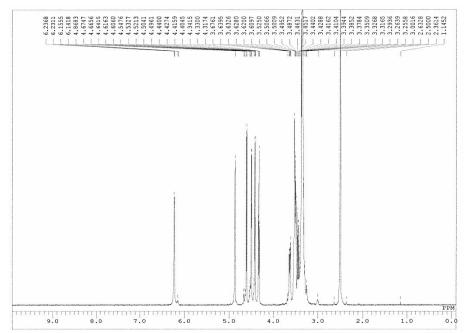
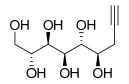
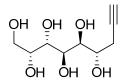



Figure S1. Mannose + 2 equiv of B(OMe)₃ + 1 equiv of MeCN

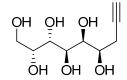

Figure S2. Mannose

2-6. Characterization of propargylation products

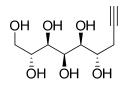

(2R,3R,4R,5R,6S)-non-8-yne-1,2,3,4,5,6-hexaol (3a)

A white solid, Yield: 90%. ¹H NMR (500 MHz, D₂O) δ 3.99 (t, *J* = 6.9 Hz, 1H), 3.79 (d, *J* = 9.6 Hz, 1H), 3.77-3.74 (m, 1H), 3.70 (d, *J* = 8.7 Hz, 1H), 3.67-3.63 (m, 1H), 3.60 (d, *J* = 9.6 Hz, 1H), 3.58-3.53 (m, 1H), 2.47-2.36 (m, 2H), 2.28 (t, *J* = 2.3 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 82.8, 71.8, 71.6, 70.1, 69.7, 68.5, 63.9, 23.6; IR (KBr): 3365, 3231, 1445, 1306, 1094, 1028, 849, 729 cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₆ [M+Na]⁺ 243.0840 Found 243.0842; [α]_D^{23.2} = +0.2 (*c* = 0.53, H₂O).

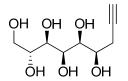
(2R,3R,4R,5R,6R)-non-8-yne-1,2,3,4,5,6-hexaol (4a)


A white solid, Yield: 81%. ¹H NMR (500 MHz, D₂O) δ 3.88 (dt, *J* = 8.6, 4.6 Hz, 1H), 3.74-3.57 (m, 5H), 3.50 (dd, *J* = 11.7, 6.0 Hz, 1H), 2.42 (dt, *J* = 17.2, 3.5 Hz, 1H), 2.34 (ddd, *J* = 17.2, 8.0, 2.6 Hz, 1H), 2.22 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 82.7, 72.8, 71.5, 71.4, 71.2, 70.5, 70.2, 63.9, 21.7; IR (KBr): 3375, 2962, 2896, 1423, 1392, 1088, 1035, 752, 634 cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₆ [M+Na]⁺ 243.0840 Found 243.0835; $[\alpha]_D^{22.2} = +6.4$ (*c* = 0.50, H₂O).

(2R,3S,4R,5S,6S)-non-8-yne-1,2,3,4,5,6-hexaol (3b)


A white solid, Yield: 73%. ¹H NMR (500 MHz, D₂O) δ 3.83 (t, *J* = 6.5 Hz, 1H), 3.77 (d, *J* = 9.5 Hz, 1H), 3.75-3.69 (m, 2H), 3.53 (d, *J* = 6.3 Hz, 2H), 3.51 (d, *J* = 10.3 Hz, 1H), 2.52 (dt, *J* = 17.4, 2.5 Hz, 1H), 2.37 (ddd, *J* = 17.4, 5.4, 2.5 Hz, 1H), 2.22 (t, *J* = 2.5 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 75.1, 72.0, 71.3, 69.7, 68.0, 64.9, 40.9, 28.7; IR

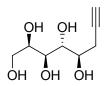
(KBr): 3297, 1422, 1112, 1086, 1033 cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₆ [M+Na]⁺ 243.0840 Found 243.0842; $[\alpha]_D^{22.4} = +4.4$ (c = 0.50, H₂O).


(2R,3S,4R,5S,6R)-non-8-yne-1,2,3,4,5,6-hexaol (4b)

A white solid, Yield: 66%. ¹H NMR (500 MHz, D₂O) δ 3.80-3.73 (m, 3H), 3.60 (d, J = 9.2 Hz, 1H), 3.54-3.49 (m, 3H), 2.44-2.40 (m, 1H), 2.34-2.28 (m, 1H), 2.22 (brs, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 81.9, 73.6, 73.2, 71.7, 71.4, 71.2, 64.9, 24.3; IR (KBr): 3398, 2925, 1433, 1103, 1055, 680 cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₆ [M+Na]⁺ 243.0840 Found 243.0832; [α]_D^{22.1} = +6.1 (c = 0.35, H₂O).

(2R,3R,4R,5S,6S)-non-8-yne-1,2,3,4,5,6-hexaol (3c)

A white solid, Yield: 76%. ¹H NMR (500 MHz, D₂O) δ 3.86 (t, J = 2.9 Hz, 1H), 3.74-3.70 (m, 1H), 3.66-3.57 (m, 4H), 3.49 (dd, J = 11.4, 5.9 Hz, 1H), 2.45 (dt, J = 17.3, 3.4 Hz, 1H), 2.36 (ddd, J = 17.3, 6.3, 2.3 Hz, 1H), 2.21 (t, J = 2.3 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 81.9, 74.6, 73.6, 71.8, 71.7, 69.2, 68.8, 63.1, 23.0; IR (KBr): 3280, 2918, 1427, 1096, 1028, 667 cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₆ [M+Na]⁺ 243.0840 Found 243.0835; [α]_D^{22.9} = +2.0 (c = 0.51, H₂O).



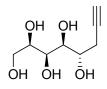
(2R,3R,4R,5S,6R)-non-8-yne-1,2,3,4,5,6-hexaol (4c)

A white solid, Yield: 72%. (inseparable mixture of **3c** and **4c**) For **4c**: ¹H NMR (500 MHz, D₂O) δ 3.95 (dd, J = 5.7, 1.7 Hz, 1H), 3.89 (td, J = 6.9, 2.9 Hz, 1H), 3.80-3.60 (m, 5H), 2.52 (dd, J = 6.9, 2.9 Hz, 1H), 2.27 (t, J = 2.9 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 82.0, 74.7, 73.9, 71.8, 71.7, 70.6, 70.0, 63.5, 23.7; IR (KBr): 3387, 2925, 1675, 1204, 1076 cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₆ [M+Na]⁺ 243.0840 Found 243.0832.

(2R,3S,4R,5S)-oct-7-yne-1,2,3,4,5-pentaol (3d)

A white solid, Yield: 84%. ¹H NMR (500 MHz, D₂O) δ 4.00 (t, *J* = 7.1 Hz, 1H), 4.89 (t, *J* = 6.4 Hz, 1H), 3.65-3.56 (m, 4H), 2.47 (ddd, *J* = 16.9, 7.5, 2.6 Hz, 1H), 2.40 (ddd, *J* = 16.9, 6.7, 2.6 Hz, 1H), 2.32 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 82.6, 71.6, 71.2, 71.0, 70.2, 69.1, 63.9, 23.7; IR (KBr): 3388, 3217, 1452, 1389, 1294, 1231, 1105, 1052, 735, 657 cm⁻¹; HRMS (ESI): m/z calcd for C₈H₁₄O₅ [M+Na]⁺ 213.0734 Found 213.0737; [α]_D^{22.8} = +4.3 (*c* = 0.15, MeOH).

(2R,3S,4R,5R)-oct-7-yne-1,2,3,4,5-pentaol (4d)


A white solid, Yield: 81%. ¹H NMR (500 MHz, D₂O) δ 3.87 (dt, *J* = 8.6, 4.5 Hz, 1H), 3.80-3.77 (m, 1H), 3.66 (dd, *J* = 8.1, 5.1 Hz, 1H), 3.53-3.48 (m, 3H), 2.41 (dt, *J* = 17.2, 2.9 Hz, 1H), 2.33 (ddd, *J* = 17.2, 7.9, 2.9 Hz, 1H), 2.21 (t, *J* = 2.9 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 82.6, 72.9, 71.6, 71.5, 71.2, 71.0, 63.7, 21.8; IR (KBr): 3326, 2952, 2900, 1458, 1411, 1222, 1095, 1048, 1030, 860, 695, 654 cm⁻¹; HRMS (ESI): m/z calcd for C₈H₁₄O₅ [M+Na]⁺ 213.0734 Found 213.0731 ; [α]_D^{20.8} = +9.4 (*c* = 0.86, H₂O).

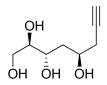
(2R,3S,4R,5S)-oct-7-yne-1,2,3,4,5-pentaol (3e)

A white solid, Yield: 95%.¹H NMR (500 MHz, D₂O) δ 3.76 (dd, J = 11.2, 6.2 Hz, 1H), 3.71 (dd, J = 6.2, 2.0 Hz, 1H), 3.67 (dd, J = 11.8, 2.9 Hz, 1H), 3.63-3.60 (m, 1H), 3.51-3.47 (m, 2H), 2.40 (ddd, J = 17.4, 4.8, 2.3 Hz, 1H), 2.30 (ddd, J = 17.4, 6.4, 2.3 Hz, 1H), 2.22 (t, J = 2.3 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 81.7, 72.0, 71.9, 71.8, 71.7, 71.2, 63.5, 23.4; IR (KBr): 3430, 3285, 1434, 1089, 1042cm⁻¹; HRMS (ESI): m/z calcd for C₈H₁₄O₅ [M+Na]⁺ 213.0734 Found 213.0737 ; [α]_D^{21.5} = -0.4 (c = 0.52, H₂O).

(2R,3S,4R,5R)-oct-7-yne-1,2,3,4,5-pentaol (4e)

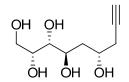
A white solid, Yield: 93%. ¹H NMR (500 MHz, D₂O) δ 3.72-3.64 (m, 4H), 3.60 (ddd, *J* = 8.8, 6.3, 2.8 Hz, 1H), 3.51 (dd, *J* = 11.9, 6.3 Hz, 1H), 2.51 (dt, *J* = 17.3, 2.6 Hz, 1H), 2.37 (ddd, *J* = 17.3, 5.6, 2.6 Hz, 1H), 2.22 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 82.2, 71.9, 71.9, 71.5, 69.8, 68.9, 63.9, 23.9; IR (KBr): 3305, 2949, 1286, 1082, 1041, 644 cm⁻¹; HRMS (ESI): m/z calcd for C₈H₁₄O₅ [M+Na]⁺ 213.0734 Found 213.0737; [α]_D^{22.7} = -4.8 (*c* = 0.48, H₂O).

(2R,3S,4S,5S)-oct-7-yne-1,2,3,4,5-pentaol (3f)


A white solid, Yield: 65%. ¹H NMR (400 MHz, D₂O) δ 3.75-3.64 (m, 3H), 3.60-3.57 (m, 1H), 3.52-3.43 (m, 2H), 2.49 (dt, *J* = 17.3, 2.3 Hz, 1H), 2.36 (ddd, *J* = 17.3, 6.0, 2.3 Hz, 1H), 2.22 (t, *J* = 2.3 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 82.0, 73.7, 73.0, 72.0, 70.2, 69.0, 63.0, 23.4; IR (KBr): 3389, 2934, 1421, 1067, 657 cm⁻¹; HRMS (ESI): m/z calcd for C₈H₁₄O₅ [M+Na]⁺ 213.0734 Found 213.0741; [α]_D^{22.6} = +6.4 (*c* = 0.91, H₂O).

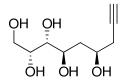
(2R,3S,4S,5R)-oct-7-yne-1,2,3,4,5-pentaol (4f)

A white solid, Yield: 60%.¹H NMR (500 MHz, D₂O) δ 3.81-3.79 (m, 1H), 3.70-3.67 (m, 1H), 3.61-3.55 (m, 3H), 3.51-3.47 (dd, J = 11.5, 6.9 Hz, 1H), 2.41-2.32 (m, 2H), 2.24 (m, 1H); ¹³C NMR (125 MHz, D₂O) δ 81.9, 73.2, 72.5, 71.9, 71.8, 70.4, 63.4, 23.5; IR (KBr): 3388, 1420, 1067, 669 cm⁻¹; HRMS (ESI): m/z calcd for C₈H₁₄O₅ [M+Na]⁺ 213.0727 Found 213.0734; [α]_D^{22.8} = +2.9 (c = 0.68, H₂O).

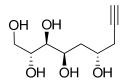

(2*R*,3*S*,5*S*)-oct-7-yne-1,2,3,5-tetraol (3g)

A white solid, Yield: 65%. ¹H NMR (500 MHz, CD₃OD) δ 3.97 (dq, J = 8.1, 5.7 Hz, 1H), 3.74-3.67 (m, 2H), 3.56 (dd, J = 11.3, 6.5 Hz, 1H), 3.46 (dt, J = 6.3, 2.9 Hz, 1H), 2.41-2.30 (m, 2H), 2.28 (t, J = 2.9 Hz, 1H), 1.99 (ddd, J = 14.3, 4.6, 2.9 Hz, 1H), 1.66-1.60 (dt, J = 14.3, 9.2 H, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 81.7, 76.3, 72.4, 71.4, 70.0, 64.4, 39.5, 27.8; IR (KBr): 3376, 2923, 1677, 1424, 1204, 1071, 651 cm⁻¹; HRMS (ESI): m/z calcd for C₈H₁₄O₄ [M+Na]⁺ 197.0785 Found 197.0781; [α]_D^{22.9} = -1.6 (c = 0.57, MeOH).

(2R,3S,5R)-oct-7-yne-1,2,3,5-tetraol (4g)


A white solid, Yield: 53%. ¹H NMR (500 MHz, CD₃OD) δ 3.98 (dddd, J = 9.2, 6.3, 2.9 Hz, 1H), 3.786 (ddd, J = 9.8, 6.3, 2.4 Hz, 1H), 3.71 (dd, J = 11.2, 3.9 Hz, 1H), 3.56 (dd, J = 11.2, 6.6 Hz, 1H), 3.48 (dt, J = 6.6, 3.9 Hz, 1H), 2.40 – 2.31 (m, 2H), 2.27 (t, J = 2.8 Hz, 1H), 1.77 (ddd, J = 14.4, 9.8, 2.7 Hz, 1H), 1.69 (ddd, J = 14.4, 9.8, 2.7 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 81.9, 76.6, 71.3, 70.2, 67.8, 64.7, 40.2, 28.7; IR (KBr): 3375, 2921, 1420, 1064, 652 cm⁻¹; HRMS (ESI): m/z calcd for C₈H₁₄O₄ [M+Na]⁺ 197.0785 Found 197.0781; [α]_D^{20.6} = -28.2 (c = 0.64, H₂O).

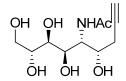
(2R,3R,4R,6S)-non-8-yne-1,2,3,4,6-pentaol (3h)


A white solid, Yield: 74%. ¹H NMR (500 MHz, CD₃OD) δ 4.03-3.97 (m, 1H), 3.87 (ddd, J = 7.6, 6.7, 2.2 Hz, 2H), 3.64-3.58 (m, 2H), 3.36 (dd, J = 7.6, 2.2 Hz, 1H), 2.41-2.31 (m, 2H), 2.27 (t, J = 2.7 Hz, 1H), 1.88 (ddd, J = 14.3, 9.8, 2.4 Hz, 1H), 1.69 (ddd, J = 14.3, 9.8, 2.4 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 82.5, 74.4, 71.9, 71.2, 68.3, 66.8, 63.7, 39.2, 27.6; IR (KBr): 3280, 3192, 2952, 1466, 1422, 1065, 1030, 707

cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₅ [M+Na]⁺ 227.0890 Found 227.0887; $[\alpha]_D^{22.8}$ = +23.8 (*c* = 0.49, H₂O).

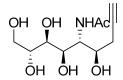
(2R,3R,4R,6R)-non-8-yne-1,2,3,4,6-pentaol (4h)

A white solid, Yield: 67%. ¹H NMR (500 MHz, CD₃OD) δ 4.00 (dq, J = 8.0, 5.6 Hz, 1H), 3.87-3.81 (m, 2H), 3.61 (d, J = 6.6 Hz, 2H), 3.37 (dd, J = 7.5, 2.1 Hz, 1H), 2.42-2.31 (m, 2H), 2.28 (t, J = 2.6 Hz, 1H), 2.02 (ddd, J = 14.2, 4.7, 3.0 Hz, 1H), 1.55 (ddd, J = 14.2, 9.1, 8.1 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 81.7,84.6.9, 71.8, 71.7, 70.1, 64.8, 40.2, 27.9; IR (neat): 3375, 1422, 1069 cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₅ [M+Na]⁺ 227.0890 Found 227.0882, [α]_D^{21.5} = +9.4 (c = 0.53, H₂O).

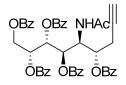

(2R,3S,4R,6S)-non-8-yne-1,2,3,4,6-pentaol (3i)

A white solid, Yield: 59%. ¹H NMR (400 MHz, CD₃OD) δ 4.13-4.09 (m, 1H), 4.00-3.91 (m, 1H), 3.78 (dd, J = 10.9, 3.5 Hz, 1H), 3.67 (ddd, J = 8.0, 5.9, 3.5 Hz, 1H), 3.60 (dd, J = 10.9, 5.9 Hz, 1H), 3.33 (s, 1H), 2.36 (dd, J = 6.2, 2.7 Hz, 2H), 2.26 (t, J = 2.7 Hz, 1H), 1.94 (ddd, J = 14.3, 10.4, 2.6 Hz, 1H), 1.53 (ddd, J = 14.3, 9.8, 2.6 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 82.0, 75.5, 73.2, 71.3, 68.3, 68.0, 65.1, 41.2, 28.6; IR (neat): 3290, 1420, 1092, 1074, 1025 cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₅ [M+Na]⁺ 227.0890 Found 227.0900; [α]_D^{23.8} = +31.9 (c = 0.28, MeOH).

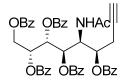
(2R,3S,4R,6R)-non-8-yne-1,2,3,4,6-pentaol (4i)


A white solid, Yield: 52%. ¹H NMR (500 MHz, CD₃OD) δ 4.06 (dt, J = 7.4, 1.8 Hz, 1H), 3.94 (dq, J = 11.0, 5.8 Hz, 1H), 3.78 (dd, J = 11.0, 3.5 Hz, 1H), 3.67 (ddd, J = 8.1, 6.0, 3.5 Hz, 1H), 3.60 (dd, J = 8.1, 5.7 Hz, 1H), 3.36 (dd, J = 10.4, 5.2 Hz, 1H),

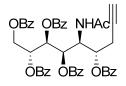
2.42-2.33 (m, 2H), 2.28 (t, J = 2.6 Hz, 1H), 1.85-1.82 (m, 2H); ¹³C NMR (125 MHz, CD₃OD) δ 81.7, 74.5, 73.0, 71.4, 69.9, 69.5, 65.1, 40.3, 27.9; IR (KBr): 3280, 2918, 1432, 1089, 1033, 638 cm⁻¹; HRMS (ESI): m/z calcd for C₉H₁₆O₅ [M+Na]⁺ 227.0890 Found 227.0900; [α]_D^{22.4} = +6.5 (c = 0.26, H₂O).


N-(((4*S*,5*R*,6*R*,7*S*,8*R*)-4,6,7,8,9-pentahydroxynon-1-yn-5-yl)acetamide (3j)

A white solid, Yield: 70%. ¹H NMR (500 MHz, D₂O) δ 4.13 (t, *J* = 6.9 Hz, 1H), 3.94 (d, *J* = 10.4 Hz, 1H), 3.78 (d, *J* = 10.4 Hz, 1H), 3.68 (dd, *J* = 12.0, 2.9 Hz, 1H), 3.61-3.57 (m, 1H), 3.47 (dd, *J* = 12.0, 6.3 Hz, 1H), 3.31 (d, *J* = 9.2 Hz, 1H), 2.26-2.22 (m, 3H), 1.89 (s, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 174.8, 81.8, 72.4, 71.4, 71.2, 69.7, 68.7, 65.2, 54.7, 25.3, 22.6; IR (KBr): 3499, 3362, 1623, 1541, 1074 cm⁻¹; HRMS (ESI): m/z calcd for C₁₁H₁₉NO₆ [M+Na]⁺ 284.1105 Found 284.1106; [α]_D^{22.8} = -28.9 (*c* = 0.67, H₂O).

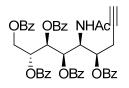

N-((4R,5R,6R,7S,8R)-4,6,7,8,9-pentahydroxynon-1-yn-5-yl)acetamid (4j)

A white solid, Yield: 51%. ¹H NMR (500 MHz, D₂O) δ 4.10 (dd, J = 8.9, 5.7 Hz, 1H), 3.98 (ddd, J = 7.7, 5.7, 4.3 Hz, 1H), 3.84-3.82 (m, 1H), 3.67 (dd, J = 11.9, 2.8 Hz, 1H), 3.57 (ddd, J = 9.1, 6.3, 2.8 Hz, 1H), 3.46 (dd, J = 11.9, 6.3 Hz, 1H), 3.38 (dd, J = 9.1, 0.8 Hz, 1H), 2.41 (ddd, J = 17.0, 4.1, 2.6 Hz, 1H), 2.30 (ddd, J = 17.0, 7.7, 2.6 Hz, 1H), 2.24 (t, J = 2.6 Hz, 1H), 1.87 (s, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 174.9, 82.1, 71.7, 71.1, 70.2, 69.4, 63.7, 54.3, 22.7, 22.6; IR (neat): 3293, 1639, 1547, 1424, 1378, 1203, 1078, 1031 cm⁻¹; HRMS (ESI): m/z calcd for C₁₁H₁₉NO₆ [M+Na]⁺ 284.1105 Found 284.1118; [α]_D^{23.3} = -4.4 (c = 0.84, MeOH).

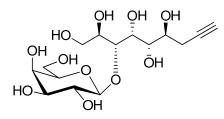


(2R,3R,4R,5S,6S)-5-acetamidonon-8-yne-1,2,3,4,6-pentayl pentabenzoate (3k-Bz)

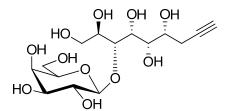
A white solid, Yield: 55%. ¹H NMR (500 MHz, CDCl₃) δ 8.10-8.09 (m, 2H), 7.95-7.93 (m, 2H), 7.86-7.84 (m, 4H), 7.70-7.69 (m, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.50-7.43 (m, 5H), 7.37 (t, J = 7.5 Hz, 1H), 7.33-7.26 (m, 7H), 7.10 (t, J = 7.5 Hz, 2H), 6.12 (d, J = 6.9 Hz, 1H), 6.05 (d, J = 9.8 Hz, 1H), 5.86 (dd, J = 7.3, 2.0 Hz, 2H), 5.20 (dd, J = 13.0, 6.3 Hz, 1H), 5.11 (dd, J = 8.2, 6.3 Hz, 1H), 4.67 (dd, J = 11.9, 4.4 Hz, 1H), 4.48 (dd, J = 11.9, 6.9 Hz, 1H), 2.75 (ddd, J = 17.0, 7.1, 2.6 Hz, 1H), 2.68 (ddd, J = 17.0, 6.0, 2.6 Hz, 1H), 2.01 (s, 3H), 1.93 (t, J = 2.6 Hz, 1H); ¹³C NMR (125 MHz, acetone-d6) δ 170.4, 166.3, 166.1, 165.9, 165.8, 134.3, 134.2, 134.0, 133.9, 133.7, 131.0, 130.9, 130.9, 130.8, 130.7, 130.6, 130.5, 130.3, 130.2, 129.4, 129.3, 129.2, 129.1, 129.0, 79.8, 72.5, 72.0, 71.9, 71.0, 70.4, 69.5, 64.3, 50.5, 50.4, 22.9, 21.9; IR (neat): 3390, 1721, 1683, 1259, 1092, 1067, 708 cm⁻¹; HRMS (ESI): m/z calcd for C₄₆H₃₉NO₁₁ [M+Na]⁺ 804.2416 Found 804.2399; $[\alpha]_D^{22.9} = -13.9$ (c = 0.65, MeOH).



(2*R*,3*R*,4*R*,5*S*,6*R*)-5-acetamidonon-8-yne-1,2,3,4,6-pentayl pentabenzoate (4k-Bz) A white solid, Yield: 40%. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 7.4 Hz, 2H), 7.95 (d, *J* = 7.4 Hz, 2H), 7.86-7.80 (m, 6H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.49 (dd, *J* = 13.1, 7.4 Hz, 2H), 7.42 (dd, *J* = 10.8, 4.4 Hz, 4H), 7.32-7.24 (m, 8H), 5.93-5.89 (m, 4H), 5.26 (dd, *J* = 11.3, 5.6 Hz, 1H), 5.16 (dd, *J* = 9.8, 6.3 Hz, 1H), 4.73 (dd, *J* = 11.9, 4.3 Hz, 1H), 4.48 (dd, *J* = 11.9, 7.4 Hz, 1H), 2.75 (ddd, *J* = 17.3, 5.0, 2.6 Hz, 1H), 2.64 (ddd, *J* = 17.3, 5.7, 2.6 Hz, 1H), 1.92 (t, *J* = 2.6 Hz, 1H), 1.90 (s, 3H); ¹³C NMR (125 MHz, acetone-d6) δ170.9, 166.3, 166.1, 166.0, 165.9, 134.2, 134.1, 134.0, 133.9, 133.8, 130.9, 130.8, 130.6, 130.5, 130.4, 130.3, 130.2, 130.1, 129.3, 129.2, 129.1, 129.0, 79.6, 73.2, 72.8, 71.4, 70.9, 70.2, 64.5, 50.4, 22.8, 22.3; IR (neat): 3376, 1719, 1683, 1246, 1092, 1067, 708 cm⁻¹; HRMS (ESI): m/z calcd for C₄₆H₃₉NO₁₁ [M+Na]⁺ 804.2416 Found 804.2399; [α]_D^{22.8} = -17.4 (*c* = 0.45, MeOH).

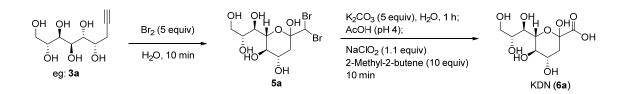

(2R,3S,4R,5S,6S)-5-acetamidonon-8-yne-1,2,3,4,6-pentayl pentabenzoate (3l-Bz)

A white solid, Yield: 45%. ¹H NMR (500 MHz, CDCl₃) δ 8.05-7.99 (m, 4H), 7.847.82 (m, 2H), 7.73 (dd, J = 8.1, 7.5 Hz, 4H), 7.54 (dt, J = 7.5, 1.0 Hz, 2H), 7.45-7.35 (m, 8H), 7.26-7.17 (m, 5H), 5.99-5.92 (m, 2H), 5.85 (dt, J = 5.9, 3.0 Hz, 1H), 5.23 (dd, J = 13.2, 6.3 Hz, 1H), 5.16 (dd, J = 7.3, 1.8 Hz, 1H), 4.87 (dd, J = 12.3, 3.0 Hz, 1H), 4.59 (dd, J = 12.3, 5.9 Hz, 1H), 2.72 (ddd, J = 17.2, 6.4, 2.7 Hz, 1H), 2.65 (ddd, J = 17.2, 5.9, 2.7 Hz, 1H), 2.11 (s, 3H), 1.86 (t, J = 2.7 Hz, 1H); ¹³C NMR (125 MHz, acetone-d6) δ 171.1, 166.5, 166.1, 165.8, 165.7, 134.2, 134.1, 134.1, 134.0, 133.9, 130.8, 130.7, 130.6, 130.6, 130.6, 130.5, 130.4, 130.4, 130.2, 129.4, 129.4, 129.3, 129.2, 129.2, 129.0, 79.8, 72.4, 72.0, 71.3, 71.2, 70.4, 63.2, , 51.9, 51.8, 23.0, 22.2; IR (neat): 3418, 1717, 1653, 1261, 1093, 709 cm⁻¹; HRMS (ESI): m/z calcd for C₄₆H₃₉NO₁₁ [M+Na]⁺ 804.2416 Found 804.2399; [α]_D^{22.8} = +12.6 (c = 0.44, MeOH).


(2R,3S,4R,5S,6R)-5-acetamidonon-8-yne-1,2,3,4,6-pentayl pentabenzoate (4I-Bz)

A white solid, Yield: 51%. ¹H NMR (500 MHz, CDCl₃) δ 8.11-8.07 (m, 2H), 8.07-8.03 (m, 2H), 8.03-7.99 (m, 2H), 7.92-7.88 (m, 2H), 7.84 (d, J = 8.2 Hz, 2H), 7.58 (dd, J = 15.3, 7.5 Hz, 2H), 7.53 (dd, J = 13.0, 6.9 Hz, 2H), 7.44-7.33 (m, 10H), 7.19 (t, J = 7.7 Hz, 2H), 6.33 (dd, J = 8.2, 3.1 Hz, 1H), 5.81-5.72 (m, 4H), 5.01-4.95 (m, 1H), 4.79 (dd, J = 12.4, 2.7 Hz, 1H), 4.49 (dd, J = 12.4, 5.0 Hz, 1H), 2.67-2.56 (m, 2H), 1.78 (s, 3H), 1.70 (t, J = 2.1 Hz, 1H); ¹³C NMR (125 MHz, acetone-d6) δ 170.9, 166.5, 166.5, 166.4, 166.3, 134.5, 134.2, 134.2, 134.0, 133.9, 130.8, 130.8, 130.7, 130.6, 130.6, 130.5, 130.3, 130.3, 130.2, 129.5, 129.3, 129.2, 129.2, 100.8, 79.7, 72.3, 72.1, 71.8, 70.6, 63.1, 51.5, 22.7, 22.5; IR (neat): 3384, 1711, 1674, 1241, 1090, 1066, 1024, 706 cm⁻¹; HRMS (ESI): m/z calcd for C₄₆H₃₉NO₁₁ [M+Na]⁺ 804.2416 Found 804.2399; [α]_D^{23.1} =+19.8 (c = 1.17, MeOH).

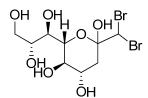
(2*R*,3*R*,4*R*,5*S*,6*S*)-3-(((2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahy dro-2*H*-pyran-2-yl)oxy)non-8-yne-1,2,4,5,6-pentaol (3m)


A white solid, Yield: 56%. ¹H NMR (500 MHz, D₂O) δ 4.39 (d, J = 8.0 Hz, 1H), 3.93 (s, 1H), 3.78-3.38 (m, 12H), 2.45 (dt, J = 17.3, 2.5 Hz, 1H), 2.35 (ddd, J = 17.3, 6.1, 2.5 Hz, 1H), 2.23 (t, J = 2.5 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 104.1, 82.2, 82.1, 75.9, 73.7, 73.2, 72.1, 71.9, 71.8, 69.3, 69.1, 68.9, 62.7, 61.7, 23.1; IR (neat): 3398, 1642, 1424, 1074 cm⁻¹; HRMS (ESI): m/z calcd for C₁₅H₂₆O₁₁ [M+Na]⁺ 405.1368 Found 405.1367; [α]_D^{23.0} = +7.4 (c = 0.87, H₂O).

(2*R*,3*R*,4*R*,5*S*,6*R*)-3-(((2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahy dro-2*H*-pyran-2-yl)oxy)non-8-yne-1,2,4,5,6-pentaol (4m)

A white solid, Yield: 45%. ¹H NMR (500 MHz, D₂O) δ 4.34 (d, J = 7.5 Hz 1H), 3.90-3.87 (m, 1H), 3.81-3.47 (m, 11H), 3.38-3.35 (m, 1H), 2.38 (ddd, J = 9.4, 7.4, 2.5 Hz, 1H), 2.33-2.26 (m, 1H), 2.23 (t, J = 2.0 Hz, 1H). ¹³C NMR (125 MHz, D₂O) δ 103.7, 82.5, 79.8, 75.6, 73.5, 73.2, 71.9, 71.8, 71.7, 70.6, 70.0, 69.2, 62.7, 61.5, 23.8; IR (neat): 3409, 1643, 1423, 1075 cm⁻¹; HRMS (ESI): m/z calcd for C₁₅H₂₆O₁₁ [M+Na]⁺ 405.1368 Found 405.1367; [α]_D^{23.1} = +6.7 (c = 1.09, H₂O).

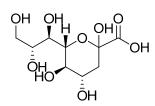
3. Rapid Synthesis of Sialic Acid Derivatives



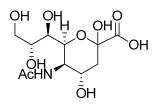
3-1. General procedure for sialic acid synthesis3-Deoxy-D-glycero-β-D-galacto-2-nonulosonic acid (6a)

To a 100 mL round bottom flask containing compound **3a** (1.1 g, 5 mmol) in 22.5 mL H_2O was added Br_2 (2.0 g, 25 mmol). The resulting reaction mixture was stirred for 10 min at room temperature to afford 5a. Excess amounts of bromine were removed *via* extraction with hexane (30 mL, 3 times). The aqueous solution containing the product was used directly into the next step without purification.

To a solution of **5a** in H₂O (22.5 mL) was added K₂CO₃ (3.46 g, 25 mmol). The mixture was stirred for 1 h at room temperature until TLC analysis indicated completion of the reaction. Subsequently, CH₃COOH was added to the reaction mixture until pH = 4. To the mixture were added *t*BuOH (22.5 mL) and 2-methyl-2-butene (5.3 mL, 50 mmol). NaClO₂ (497 mg, 5.5 mmol) dissolved in 5 mL water was added dropwise, and the mixture was stirred for 10 min at room temperature. The solvent was evaporated, and the resulting crude residue was passed through a Dowex 1X8 resin (formate form) using aqueous formic acid solution (0-1 M) as an eluent. The solvent was removed *via* lyophilization to afford 6a as white powder (1.02 g, 76% yield).


3-2. Characterization of sialic acids

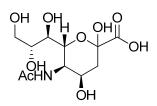
(4*S*,5*R*,6*R*)-2-(dibromomethyl)-6-((1*R*,2*R*)-1,2,3-trihydroxypropyl)tetrahydro-2H-p yran-2,4,5-triol (5a)


¹H NMR (500 MHz, D₂O) δ 5.81 (s, 1H), 3.90-3.85 (m, 2H), 3.81 (d, *J* = 9.8 Hz, 2H), 3.70-3.68 (m, 1H), 3.63 (dd, *J* = 10.9, 5.7 Hz, 1H), 3.44 (t, *J* = 9.75 Hz, 1H), 2.42 (dd, *J* = 12.6, 5.2 Hz, 1H) 1.59 (t, *J* = 12.6 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 97.9, 73.7, 72.3, 71.8, 71.0, 69.9, 65.0, 53.9, 39.5;IR (KBr): 3376, 1655, 1420, 1066, 1034;

HRMS (ESI): m/z calcd for C₉H₁₆Br₂O₇ [M+Na]⁺ 418.9135 Found 418.9146; [α]_D^{23.5} = -12.7 (*c* = 0.49, MeOH).

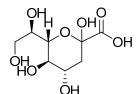
KDN (6a)

¹H NMR (500 MHz, D₂O) δ 3.93-3.88 (m, 2H), 3.79-3.75 (m, 2H), 3.67-3.64 (m, 1H), 3.57 (dd, *J* = 12.0, 6.3 Hz, 1H), 3.49 (t, *J* = 9.8 Hz, 1H), 2.18 (dd, *J* = 13.2, 4.6 Hz, 1H), 1.74 (t, *J* = 13.2 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 173.9, 95.9, 72.4, 71.1, 70.7, 69.3, 68.5, 63.9, 39.2; IR (KBr): 3399, 1743, 1440, 1281, 1210, 691 cm⁻¹ HRMS (ESI): m/z calcd for C₉H₁₆O₉ [M-H]⁻ 267.0721 Found 267.0721. [α]_D²⁵ = -42 (*c* = 1, H₂O).



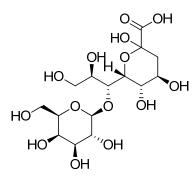
Neu5Ac (6j)

The reaction was conducted by following the general procedure, using **3j** (26.1 mg, 0.1 mmol), Br₂ (40 mg, 0.5 mmol) in H₂O (0.5 mL). The reaction mixture was stirred at room temperature for 5 min. Excess amounts of bromine were removed *via* extraction with hexane. The aqueous solution containing the product was used directly into the next step. K₂CO₃ (69.1 mg, 0.5 mmol) was added to the aqueous solution (0.5 mL) containing the crude product. The reaction was stirred for 30 min. Then CH₃COOH was added dropwise until pH = 4, and Pinnick oxidation using NaClO₂ (9.9 mg, 0.11 mmol), *t*BuOH (0.5 mL), and 2-methyl-2-butene (0.11 mL, 1 mmol) was carried out in one pot. The solution was evaporated, and the resulting crude residue was passed through a Dowex 1X8 resin (formate form) using aqueous formic acid solution (0-1 M) as an eluent. The solvent was removed *via* lyophilization to afford **6j** as white powder (22.9 mg, 74% yield).


¹H NMR (500 MHz, D₂O) δ 3.94-3.86 (m, 2H), 3.77 (t, *J* = 10.2 Hz, 1H), 3.69 (dd, *J* = 11.9, 2.6 Hz, 1H), 3.60 (ddd, *J* = 9.1, 6.4, 2.6 Hz, 1H), 3.46 (dd, *J* = 11.9, 6.4 Hz, 1H), 3.38 (dd, *J* = 9.1, 0.7 Hz, 1H), 2.11 (dd, *J* = 13.0, 4.9 Hz, 1H), 1.89 (s, 3H), 1.70 (dd, *J* = 13.0, 11.6 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 175.6, 174.0, 96.0, 71.1, 70.9, 68.9, 67.4, 63.9, 52.8, 39.5, 22.8; IR (KBr): 3433, 3398, 1719, 1637, 1559, 1457, 1128, 1069,

1036 cm⁻¹ HRMS (ESI): m/z calcd for C₁₁H₁₉NO₉ [M-H]⁻ 308.0987 Found 308.0994, $[\alpha]_D^{23.4} = -13.2 \ (c = 0.27, H_2O).$

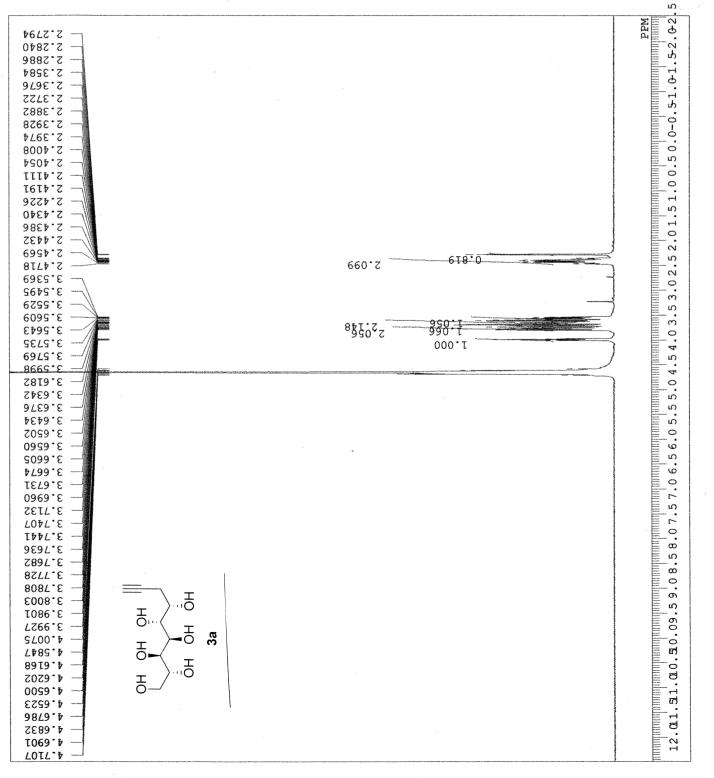
4-epi-Neu5Ac (6j')


Using **4j** (26.1 mg, 0.1 mmol), the reaction was conducted by following the procedure for preparing **6j**. The corresponding product was obtained as a pale pink solid (20.1 mg, 65% from **4j**). Mixture of anomers. For the major isomer: ¹H NMR (500 MHz, D₂O) δ 4.20 (d, *J* = 10.8 Hz, 1H), 4.05-3.94 (m, 2H), 3.64 (dd, *J* = 11.8, 2.4 Hz, 1H), 3.61 (ddd, *J* = 9.0, 5.6, 2.4 Hz, 1H), 3.50-3.40 (m, 2H), 2.02 (dd, *J* = 14.9, 3.3 Hz, 1H), 1.97 (dd, *J* = 14.9, 3.3 Hz, 1H), 1.87 (s, 3H); ¹³C NMR (125 MHz, D₂O) δ 174.9, 174.0, 95.8, 70.7, 69.1, 66.7, 66.4, 63.9, 48.3, 36.8, 22.6; IR (KBr): 3397, 1750, 1735, 1654, 1637, 1628, 1125, 1089, 1031 cm⁻¹ HRMS (ESI): m/z calcd for C₁₁H₁₉NO₉ [M-H]⁻ 308.0987 Found 308.0994,

(4*S*,5*R*,6*S*)-6-((*R*)-1,2-dihydroxyethyl)-2,4,5-trihydroxytetrahydro-2*H*-pyran-2-car boxylic acid (6d)

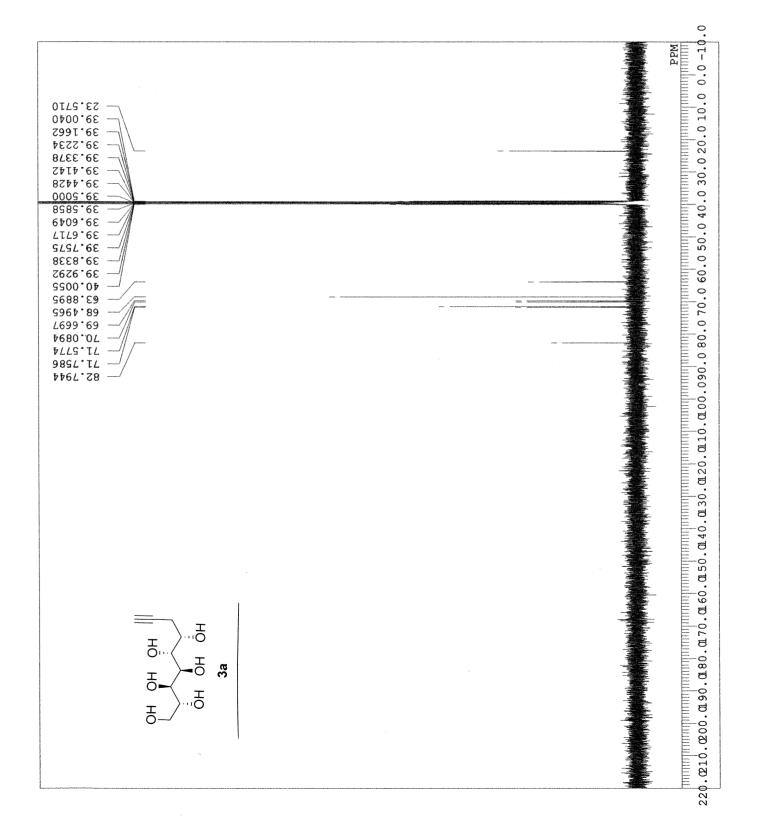
Using **4d** (19 mg, 0.1 mmol), the reaction was conducted by following the procedure for preparing **6j**. The corresponding product was obtained as a white solid. (19.5 mg, 82% from **4d**).

¹H NMR (500 MHz, D₂O) δ 3.91-3.88 (m, 1H), 3.81 (ddd, J = 11.6, 9.2, 5.1 Hz, 1H), 3.62-3.58 (m, 1H), 3.53 (dd, J = 11.6, 7.6 Hz, 1H), 3.49-3.41 (m, 2H), 2.07 (dd, J = 13.0, 5.1 Hz, 1H), 1.65 (t, J = 13.0, 1H); ¹³C NMR (125 MHz, D₂O) δ 174.5, 96.1, 73.3, 70.8, 69.3, 69.3, 63.5, 39.3; IR (KBr): 3406, 1685, 1438, 1403, 1207, 1142, 624 cm⁻¹; HRMS (ESI): m/z calcd for C₈H₁₄O₈ [M-H]⁻ 237.0615 Found 237.0626; [α]_D^{22.6} = -4.5 (c = 6.78, H₂O)

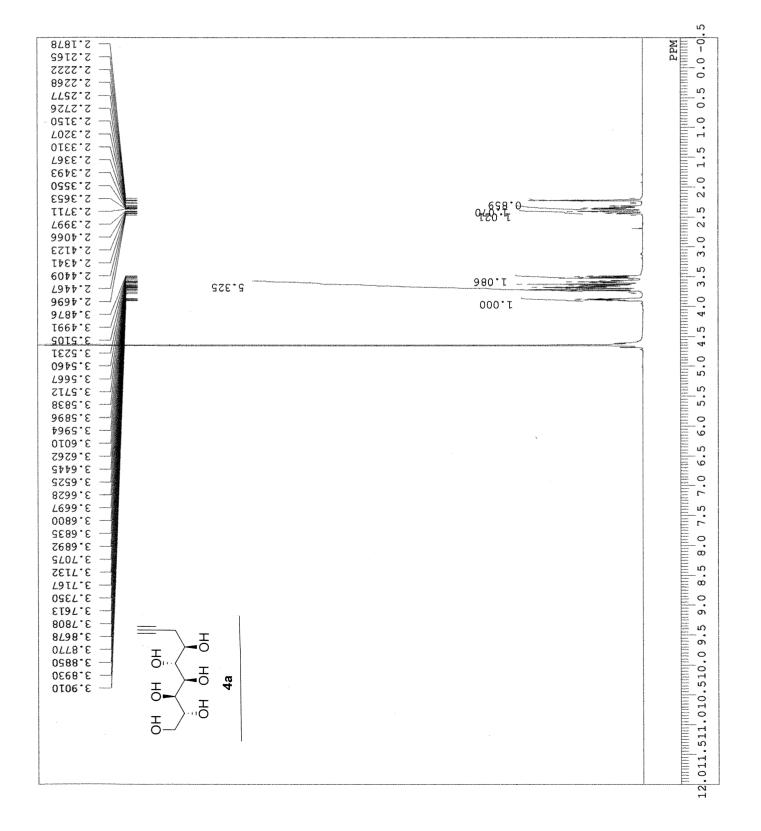


(4*R*,5*S*,6*R*)-6-((1*R*,2*R*)-2,3-dihydroxy-1-(((2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-trihydroxy-6-(hyd roxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)propyl)-2,4,5-trihydroxytetrahydro-2*H*-pyran-2-carboxylic acid (6m)

The reaction was conducted by following the general procedure, using **3m** (100 mg, 0.26 mmol), KBr (74.8 mg, 0.63 mmol), and Oxone (193 mg, 0.63 mmol) in H₂O (2.4 mL). The reaction mixture was stirred at room temperature for 5 min. Inorganic salts were roughly removed using C₁₈ reverse phase column, and the crude product was used directly for the next step without further purification. K₂CO₃ (144 mg, 1.0 mmol) was added to the crude product dissolved in H₂O (2.4 mL). The reaction was stirred for 30 min. Then CH₃COOH was added dropwise until pH = 4, and Pinnick oxidation using NaClO₂ (25.9 mg, 0.29 mmol), *t*BuOH (2.4 mL), and 2-methyl-2-butene (275 µL, 0.90 mmol) was carried out in one pot. The crude product was passed through a Dowex 1X8 resin (acetate form) using aqueous CH₃COOH solution (0-2 M) as an eluent. Products were purified by preparative reverse phase HPLC using a gradient of acetonitrile versus 0.1% TFA in water, affording **6m** as a white solid (59.3 mg, 53% from **3m**). Preparative HPLC was carried out as follows: YMC-Triart C18 (20 mm I.D × 250 mm) column using a linear gradient of 0-50% acetonitrile in 0.1% aqueous TFA over 30 min at room temperature with a flow rate of 7.0 mL min⁻¹.

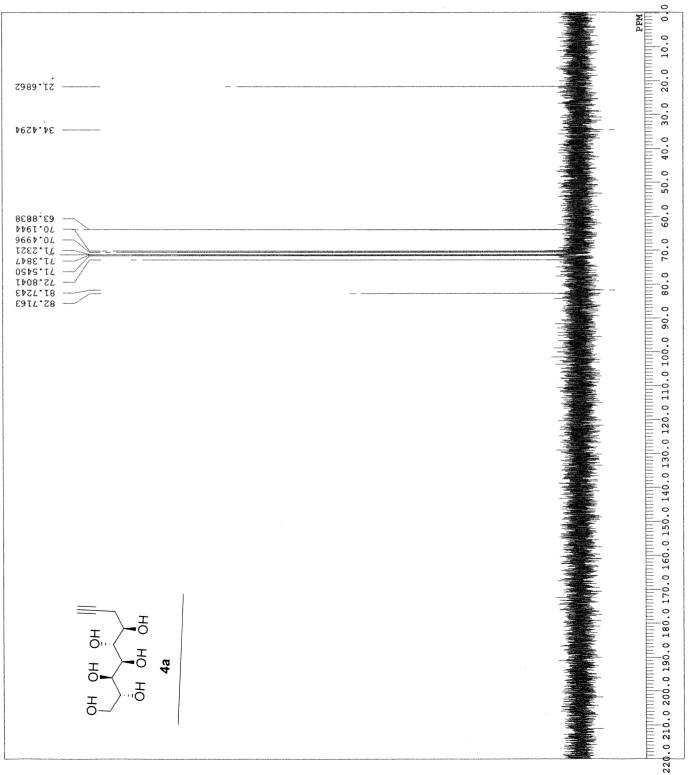

¹H NMR (400 MHz, D₂O) δ 4.33 (dd, J = 7.7, 2.1 Hz, 1H), 4.17 (dd, J = 9.3, 2.1 Hz, 1H), 3.83-3.76 (m, 5H), 3.63-3.48 (m, 6H), 3.40-3.35 (m, 1H), 2.92 (ddd, J = 18.1, 5.1, 2.2 Hz, 1H), 2.41 (dd, J = 18.1, 2.2 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ 180.4, 103.5, 87.1, 76.8, 75.6, 73.2, 71.7, 71.4, 69.3, 68.5, 67.9, 62.8, 61.9, 40.3; IR (neat): 3389, 1758, 1638, 1077, 1043; HRMS (ESI): m/z calcd for C₁₅H₂₆O₁₄ [M-H]⁻ 429.1249 Found 429.1266; [α]_D^{21.3} = +21.5 (c = 2.28, H₂O).

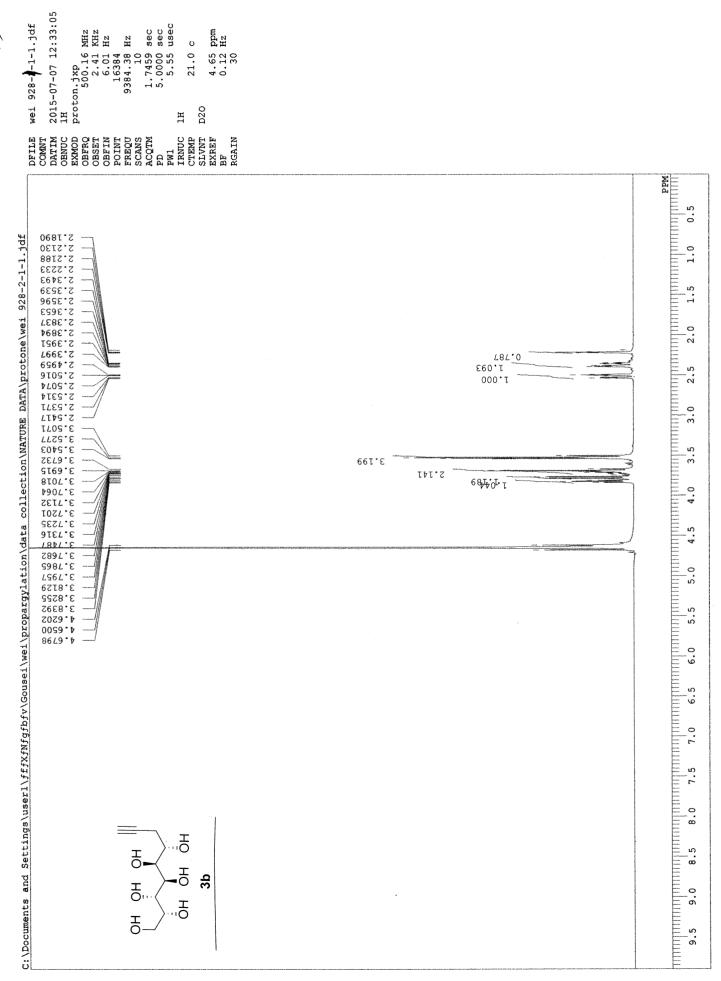
3a s-skp mannose alkyne.als 2014-12-06 10:43:55 sec usec MHz KHz Hz sec ppm Hz Hz υ proton.jxp 500.16 M 2.41 F 6.01 F 13107 1.7459 : 5.0000 : 5.55 1 7507.51 24.9 **4.6**5 0.12 32 12 D20 $1 \mathrm{H}$ lΗ DATIM DFILE COMNT OBNUC



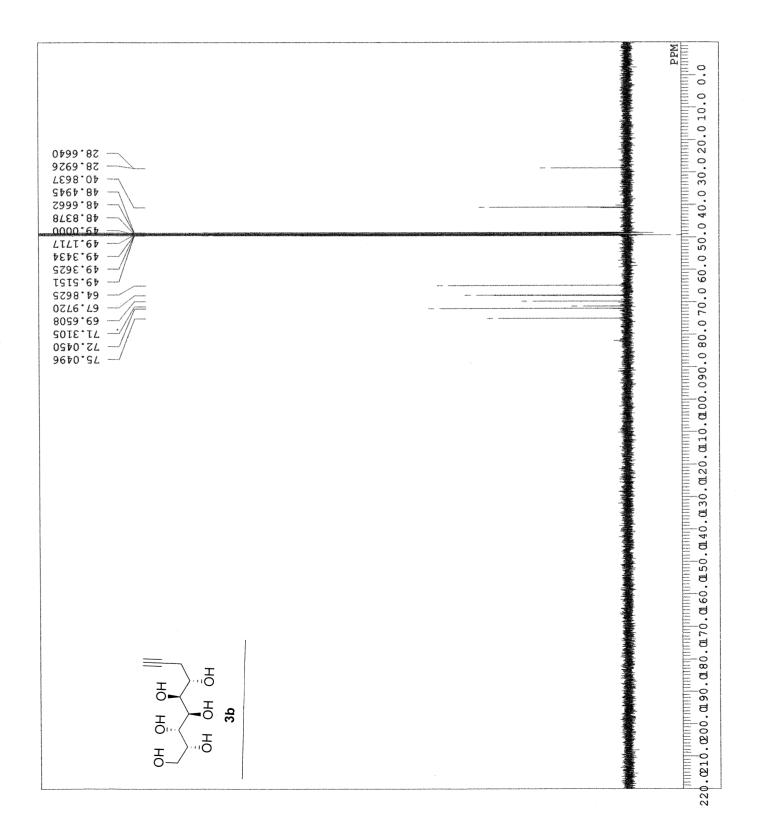
N. C. Sata C. C.

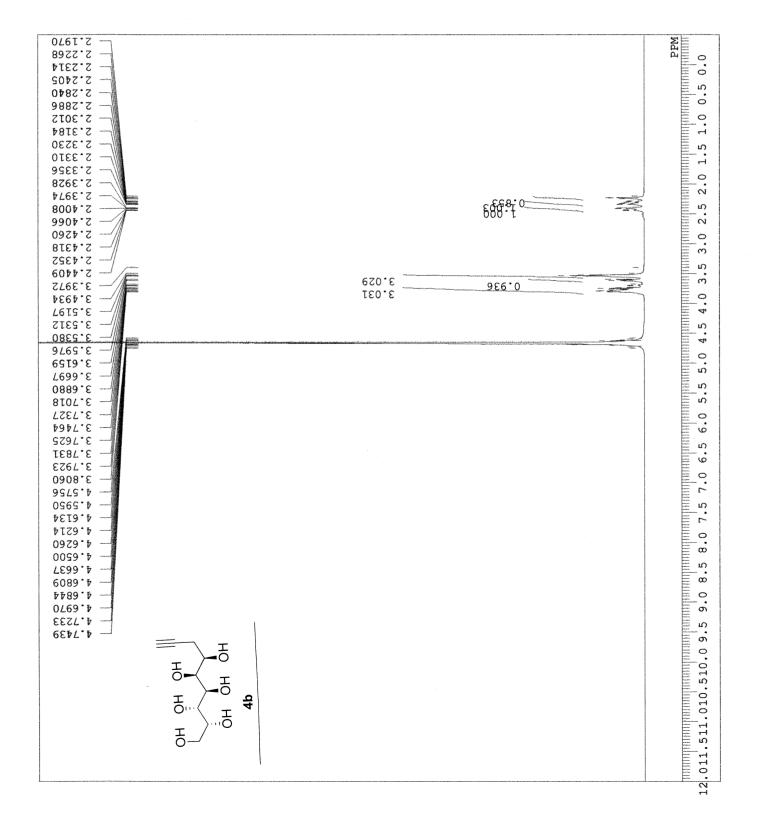
.jdf																	
alkyne	:27:06		MHZ	KHz	Hz		Hz		sec	sec	usec		U		udd	HZ	
3a s-skp mannose	2014-12-06 11:27:06	uoc	77	7.87	4.21	32767	39308.18	286	0.8336	2.0000	3.40	1H	25.7	DMSO		0.12	60
DFILE COMNT	DATIM	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	ВF	RGAIN




PGF R-skp mannose-1-1.jdf):26:59			MHZ	KHZ	Hz		Hz		sec	sec	usec		U		udd	Hz	
PGF R-skp mar	2015-05-23 10:26:59	HT	proton.jxp	500.16	2.41	6.01	16384	9384.38	80	1.7459	5.0000	5.55	1H	20.9	D20	4.65	0.12	30
DFILE COMNT	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN

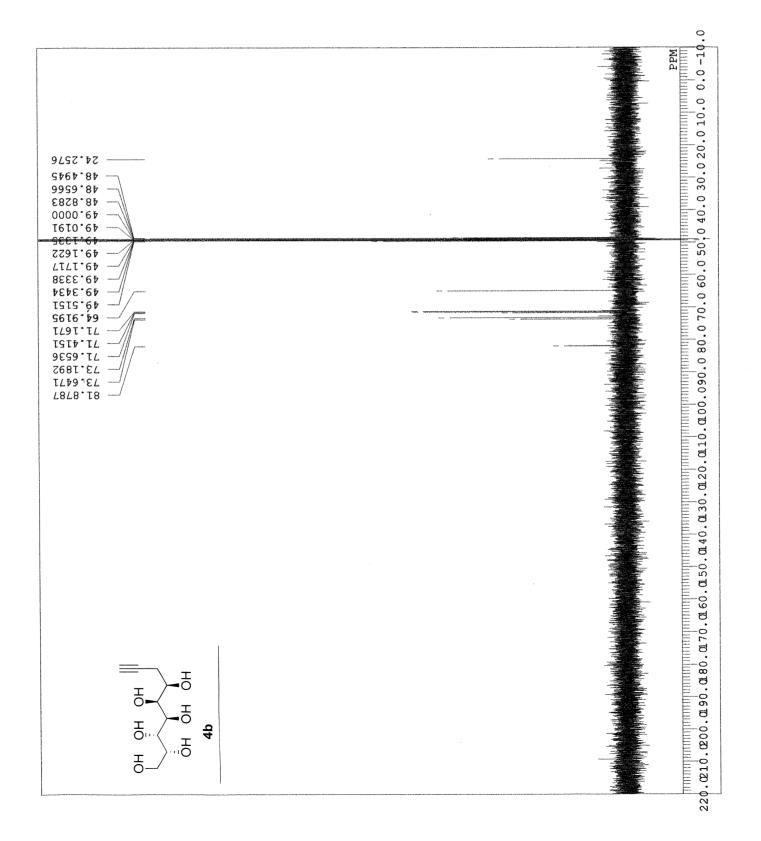
-1-1.jdf


iose cab	10:28:35		MHZ	KHz	Hz		Hz		sec	sec	usec		υ		udd	Hz	
4a R-skp mannose	2015-05-23 1(carbon.jxp	125.77	7.87	4.21	32768	31446.54	292	1.0420	2.0000	3.40		20.9	0	49.50	1.02	76
DFILE 4a COMNT	DATIM 201		OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	DD	TMđ	IRNUC 1H	CTEMP	SLVNT D20	EXREF	BF	RGAIN
ΔU	АC) 되	0	0	0	ρ,	F4	ß	đ	μ	ρ,	н	0	S	ы	щ	<u>а</u> с

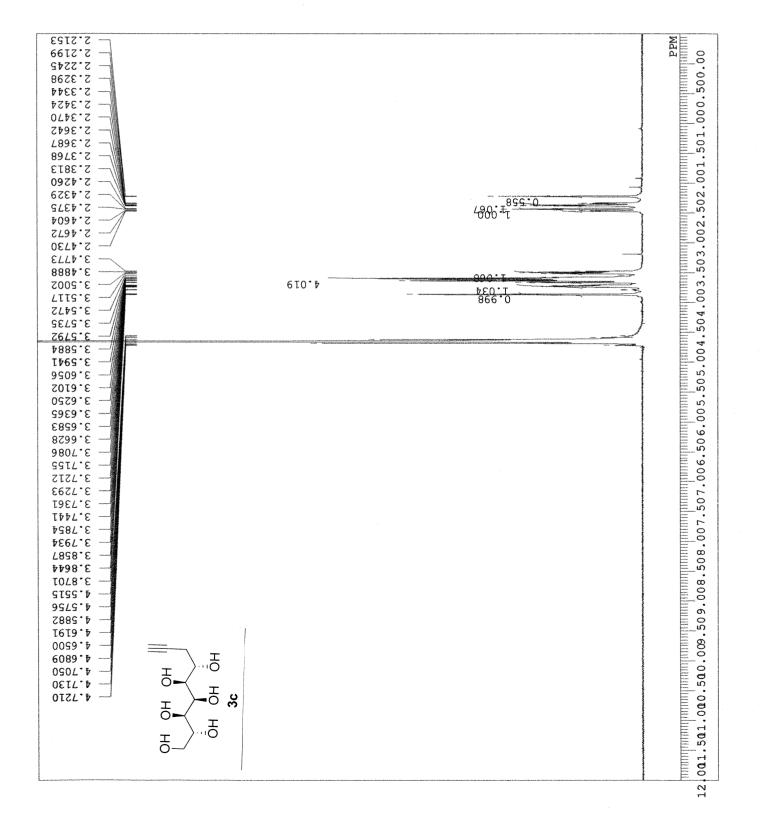


wei s-skp galactose alkyne ca: 2015-07-17 17:20:36 0.8336 sec 2.0000 sec 3.40 usec MHZ KHZ nz Hz HΖ HΖ υ carbon.jxp 125.77 N 7.87 H 4.21 H 26214 31446.54 1 998 49.00 0.12 60 21.9 CD30D 13C lН DFILE COMNT DATIM DATIM OBNUC EXMOD OBFRQ OBFRQ OBFRQ OBFRN POINT FREQU FREQU FRINUC CTEMP SLVNT EXREF BF SLVNT RGAIN

3

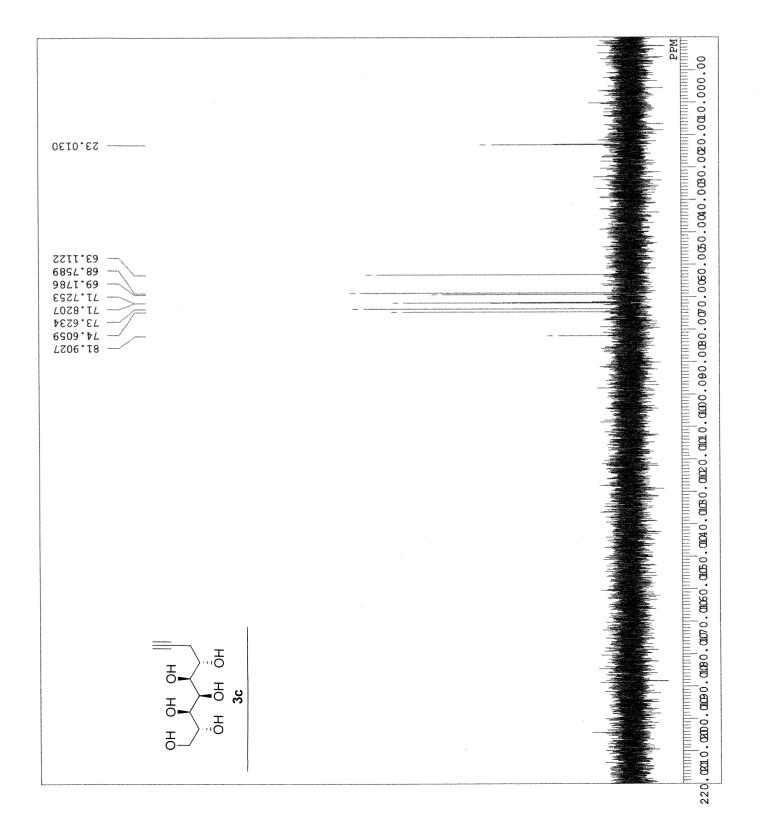


2	r-skp galactose-1-1.jdf	2015-07-25 12:59:53	H	proton.jxp	500.16 MHz	2.41 KHz	6.01 Hz	16384	9384.38 Hz	თ	1.7459 sec	5.0000 sec	5.55 usec	1H	21.3 c	D20	4.65 ppm	0.12 Hz	30
	DFILE COMNT	DATIM	OBNUC	EXMOD]	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN

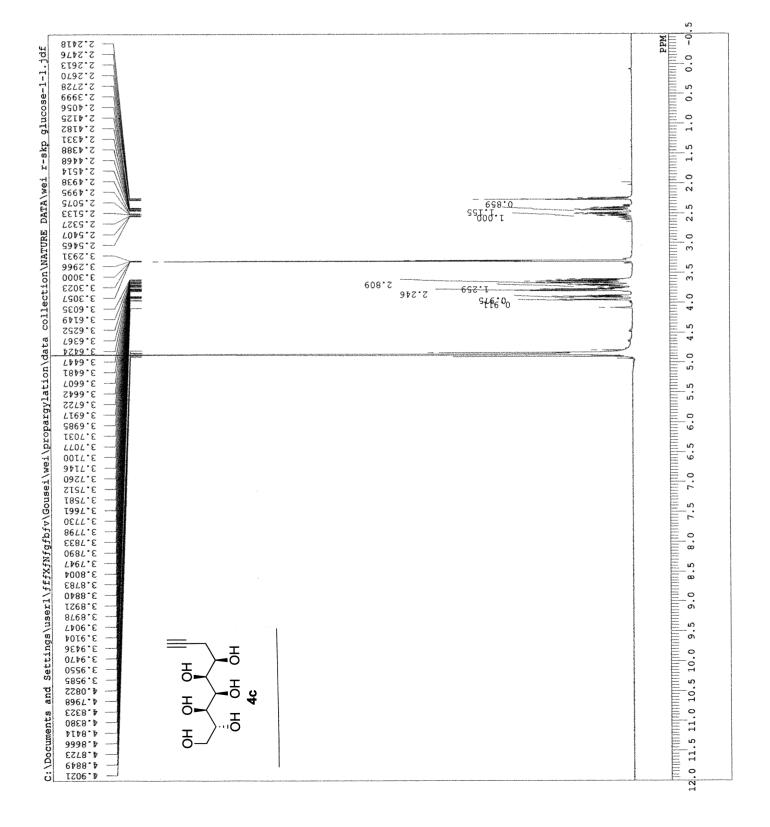


ff i r-galactose mathanol carb

	ose matl		15:35:02			MHZ	KHZ	Hz		Hz		sec	sec	usec		ы		udd	Hz		
•	wei r-galactose		2015-07-25 15	13C	carbon.jxp	125.77	7.87	4.21	32767	39308.18	118	0.0000	2.0000	3.40	1H	21.7	CD3OD	49.00	0.12	60	
	DFILE	COMNT	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	DD	LWI	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN	

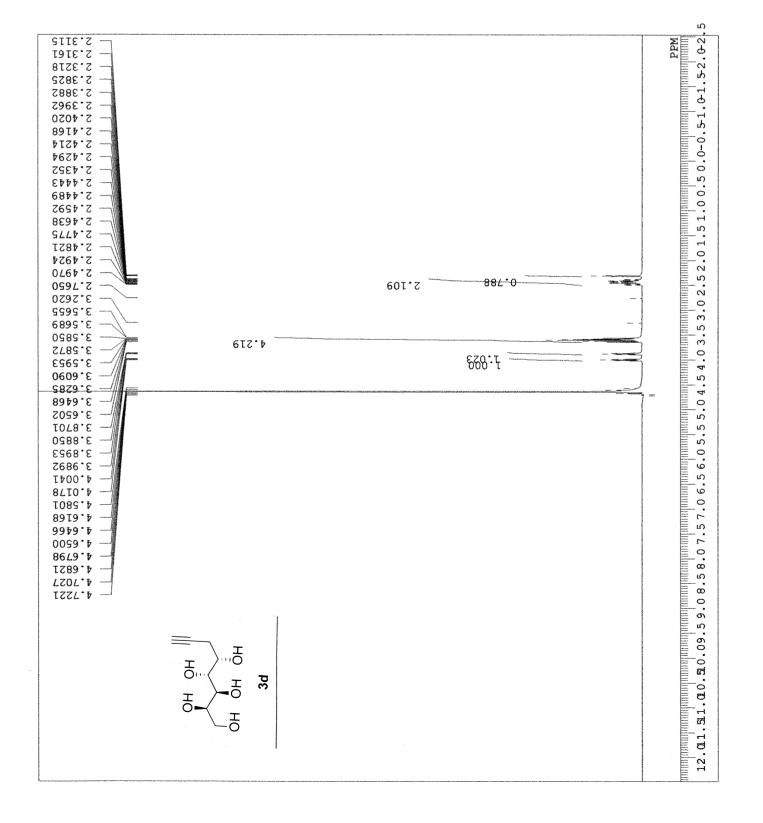


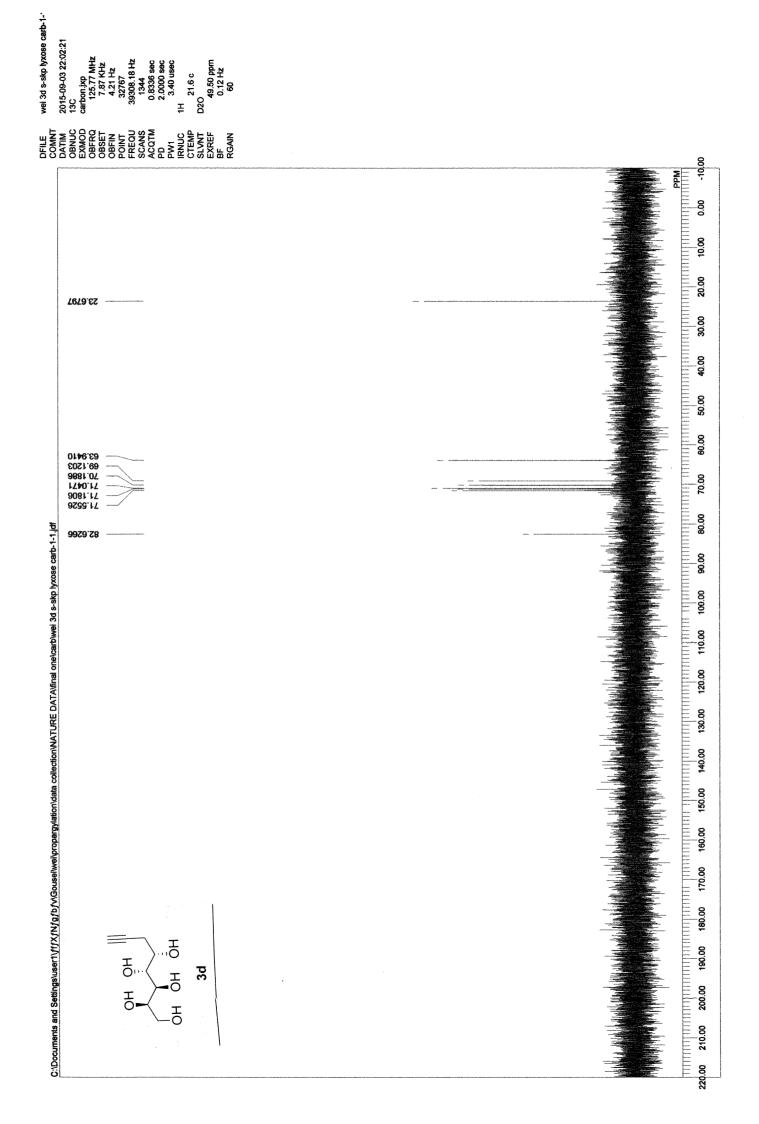
•	wei s-skp glucose-1-1.als	2015-07-11 10:31:54	1H	proton.jxp	500.16 MHz	2.41 KHz	6.01 Hz	13107	7507.51 Hz	6	1.7459 sec	5.0000 sec	5.55 usec	1н	20.8 c	D20	4.65 ppm	0.12 Hz	30	
	DFILE COMNT	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	БD	LWI	IRNUC	CTEMP	SLUNT	EXREF	ВF	RGAIN	

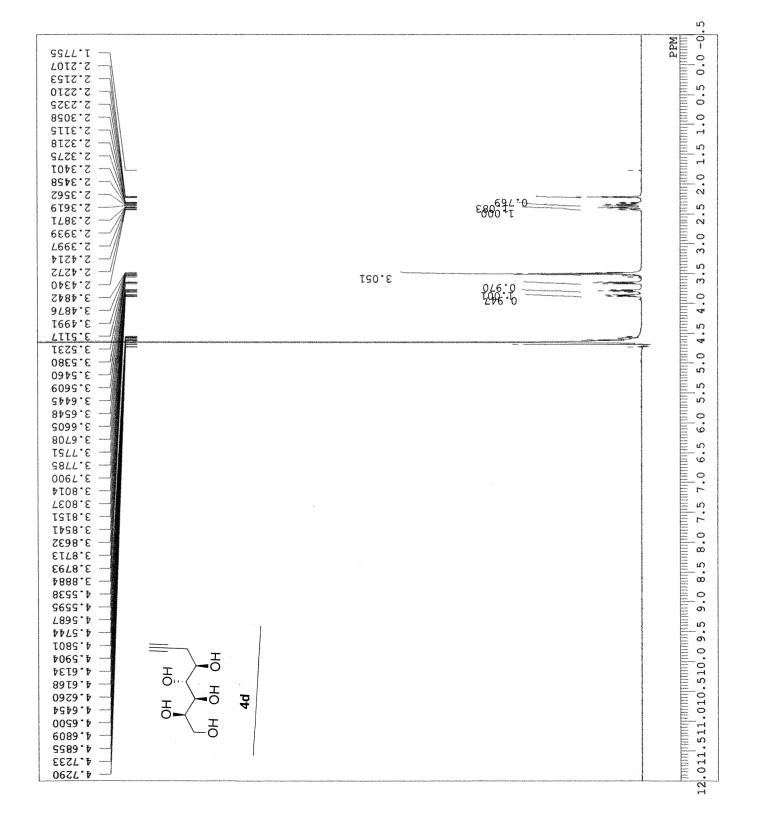


 $\mathcal{O}_{\mathcal{N}}$

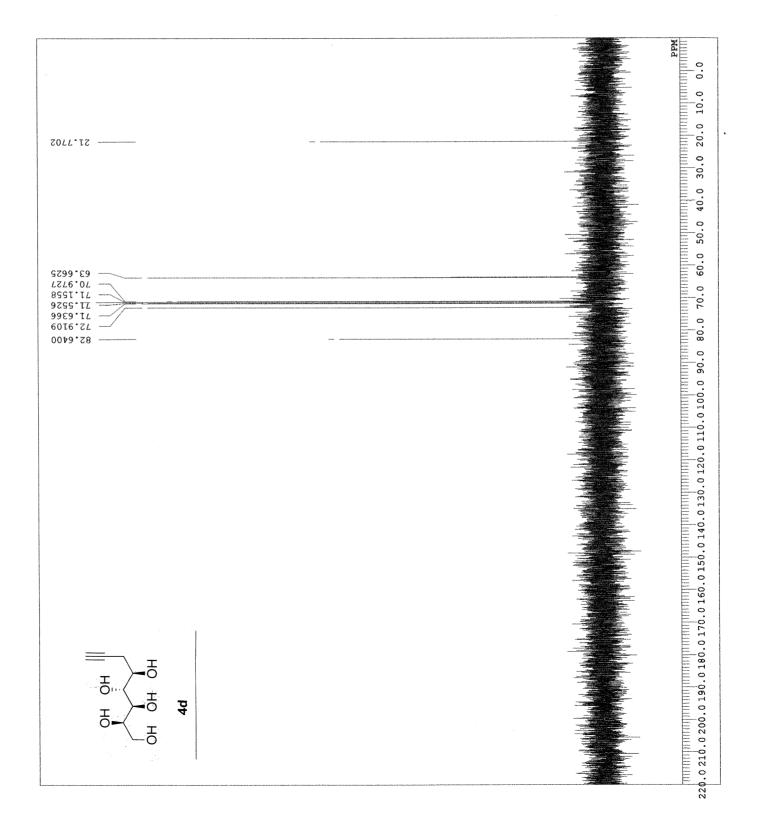
wei s-skp glucose carb-1-1.jd	2015-07-11 10:33:09	13C	carbon.jxp	125.77 MHz	7.87 KHz	4.21 Hz	32767	39308.18 Hz	1013	0.8336 sec	2.0000 sec	3.40 usec	1H	21.4 c	D20	77.00 ppm		60
DFILE COMNT	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN

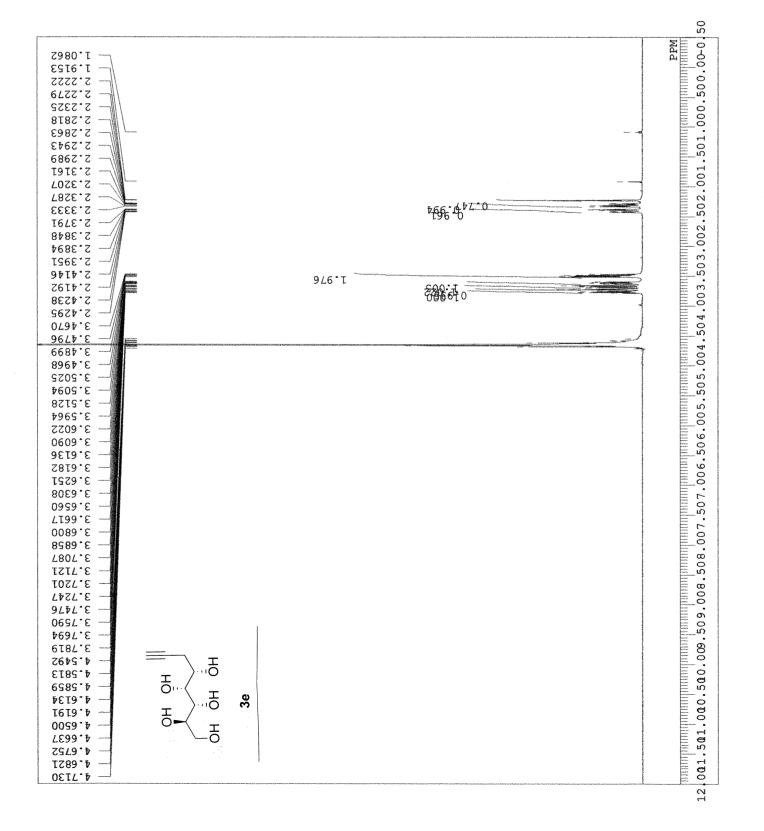


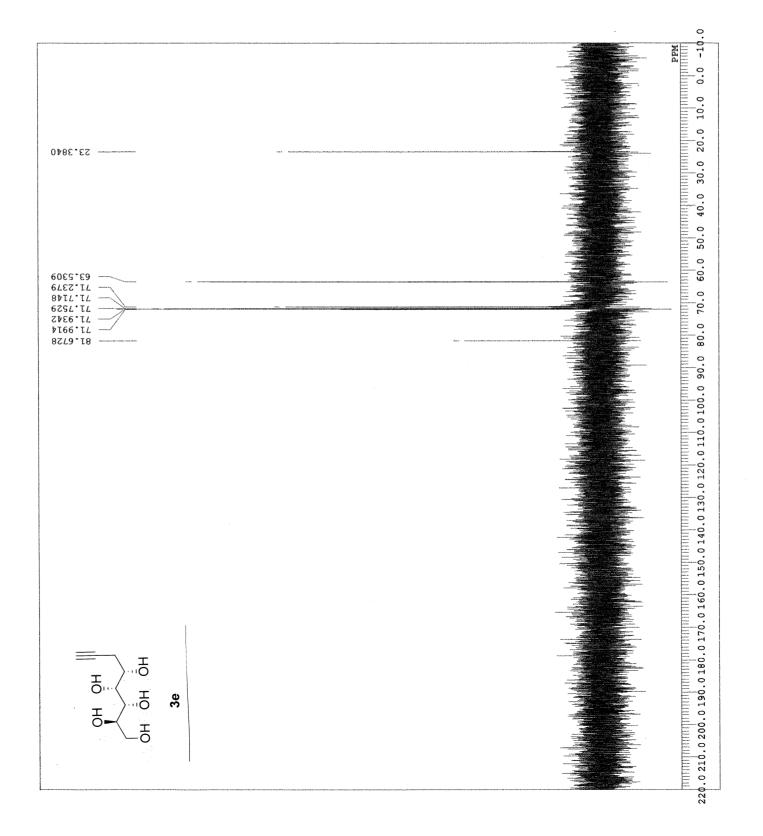

wei r-skp glucose-1-1.jdf		13:49:20			MHZ	KHZ	HZ		Hz		sec	sec	usec		U		udd		
wei r-skp glu		2015-07-28 1	IH	proton.jxp	500.16	2.41	6.01	16384	9384.38	12	1.7459	5.0000	5,55	ЛН	21.5	CD3OD	3.30	0.12	30
DFILE	COMNT	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	TNIOT	FREQU	SCANS	ACQTM	PD D	PW1	IRNUC	CTEMP	SLUNT	EXREF	BF	RGAIN

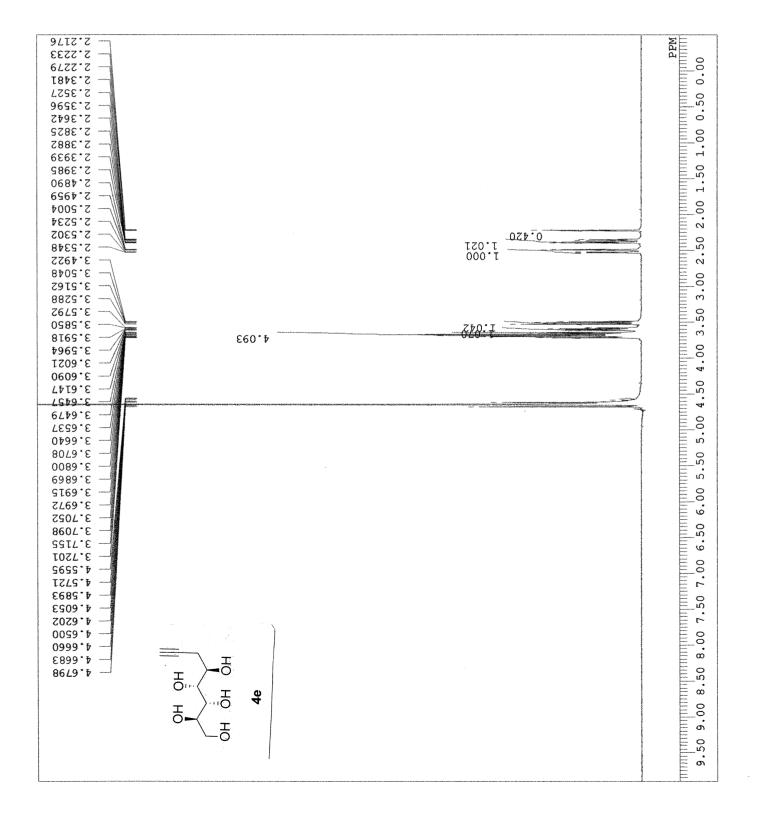

<pre>ri r-skp glu 15-09-11 10 15-09-11 10 125.77 125.77 125.77 3930818 3930818 0.8336 0.8336</pre>	1 NUC 1H EMP VNT D20 REF AIN AIN			
23.1551 23.6702 23.6702 23.6702 23.6702 23.6702 23.6702 23.6702 23.6702 23.6702 23.6702 23.6702 23.6702 23.6702 23.6702 23.7550 23.7561 23.7562 23.7562 23.7563 23.7564 24.764 25.7652 23.7564 24.764 25.7652 23.7561 23.7561 23.7561 23.7561 23.7561 23.7561 23.7561 23.7561 23.7561 23.7561 23.7571 23.7571 23.7571 23.7571 23.7571 23.7571 23.7571 23.7571 23.7571 23.7571 23.7571 23.7571 2		нс вой материалистика материалистика то полности	ADD ADD ADD ADD ADD ADD	
======================================				
∃	OH OH OH OH OH OH Ac			

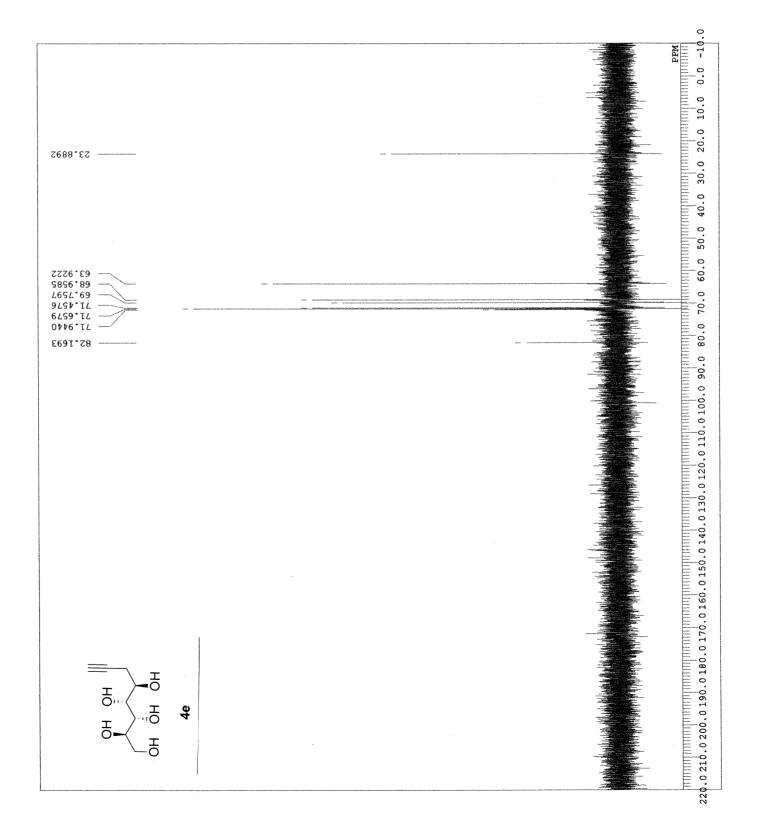
3d S-SKP lyxose alkyne.als 2015-04-27 16:50:14 1H		7507.51 Hz 12 1.7459 sec 5.0000 sec 5.55 usec	0 28.0 c 4.65 ppm 0.12 Hz 34
3d 201 1H	bro		1H D20
DFILE COMNT DATIM OBNUC	EXMOD OBFRQ OBSET OBFIN POINT	FREQU SCANS ACQTM PD PW1	IRNUC CTEMP SLVNT EXREF BF RGAIN

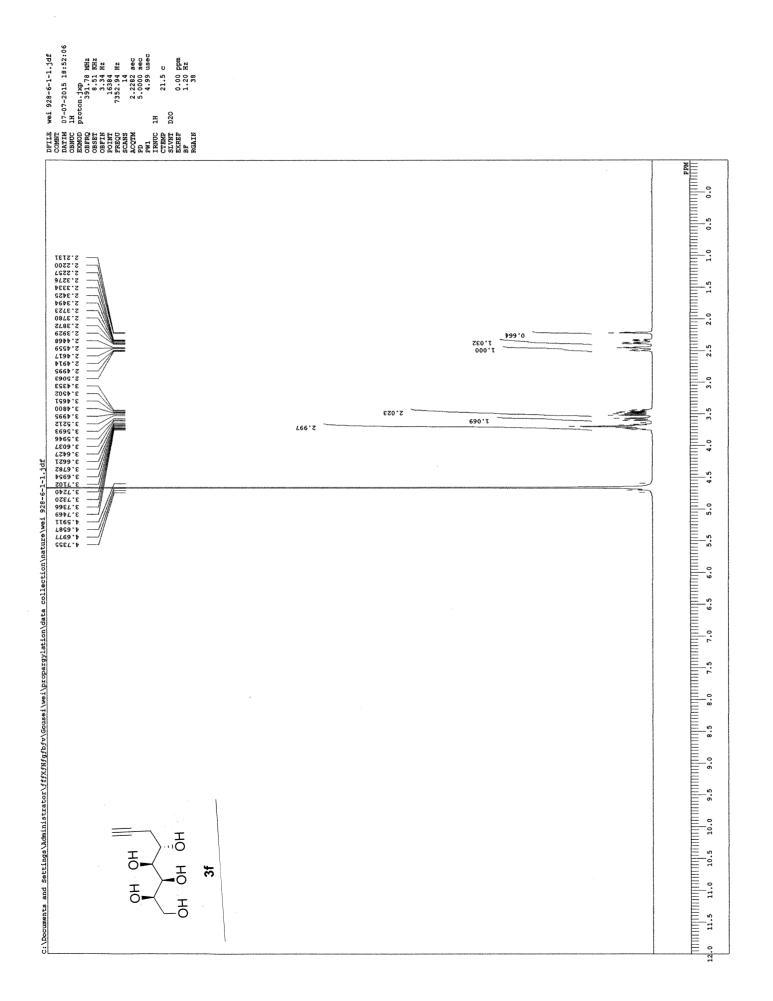



ose alkyne.als 5:57:01	MHz KHz Hz		sec sec usec	υ	ndd T
4d R-skp lyxose alk 2015-06-15 15:57:01 1H	proton.jxp 500.16 2.41 6.01	13107 7507.51 6	L. / 4.39 5.0000 5.55		4.65 0.12 30
4d 20	Ъг		ц	D20	
DFILE COMNT DATIM OBNUC	EXMOD OBFRQ OBSET OBFIN	POINT FREQU SCANS	ACQ'IM PD PW1 TRNIIC	CTEMP	EXREF BF RGAIN

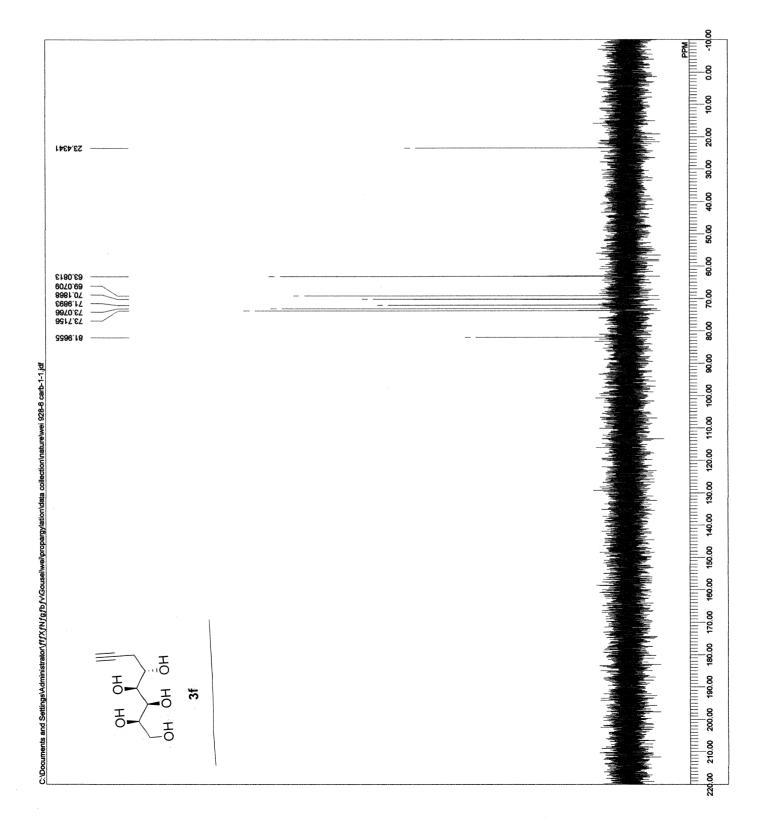

carb-1-1.jdf																	
lyxose	14:25:18		ZHM	KHZ	Hz		Hz		sec	sec	usec		υ		udd	Hz	
4d R-SKP PGF lyxose	2015-06-08 14	tou carbon.jxp	125.77	7.87	4.21	32768	31446.54	117	1.0420	2.0000	3.40	1H	21.6	D20	49.50	1.02	76
DFILE COMNT	DATIM	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	TMa	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN


3e s-skp arabinose-1-1.jdf	2015-07-08 16:22:18	1H	proton.jxp	500.16 MHz	2.41 KHz	6.01 Hz	16384	9384.38 Hz	9	1.7459 sec	5.0000 sec	5.55 usec	1H	21.2 c	D20	4.65 ppm	0.12 Hz	30	
DFILE	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN	

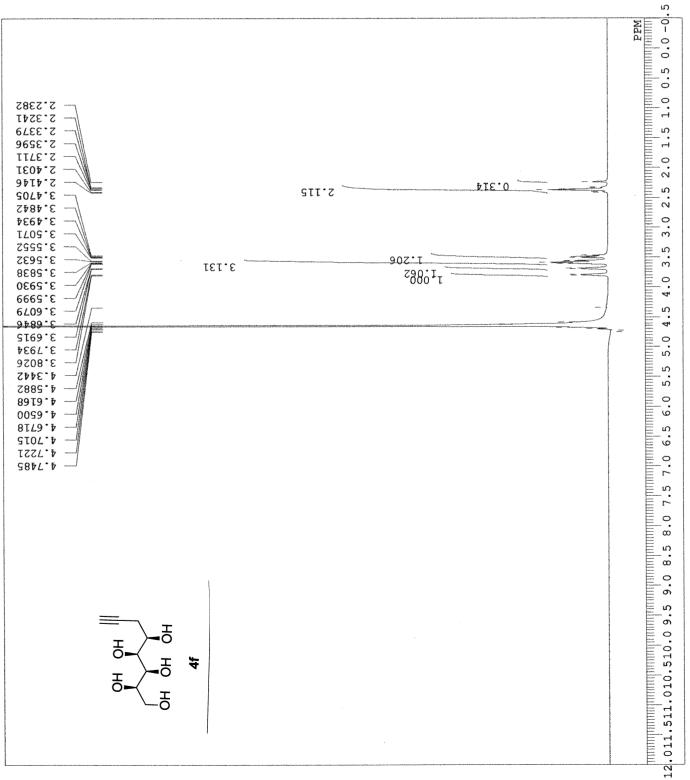

s-skp arabinose.jdf	-09 09:09:31		j×p	125.77 MHz	7.87 KHz	4.21 Hz	32767	39308.18 Hz	1440	.8336 sec	.0000 sec	3.40 usec		21.7 c		49.50 ppm	0.12 Hz	60
3e s-ski	2015-07-09 (13C	carbon.jxp					393(.0	2.		ТH		D20	2		
DFILE	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	Da	TMA	IRNUC	CTEMP	SLUNT	EXREF	BF	RGAIN

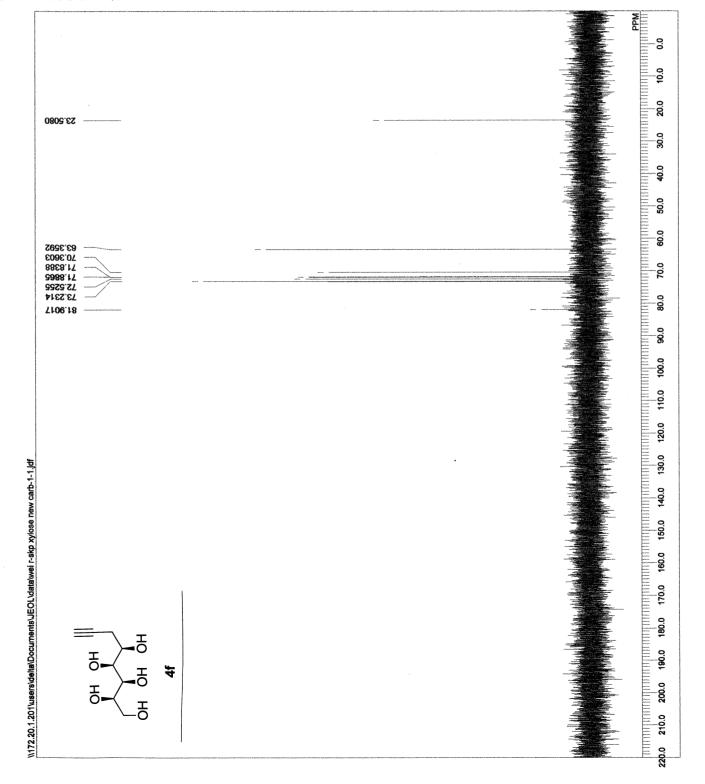


-1-1.als							04)										
abinose	9:26:50			MHZ	KHZ	Hz		Hz		sec	sec	usec		υ		udd	Hz	
wei r-skp arabinose-1-1.als	2015-07-10 09:26:50	rt.	proton.jxp	500.16	2.41	6.01	13107	7507.51	8	1.7459	5.0000	5.55		21.4	D20	4.65	0.12	30
DFILE We	DATIM 20	OBNUC 1H	EXMOD PI	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC 1H	CTEMP	SLVNT D	EXREF	BF	RGAIN

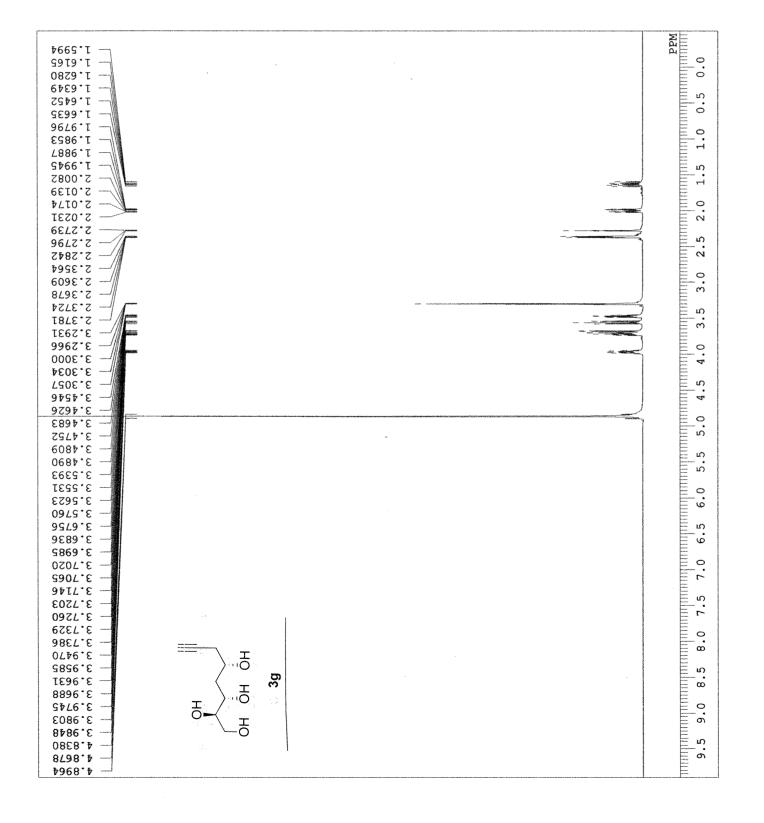


carb-1-1.als																		
wei r-skp arabinose	2015-07-10 09:28:20	13C	carbon.jxp	125.77 MHz	7.87 KHz	4.21 Hz	26214	31446.54 Hz	1323	0.8336 sec	2.0000 sec	3.40 usec	1H	21.7 c	D20	49.50 ppm	0.12 Hz	60
DFILE COMNT	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	LWI	IRNUC	CTEMP	SLVNT	EXREF	· BF	RGAIN

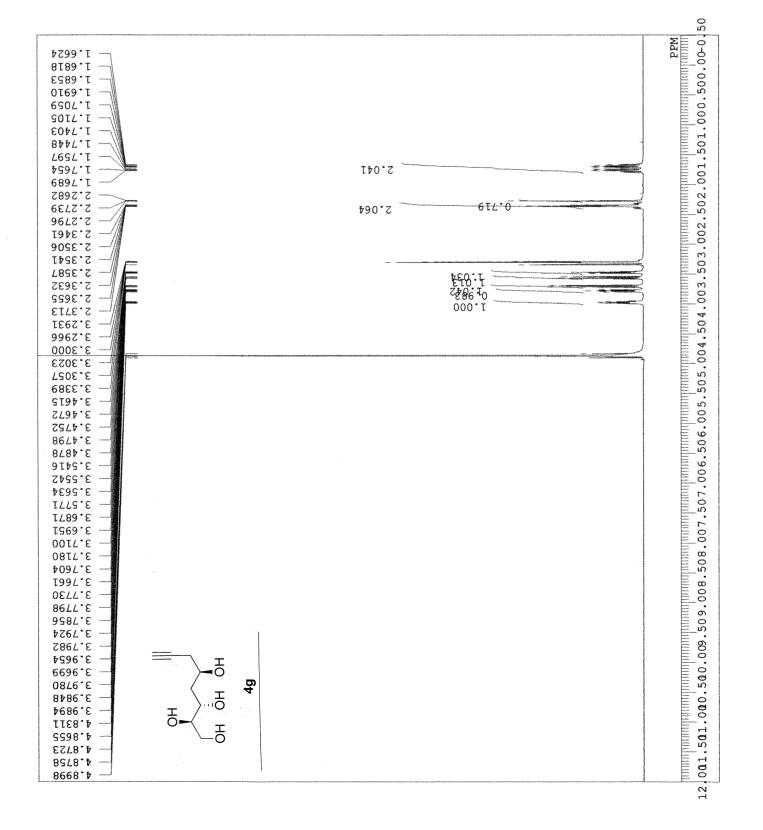


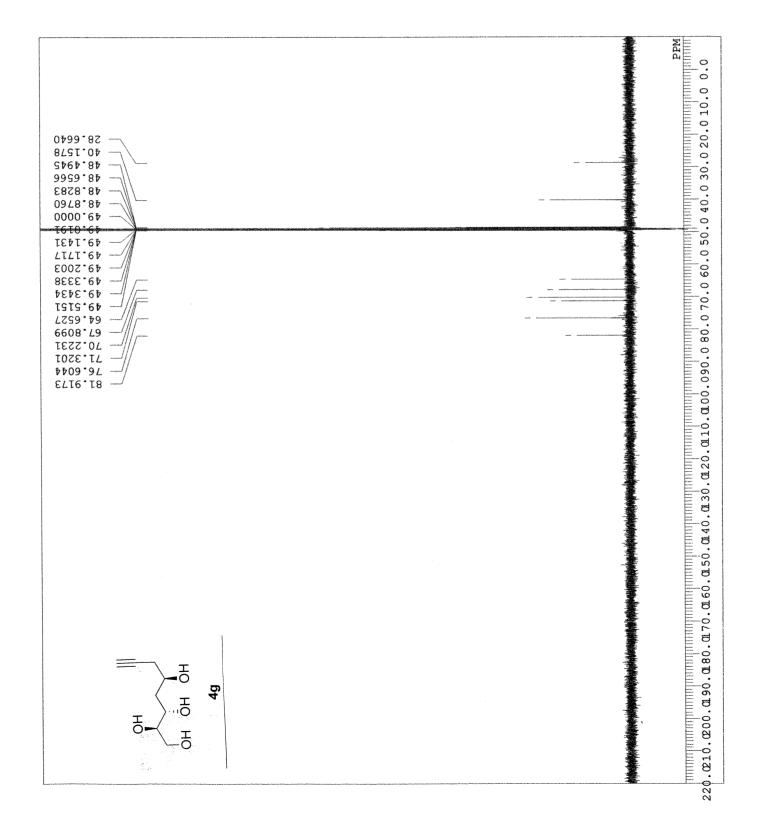


wei 928-6 carb-1-1.jdf 07-07-2015 18:54:28 13C carbon.jxp 98.52 MHz 2 6.52 MHz	8.74 HZ 8.74 HZ 32767 30788.18 HZ 1700 1.0643 sec 2.000045 sec 2.000045 sec 3.16 usec H 2.17 c 2.17 c 2.050 ppm 0.12 HZ 80
DFILE COMNT DATIM OBNUC COBFRQ OBFRQ	OBEN DESCANS POINT FREQU SCANS ACQTM PON PV1 PW1 PW1 PW1 PW1 PW1 PW1 PW1 PW1 PW1 PW

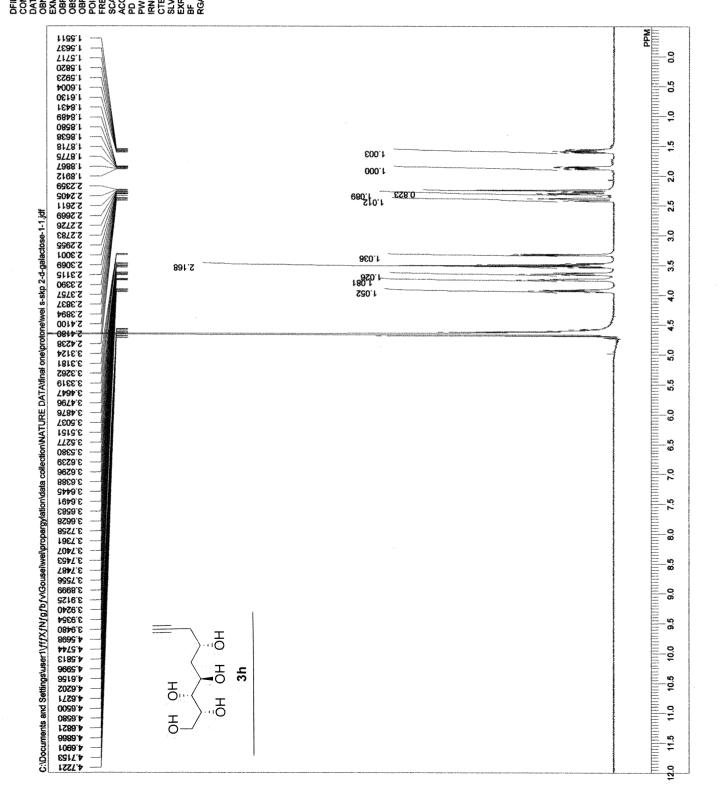


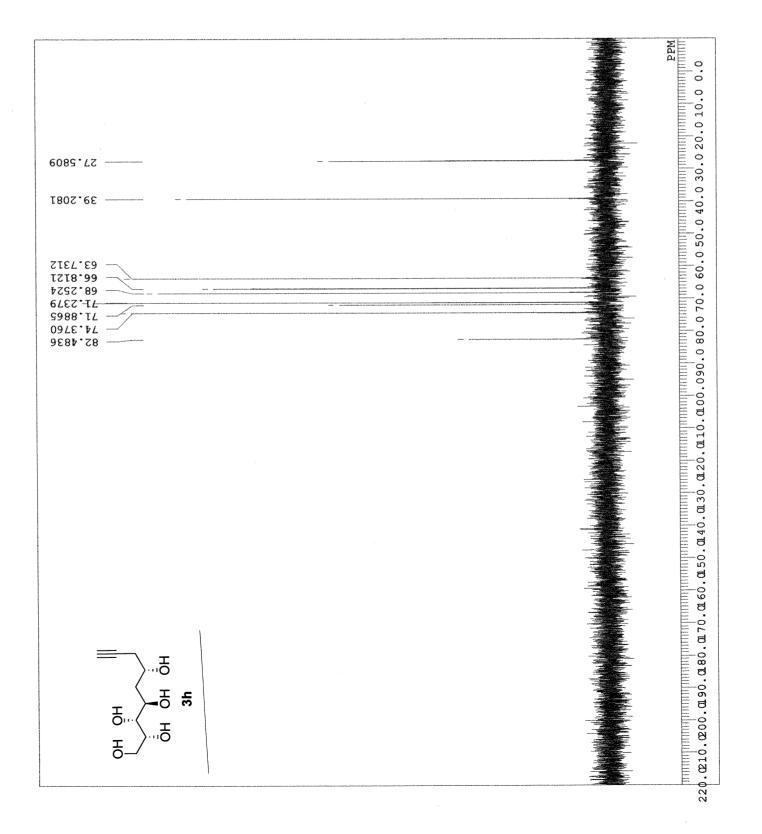
wei r-skp xylose new-1-1.jd	2015-09-08 23:09:05	1H	proton.jxp	500.16 MHz	2.41 KHz	6.01 Hz	16384	9384.38 Hz	10	1.7459 sec	5.0000 sec	5.55 usec	1H	21.3 c	D20		1.20 Hz	34	
DFILE	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN	

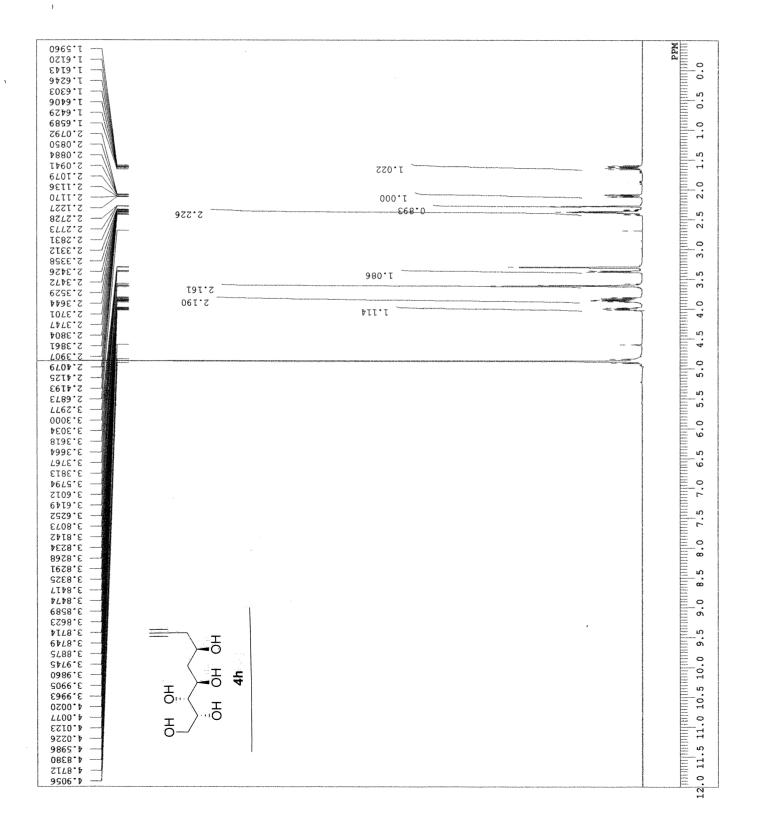

alkyne-1-																		
-ribose	4:40:56		MHZ	KHZ	Hz		Hz		sec	sec	usec		υ		mqq			
s-skp 2-d-ribose	2015-07-18 14:40:56	тн proton.jxp	500.16	2.41	6.01	13107	7507.51	10	1.7459	5.0000	5.55		21.2	OD	3.30	0.12	32	
3g	201	Dro Dro										lн		CD30D				
DFILE COMNT	DATIM	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN	

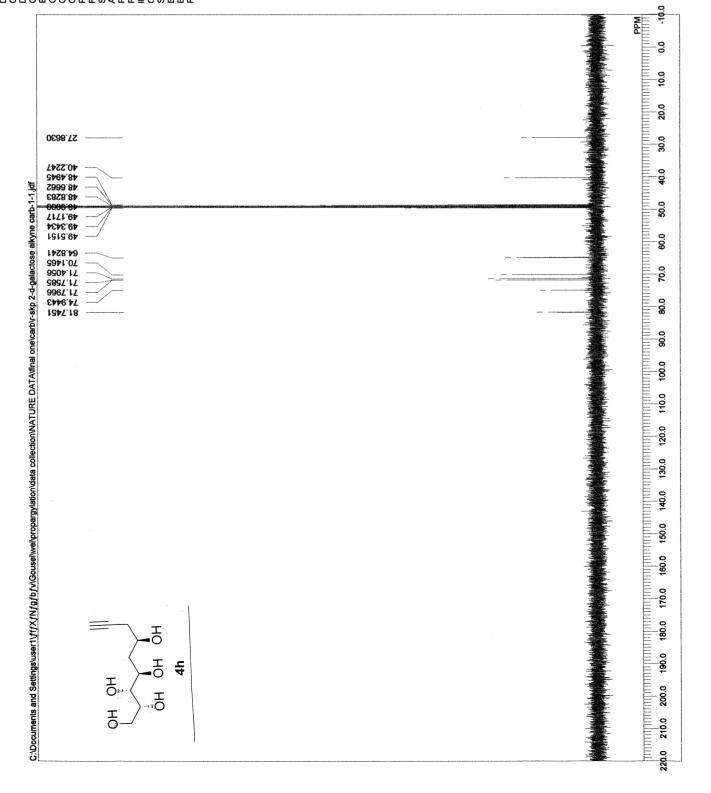

alkyne ca:	
3g s-skp 2-d-ribose 2015-07-18 14:42:39 13C carbon.jxp 125.77 MHz 7.87 KHz 4.21 Hz 4.21 Hz 2.6214 3.446.54 Hz 4.21 Hz 2.6214 3.40 usec 3.40 usec 3.40 usec 1H 21.7 c CD30D 49.00 ppm 60 012 Hz	
DETLE COMNT COMNT COMNT COMNT COMNT COMNT COMNT EXXNO COBETN COBETN PD PD PD PD PD PD PD PD PD PD PD CTEMP SUVNT CTEMP SUVNT CTEMP SUVNT CTEMP SUVNT CTEMP COMNT	

	MA
	PPW .010.000.0
	0
	20.010.0
	0 1
1428.72	0 40.0 30.0 20
6787.87	30.0
9959.84	<u> </u>
87.020.05	40.0
₽ <u>7</u> ₽3.8₽	STREET, STREET
6086*87 —	70.0060.0050.0040.0030.0020.0010.000.090.0 80.0 70.0 60.0 50
7171.04	60.0
ÞEÞE 6Þ	0 6
\$\$\$\$`6\$	70.0
2¢1¢.¢3	0 7
ÞSTÞ·TL -///	80.0
1969-71	- 0
8869.18 -	60.
	01
	0
	a 2
	30.
	6
	40
	5 .
	70.0060.050.0140.030.020.010.000.090.0
	0.0
	-0
	d 8
	E e
	00
	8
	.œ10
•	220.010.000.0390.080.0
	Ň

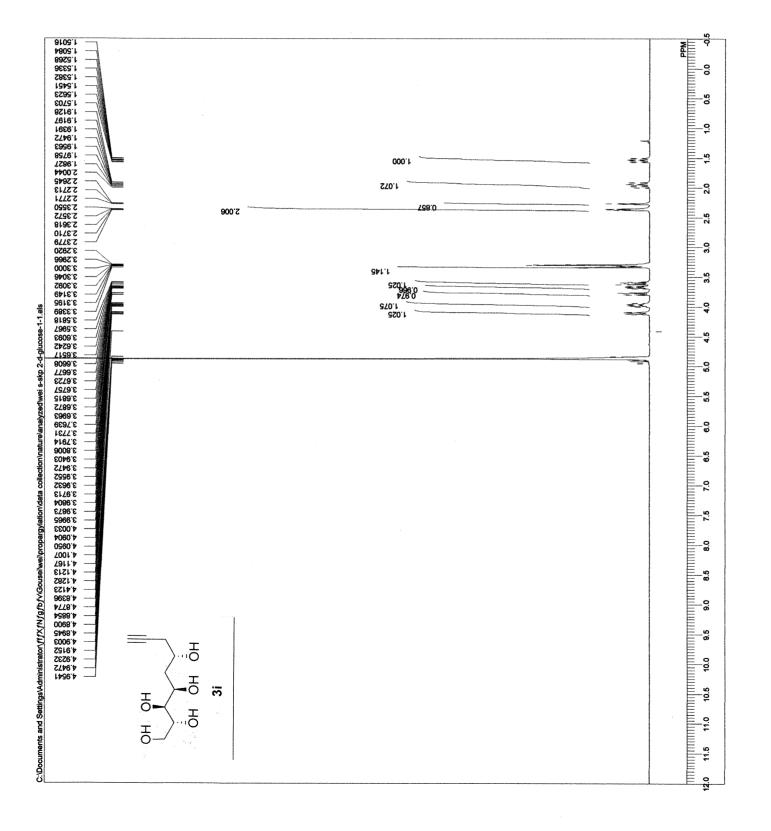

4g r-skp 2-d-ribose-1-1.jd	18:10:32			MHZ	KHZ	Hz		Hz		sec	sec	usec		υ		udd	Hz	
4g r-skp 2-d-	2015-07-17 18	1H	proton.jxp	500.16	2.41	6.01	16384	9384.38	80	1.7459	5.0000	5.55	1H	21.3	CD3OD	3.30	0.12	30
DFILE COMNT	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	ΒF	RGAIN


carb-1-1.																		
4g r-skp 2-d-ribose	2015-07-17 18:12:02	13C	carbon.jxp	125.77 MHz	7.87 KHz	4.21 Hz	26214	31446.54 Hz	668	0.8336 sec	2.0000 sec	3.40 usec	1H	21.7 c	CD3OD	49.00 ppm	0.12 Hz	60
DFILE	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN

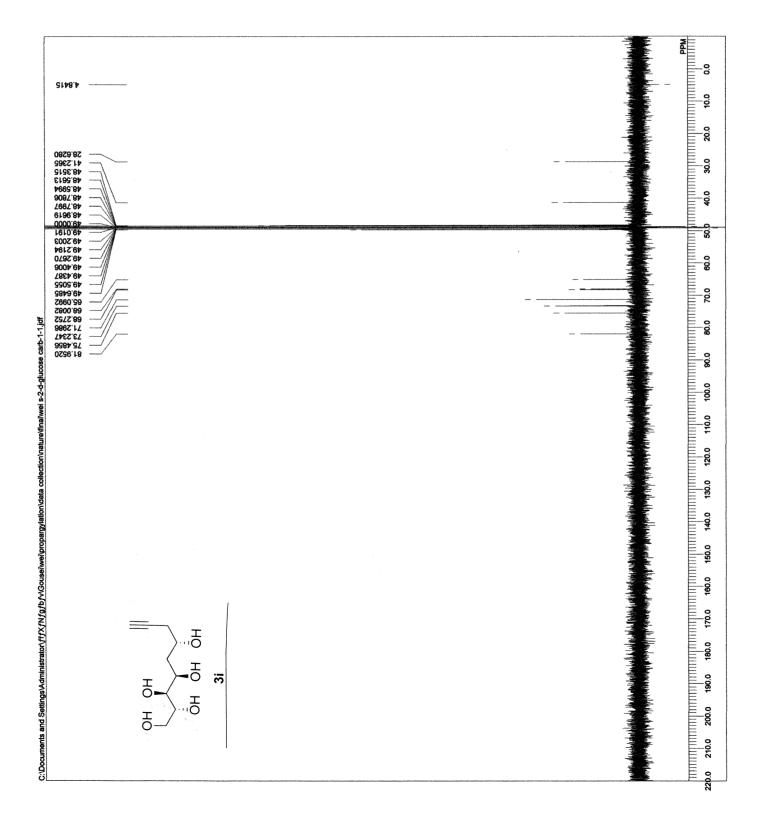

wei s-skp 2-d-gałactose-1-1.jd	2015-07-28 08:57:21 1H		500.16 MHz 2.41 KHz	6.01 Hz	16384	9384.38 Hz	6	1.7459 sec	5.0000 sec	5.55 usec	1H	21.2 c	D20	4.65 ppm	0.12 Hz	30	
:ILE DMNT	MIN	MOD	SFRQ SSET	3FIN	INT	REQU	SANS	отм	~	5	NUC	EMP	VNT	REF		AIN	


DFILE wei s-skp 2-d-galactose carb-COMNT 2015-09-09 21:18:11 OBNUC 13C 2000.jxp OBFRQ 125.77 MHz OBFRQ 125.77 MHz OBFRQ 125.77 MHz OBFRQ 132 OBFRQ 1325.77 MHz OBFRQ 125.77 MHz OBFRQ 135.77 MHz OBFRQ 155.77 MHZ OD 155.77 MHz OBFRQ 155.77 MHZ OD 156.77 MHZ OD 177 MHZ

alkyne-1-1.jdf										
r-skp 2-d-galactose alkyne-1-1.jdf 2015-07-27 10:20:13	lH proton.jxp	500.16 MHz 2.41 KHz	6.01 Hz 16384	9384.38 Hz 11	1.7459 sec 5 0000 sec		1H 21.0 C		3.30 ppm 0.12 Hz	30
DFILE COMNT DATIM	OBNUC	OBFRQ OBSET	OBF IN POINT	FREQU SCANS	ACQTM	IMd	IRNUC	TUVIS	EXREF BF	RGAIN

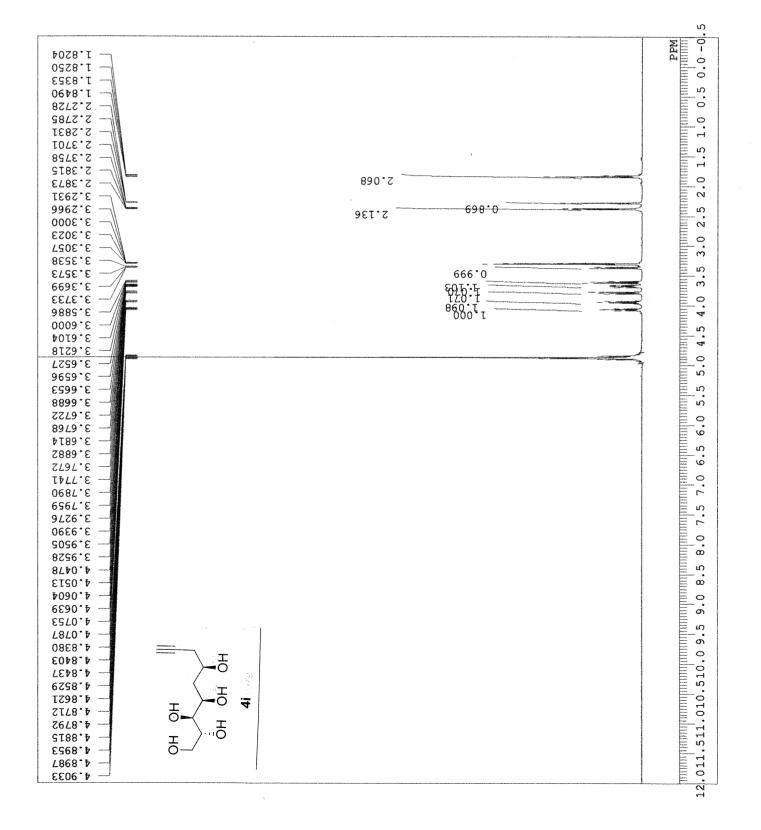


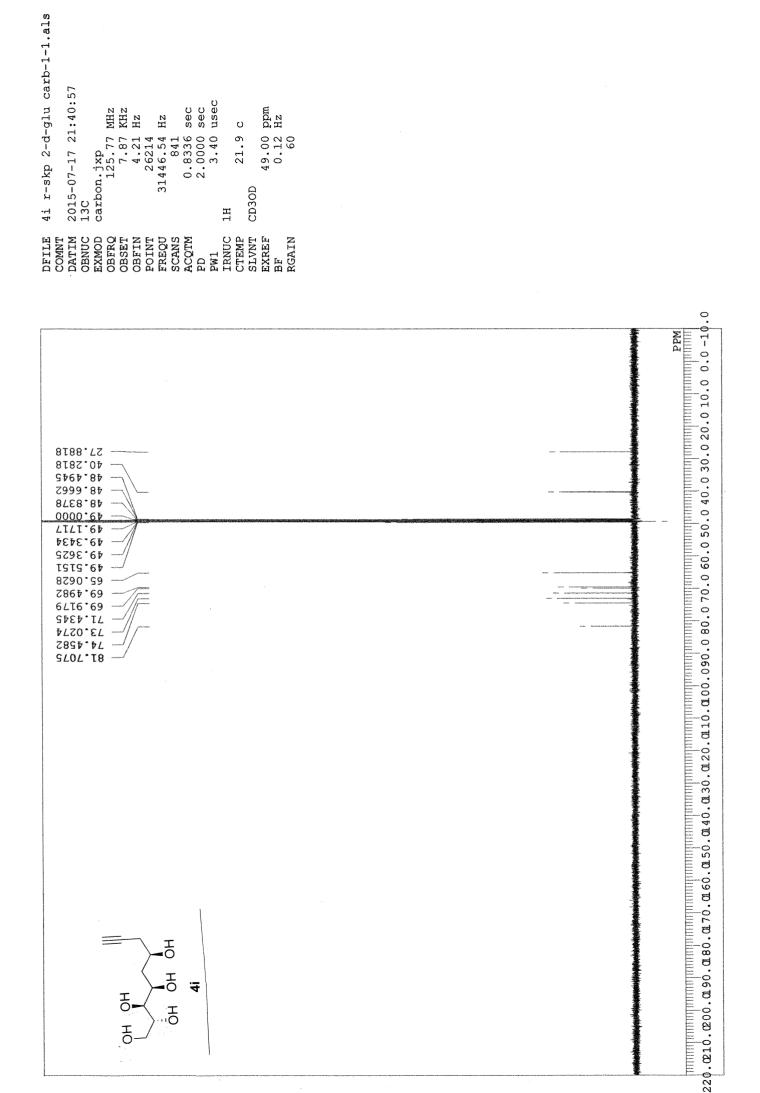
K K	r-skp 2-d-galactose alkyne carb-1-1.jdf	2015-07-27 10:22:03 13C	carbon jxp	125.77 MHz 7 87 KHz	4.21 Hz	32767	39308.18 Hz	164	0.8336 sec	2.0000 sec	3.40 usec	Ĥ	21.6 c	CD3OD	49.00 ppm	0.12 Hz	60
	DFILE	DATIM	EXMOD	OBFRQ	OBFIN	POINT	FREQU	SCANS	ACQTM	g	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN



Ť,

wei s-skp 2-d-glucose-1-1.als 21-08-2015 20:28:40 1H 291.78 Mirz 391.78 Mirz 391.78 Mirz 391.78 Mirz 391.78 Mirz 391.74 Mirz 391.74 Mirz 3.34 Hz 3.34 Hz 5822.35 Hz 5822.35 Hz 5.2282 sec 5.2282 sec 5.2282 sec 5.2282 sec 5.2282 sec 5.2283 sec 5.2383 sec 5	
DFILE COMNT OBRID OBRID OBREQ OBRED OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBREQ OBRE OBRE OBRE OBRE OBRE OBRE OBRE OBRE	

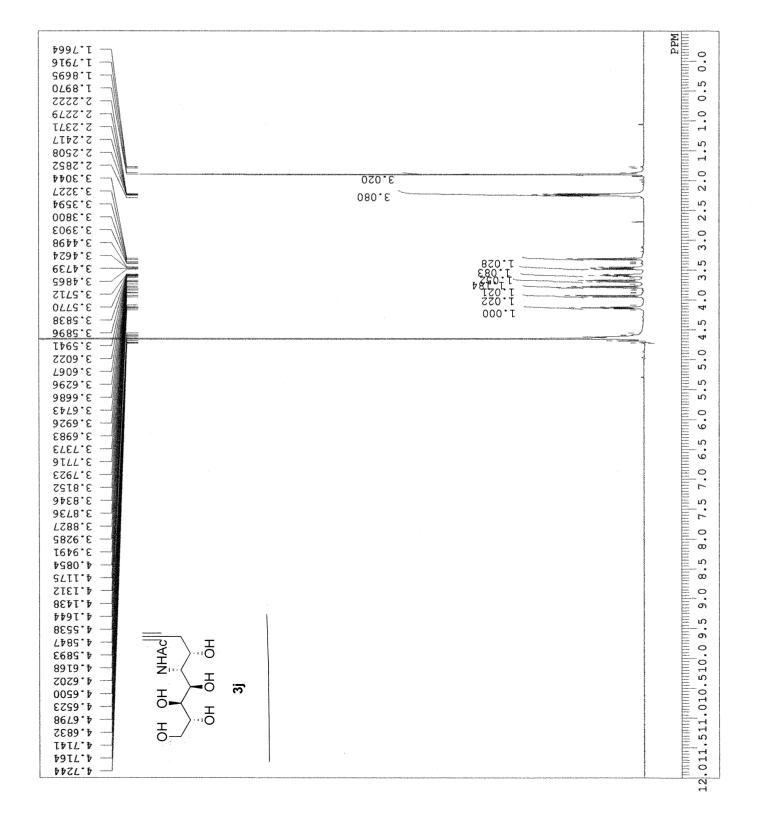

wei s-2-d-glucose carb-1-1.jdf 21-08-2015 20:37:44 13C carbon.jxp	84.52 MHz 84.52 MHz 8.74 Hz 8.74 Hz 3.2767 3.0784 8 Hz 1.0643 sec 1.0643 sec 1.0643 sec 1.0643 sec 2.0000 sec 3.16 usec 1.1 2.2.6 CD350D 49.00 pm 0.12 Hz 80 0 pm
DFILE COMNT DATIM OBNUC EXMOD	085FR 085FR 085FN 085FN 085ANS 85ANS 85ANS 85ANS 85CNT 1700 1700 1700 1700 1700 1700 1700 170



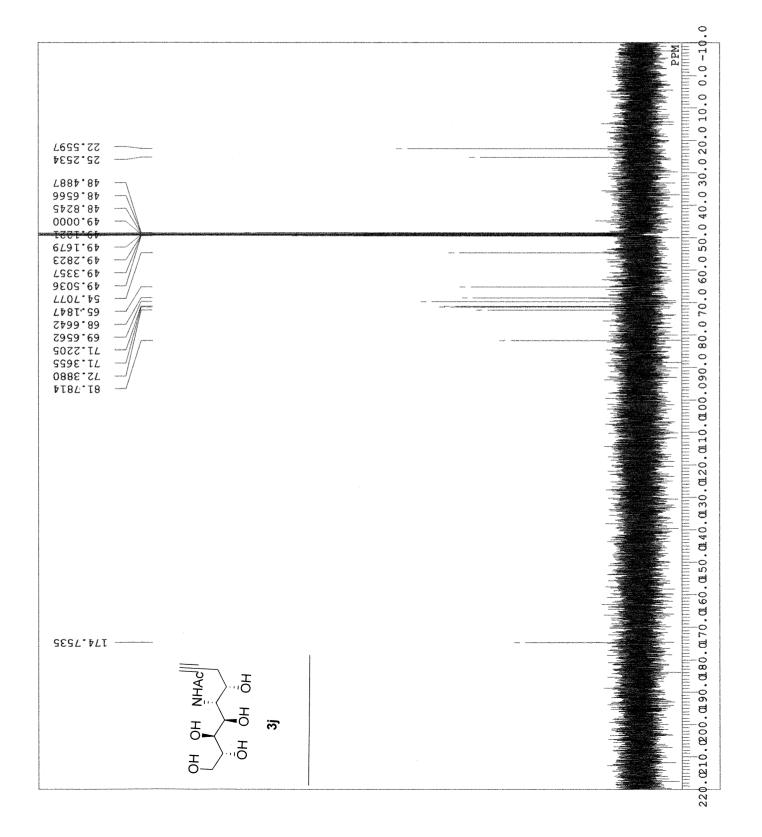
5.1

4i r-skp 2-d-glu alkyne.als	1:39:37			MHZ	KHZ	Hz		Hz		sec	sec	usec		U		udd			
4i r-skp 2-d	2015-07-17 21:39:37	1H	proton.jxp	500.16	2.41	6.01	13107	7507.51	4	1.7459	5.0000	5.55	1H	21.2	CD30D	3.30	0.12	30	
DFILE	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN	

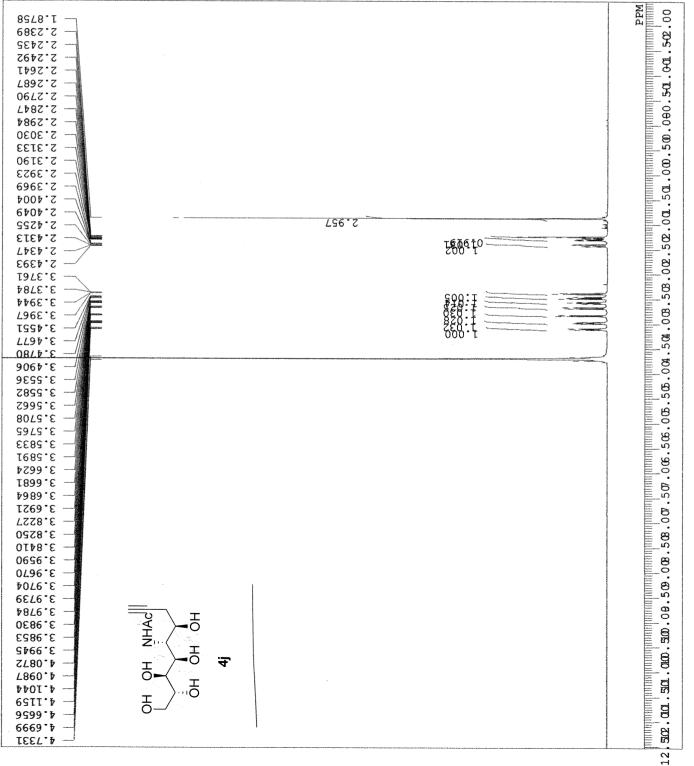
ø

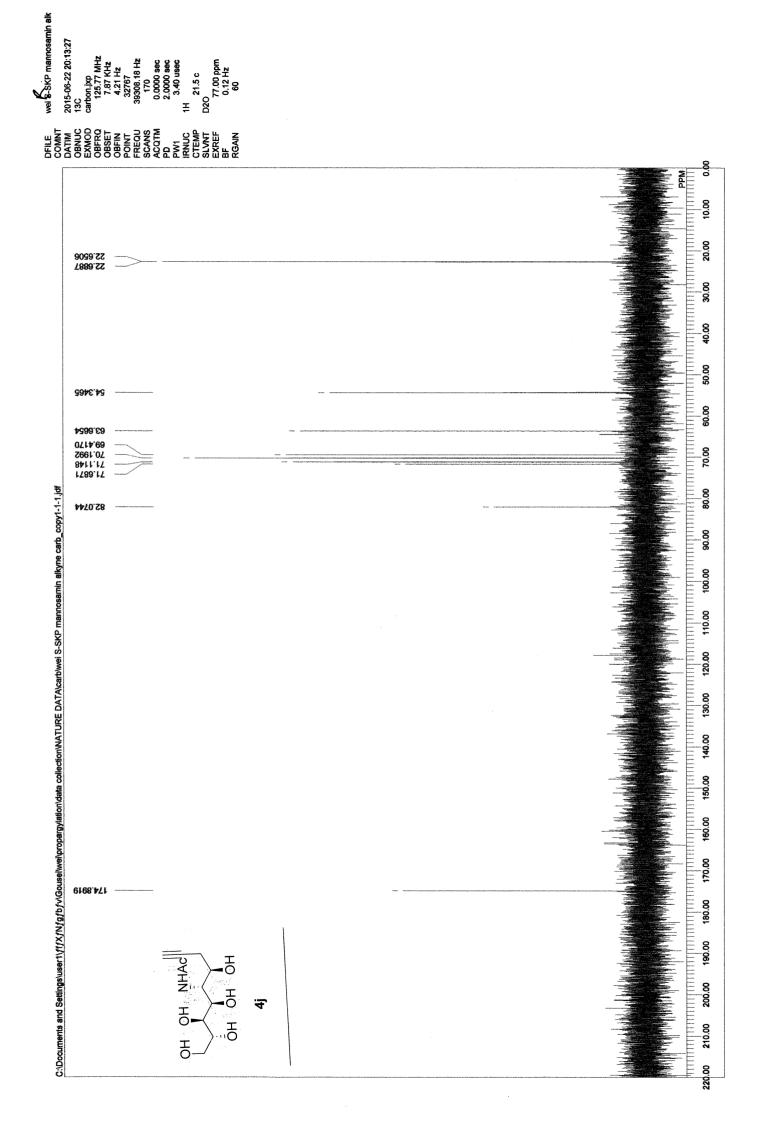

ЧÖ

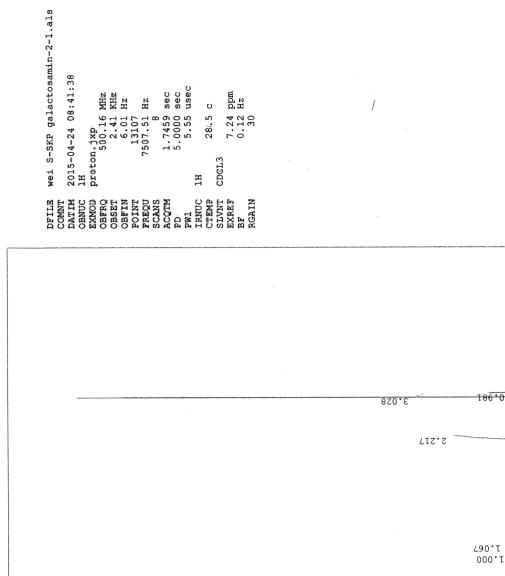
Ы **4**i

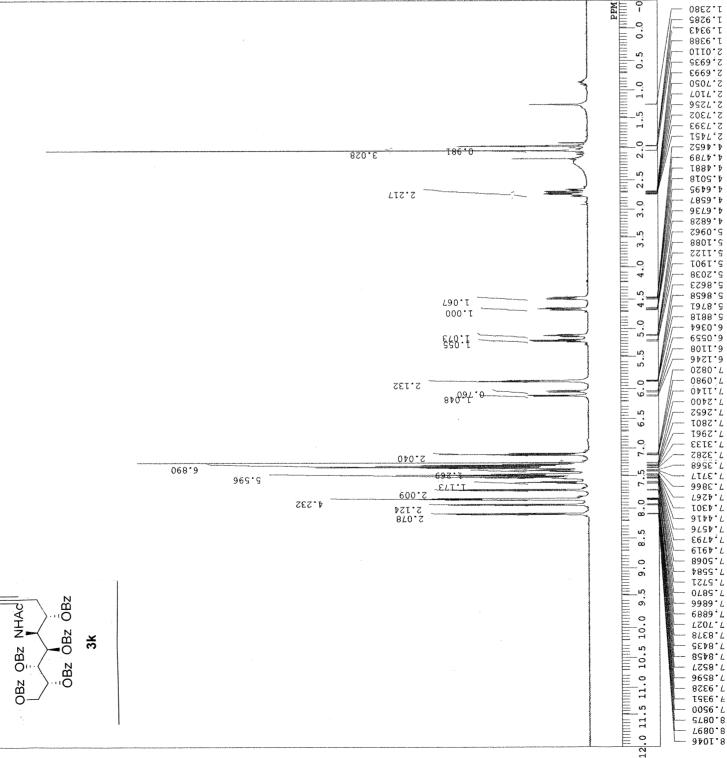

ΡŪ

HO HO


PGF s-skp mannosamin-1-1.jdf	2015-05-23 14:18:51	1H	proton.jxp	500.16 MHz	2.41 KHz	6.01 Hz	16384	9384.38 Hz	7	1.7459 sec	5.0000 sec	5.55 usec	1H	20.7 c	D20	4.65 ppm	0.12 Hz	30
DFILE COMNT	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN




PGF s-skp mannosamin carb-1-1 2015-05-23 15:24:60 13C usec MHZ KHz Hz sec sec ppm Hz HΖ υ 7.87] 4.21] 32768 31446.54] 1.04202.0000 49.00 0.12 74 21.6 310 3.40 carbon.jxp 125.77 2 CD30D lΗ

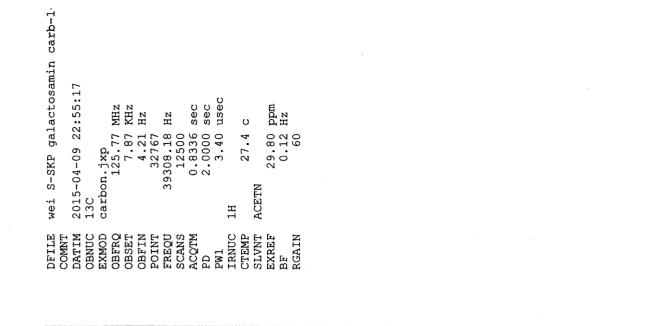


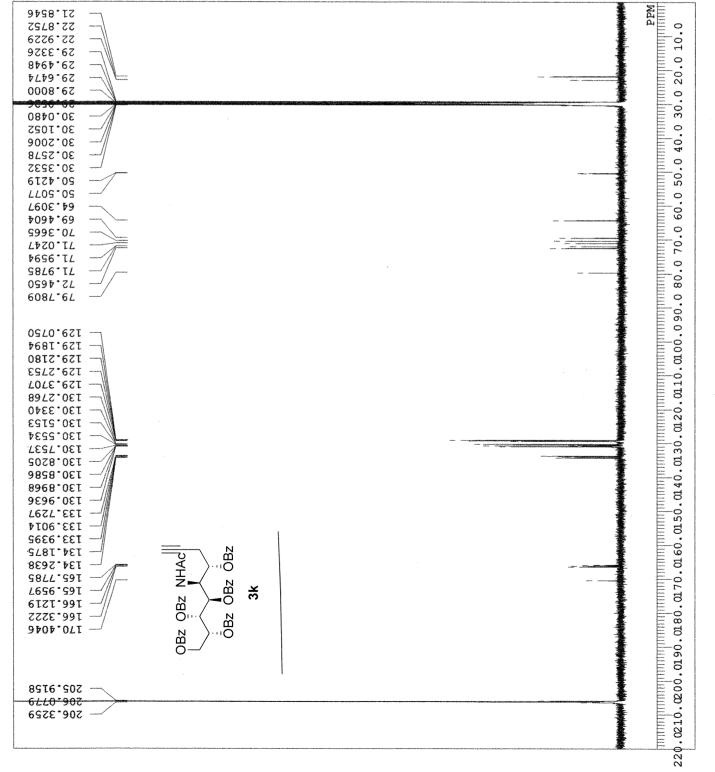
alkyne-1		J	
wei R-SKP mannosamin	2015-06-22 20:12:07 1H proton.jxp 500.16 MHz 2.41 KHz 6.01 Hz 1.3107 7507.51 Hz 1.7459 sec 5.0000 sec 5.55 usec 1H 21.2 c D20 0.00 ppm 0.12 Hz		
DFILE	COMNT DATIM DATIM OBSET OBSET OBSET OBSET OBSET OBSET OBSET OBSET SCANS SCANS FREQU SCANS FNUC FNUC FNUC FNUC FNUC FNUC FNUC FNUC		

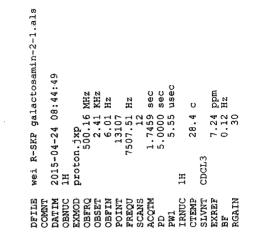
L680'8 9**7**0**1**.8

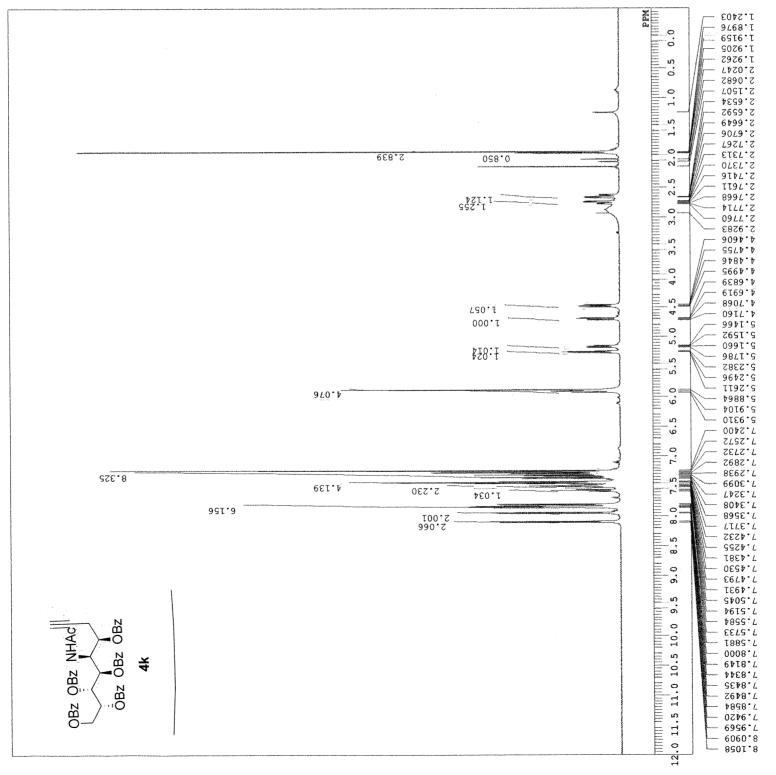
ഹ 9

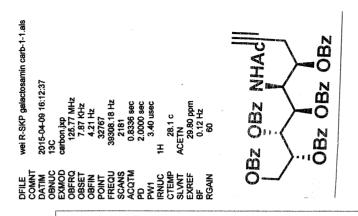
0.0

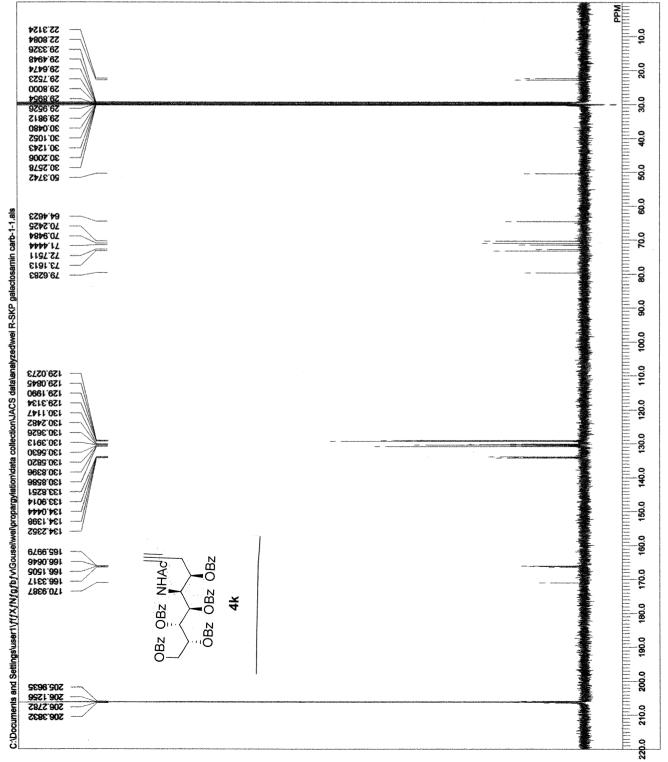

0.5

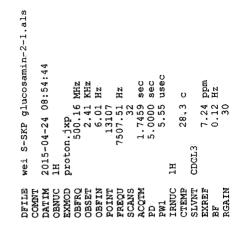

1.0

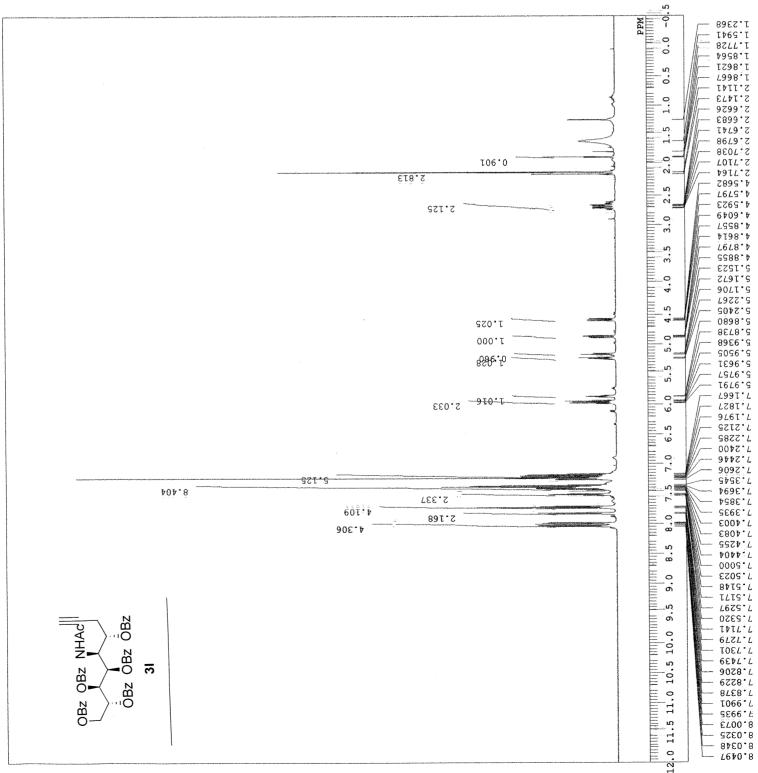

1.5

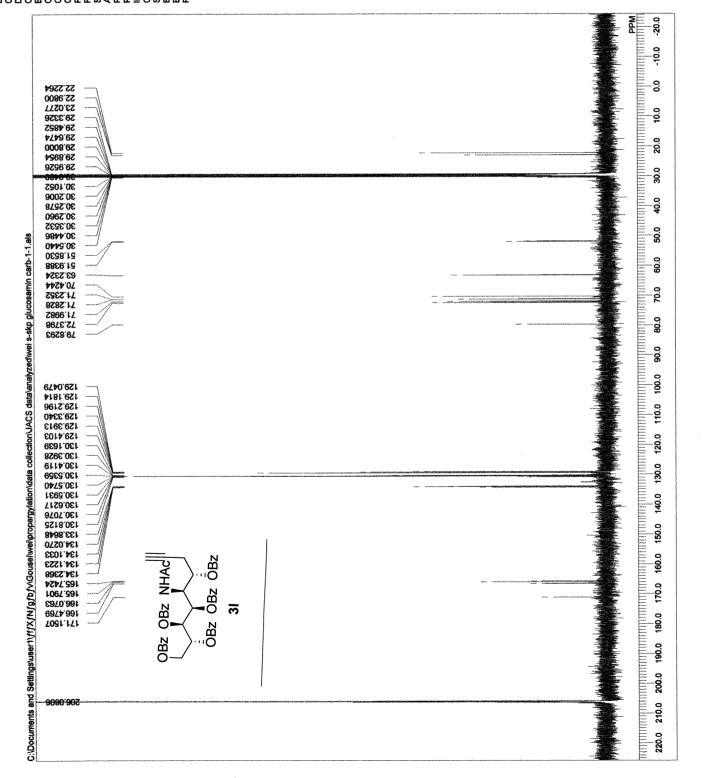

2.0

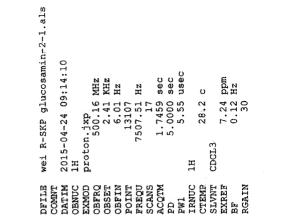

1.9285 1.9285

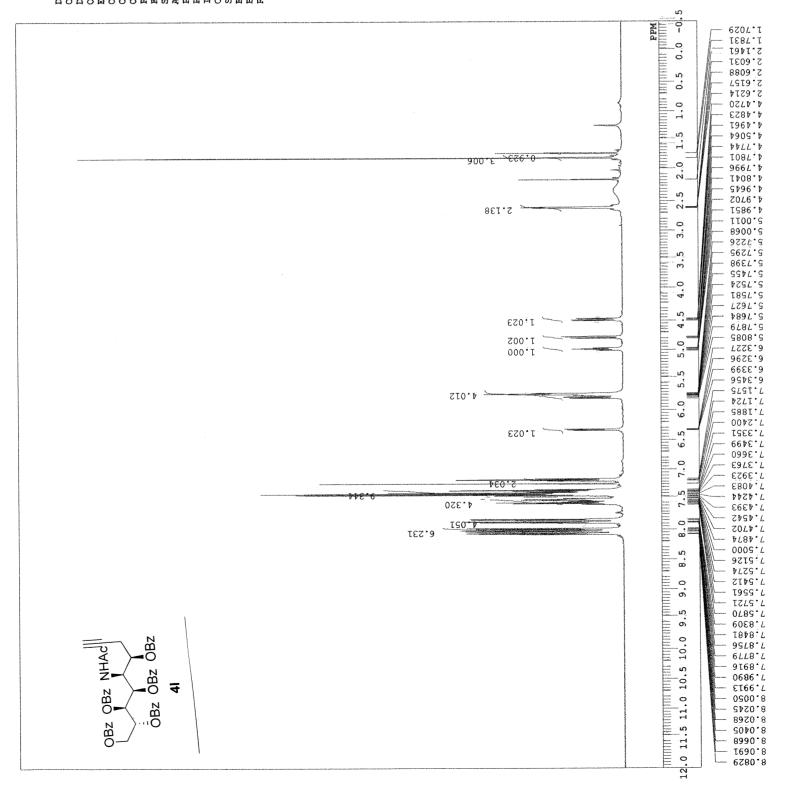


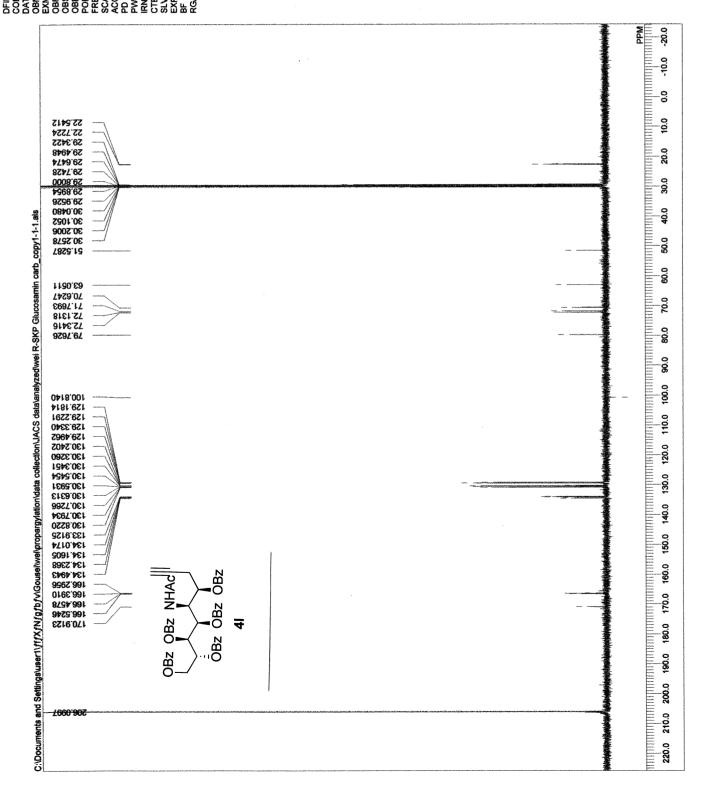


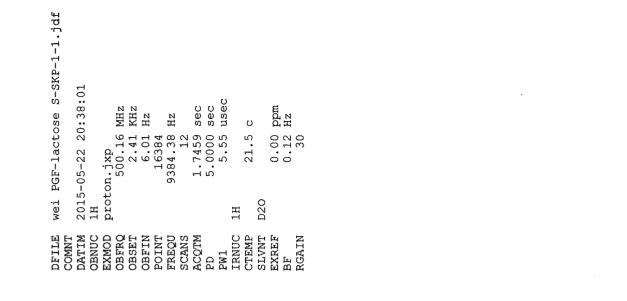


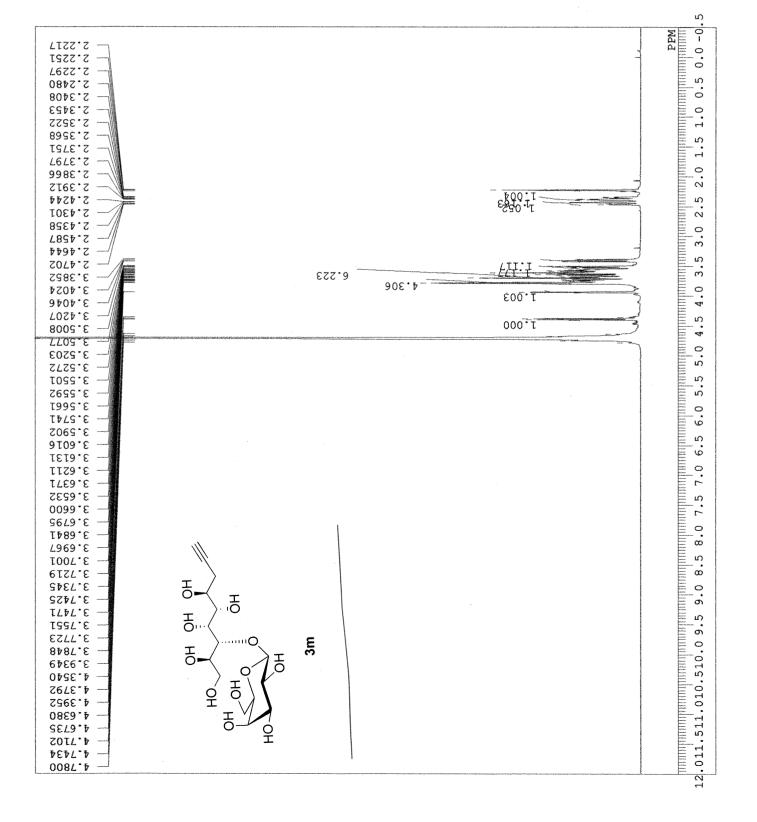


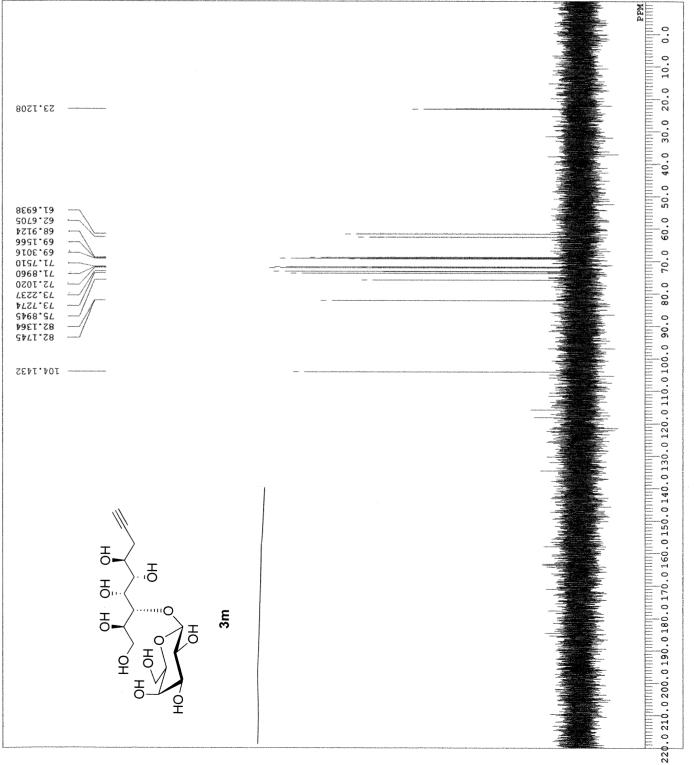


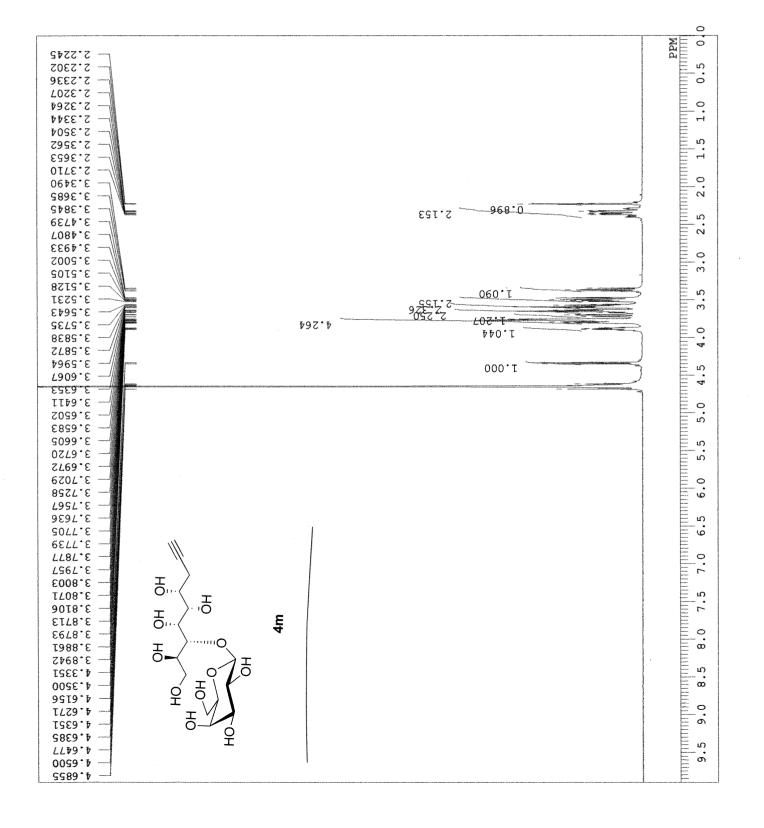



wei s-skp glucosamin carb-1-1.al	2015-04-10 23:11:28	13C	cárbon.jxp	125.77 MHz	7.87 KHz	4.21 Hz	26214	31446.54 Hz	12500	0.8336 sec	2.0000 sec	3.40 usec	Ħ	27.7 c	ACETN	29.80 ppm	0.12 Hz	60
DFILE	DATIM	DBNUC	DOMX	DBFRQ	DBSET	OBFIN	POINT	-REQU	SCANS	ACQTM	õ	PW1	RNUC	CTEMP	SLVNT	EXREF	۳.	RGAIN

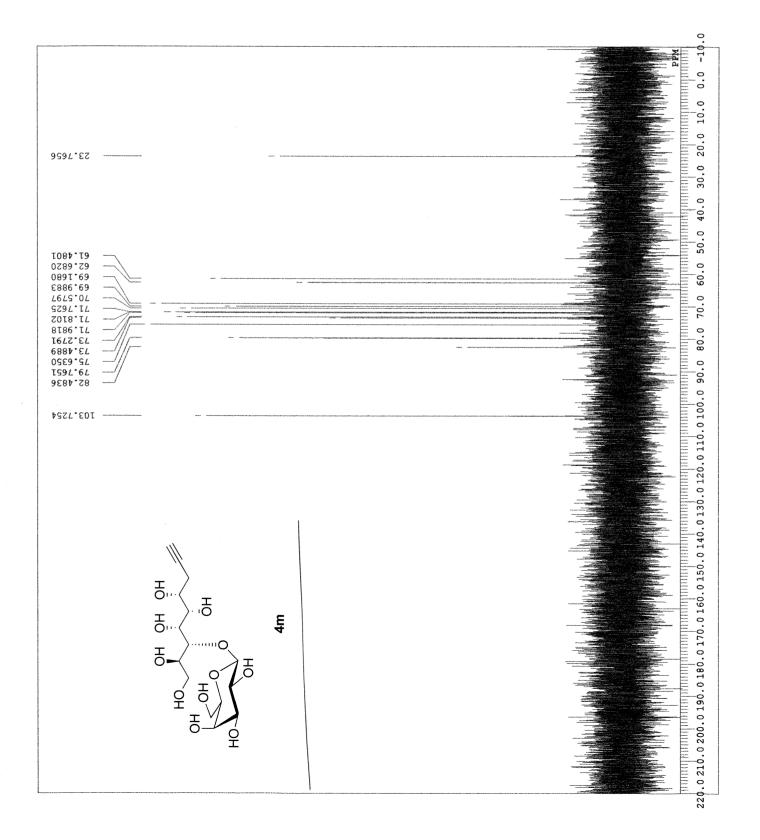

s

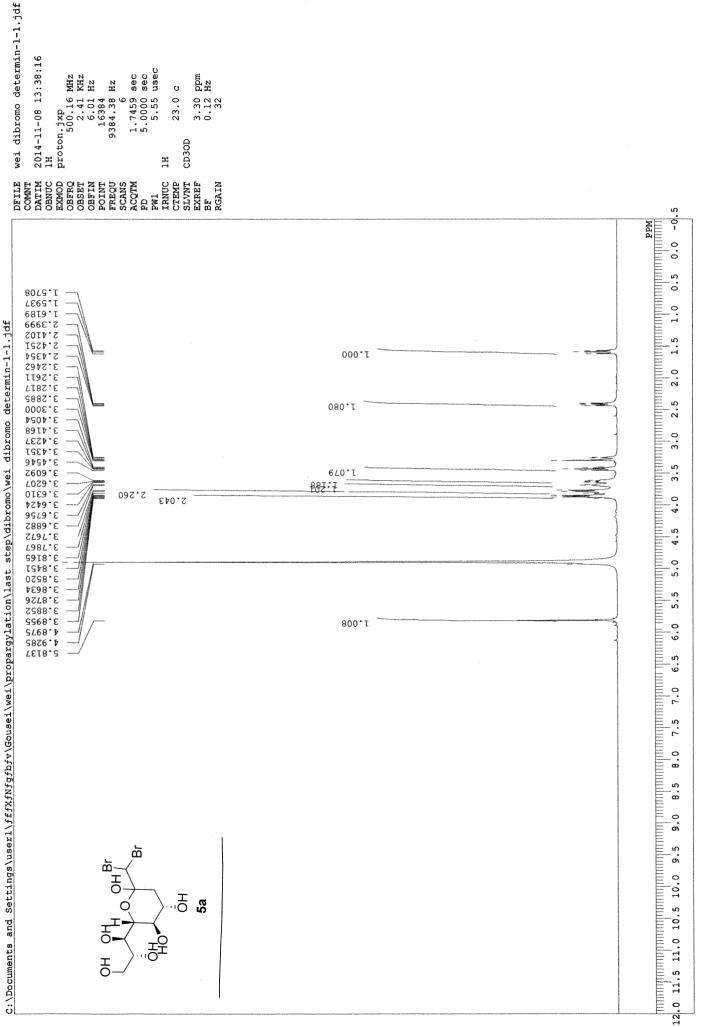




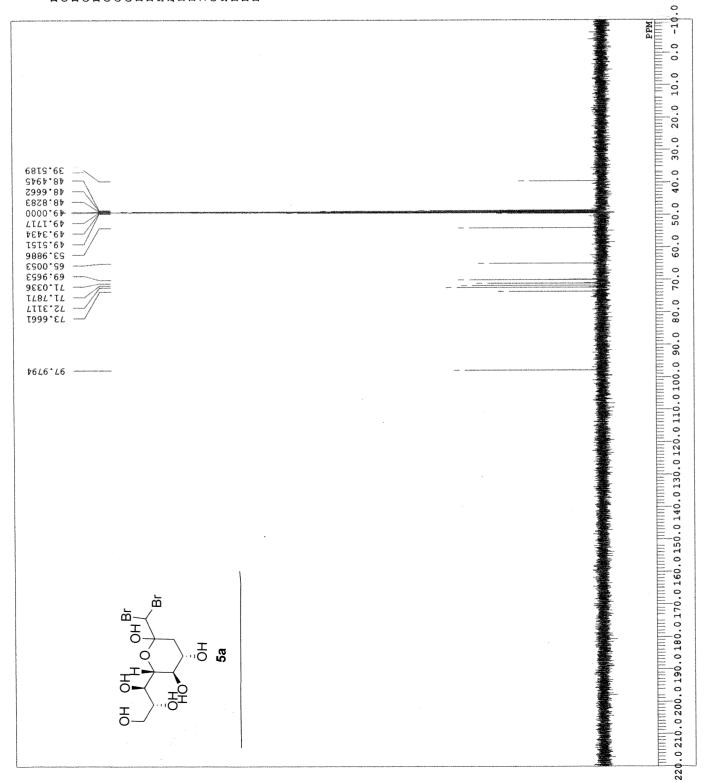


carb-1-1.jdf																
tose alkyne	57:50:7	- 111		Hz		Hz		sec	sec	usec		υ		udd		
3m s-skp lactose al	13C	carbon.jxp	7.87	4.21	32768	31446.54	431	1.0420	2.0000	3.40	1H	21.6	D20	49.50	0.12	76
DFILE COMNT	OBNUC	EXMOD		OBFIN	POINT	FREQU	SCANS	ACQTM	Qđ	TMa	IRNUC	CTEMP	SLUNT	EXREF	BF	RGAIN

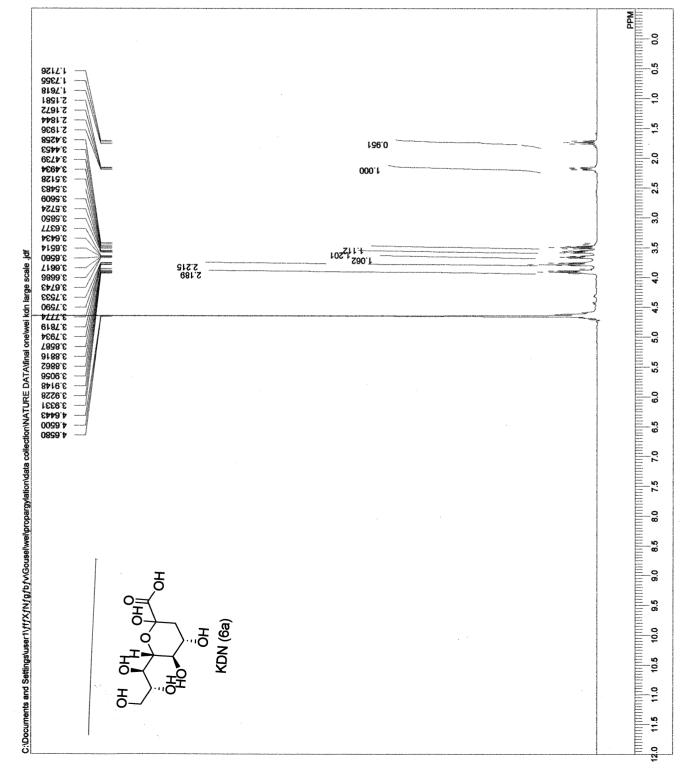


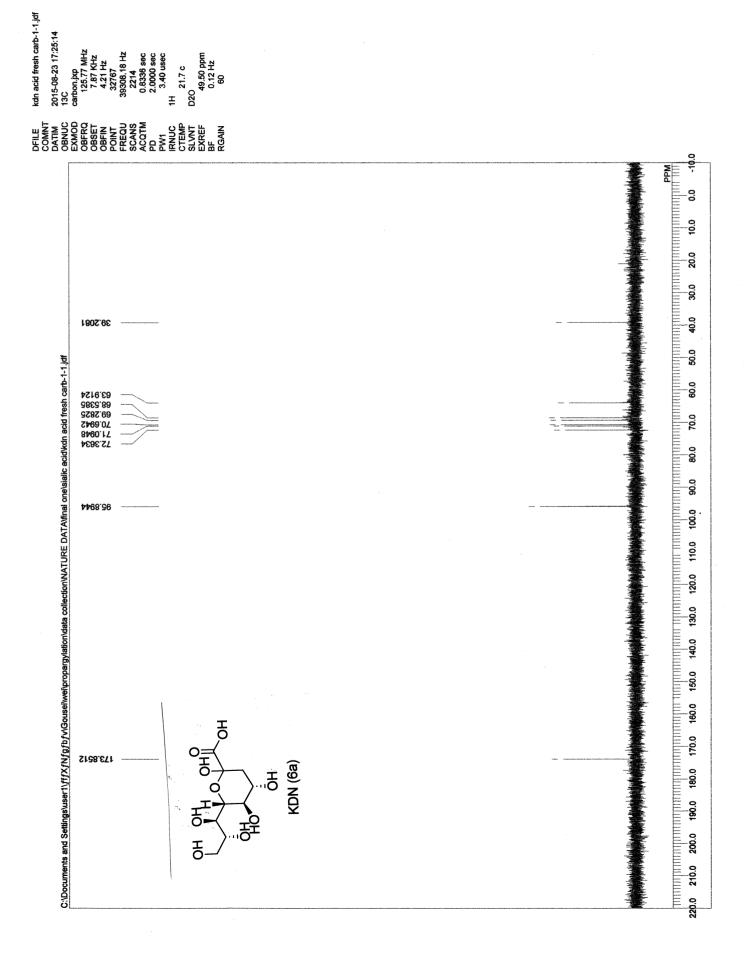

cose alkyne.al	5:00:01			MHZ	KHZ	Hz		Hz		sec	sec	usec		U		udd	Hz		
4m R-skp lactose	2015-06-15 16:00:01	IH	proton.jxp	500.16	2.41	6.01	13107	7507.51	8	1.7459	5.0000	5.55	1H	21.2	D20	4.65	0.12	30	
DFILE COMNT	DATIM	OBNUC	EXMOD	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN	

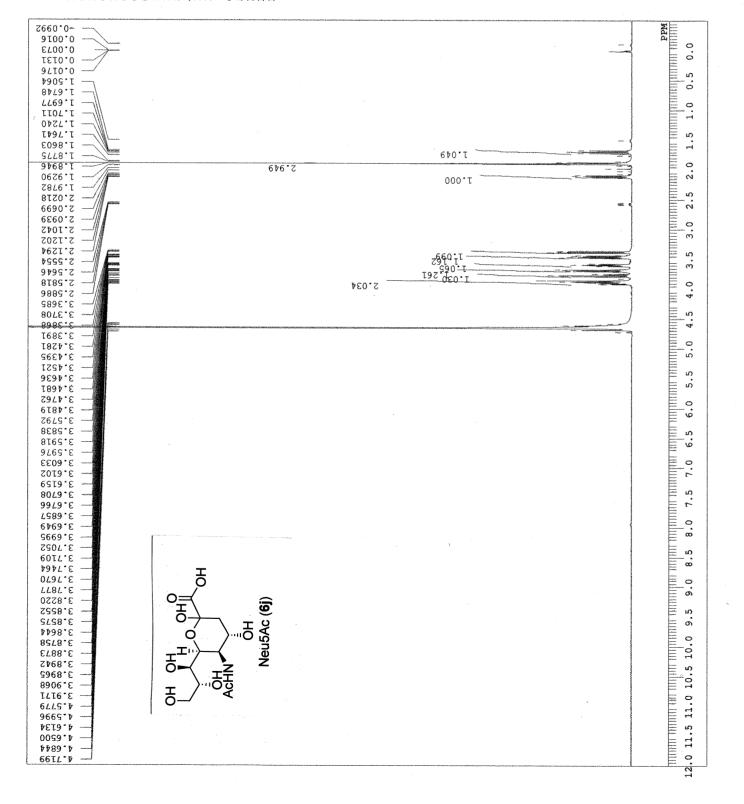
Ŋ



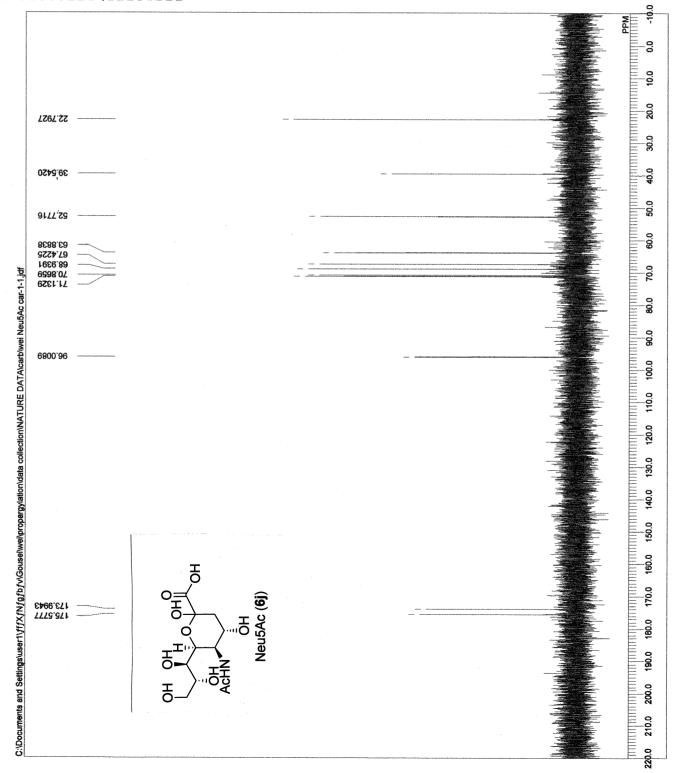
4m R-skp lactose carb-1-1.jdf 2015-06-15 16:01:31 13C carbon.jxp 125.77 MHz 7.87 KHz MHz KHz Hz sec sec usec ppm Hz HΖ υ 32767 39308.18 I 0.8336 3.40 21.5 49.50 0.12 60 4.21 242 D20 lн DF1LE COMNT DATIM DATIM DATIM COMNT EXMO OBSET OBSET OBSET PD OBSET FREQU SCANS SCAN

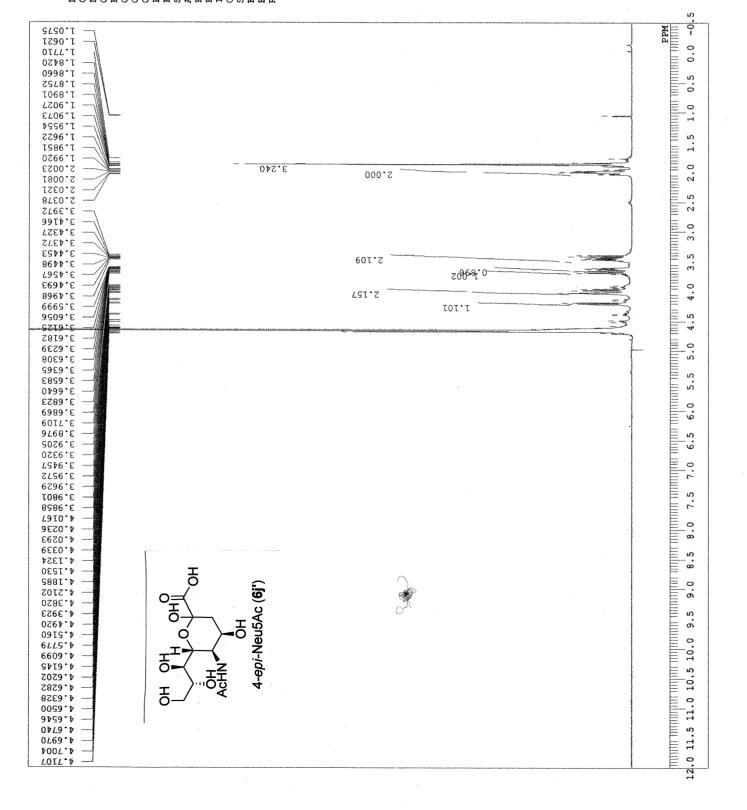


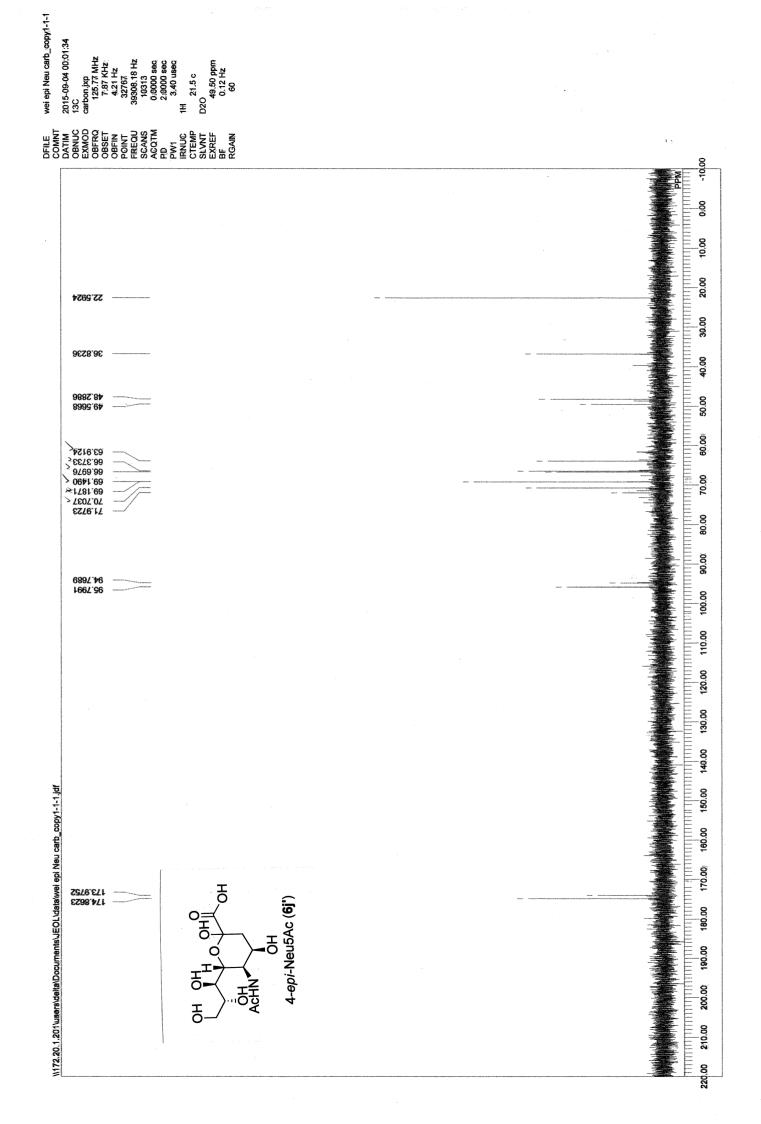


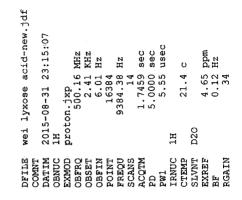


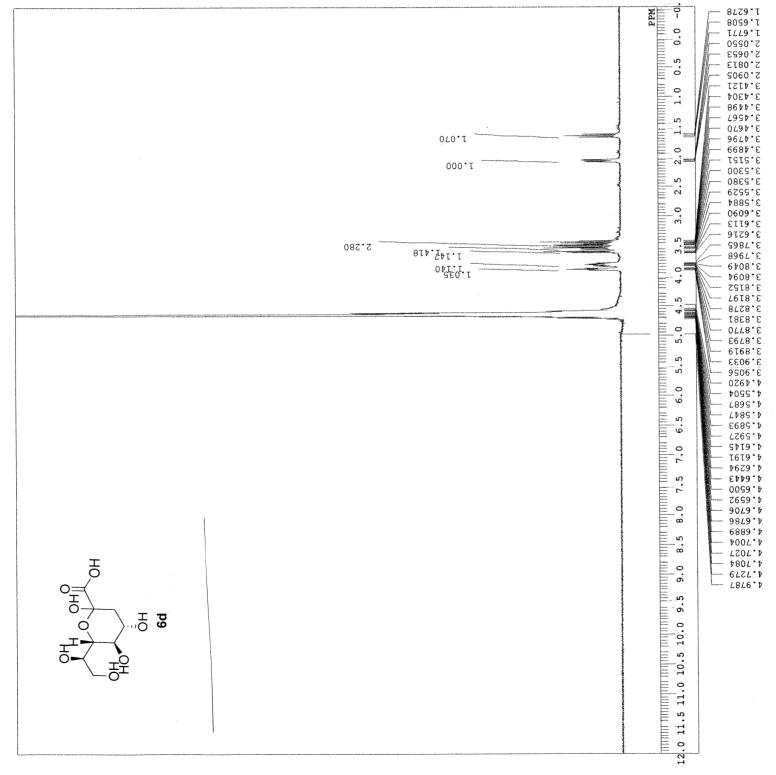
wei kdn large scale .jdf	2015-08-14 13:33:28 1H	proton.jxp 500.16 MHz	2.41 KHz 6.01 Hz	16384	9384.38 Hz	16	1.7459 sec	5.0000 sec	5.55 usec	1H	21.4 c	D20	4.65 ppm	0.12 Hz	36	
DFILE	DATIM	EXMOD	OBSET	POINT	FREQU	SCANS	ACQTM	PD	PW1	IRNUC	CTEMP	SLVNT	EXREF	BF	RGAIN	



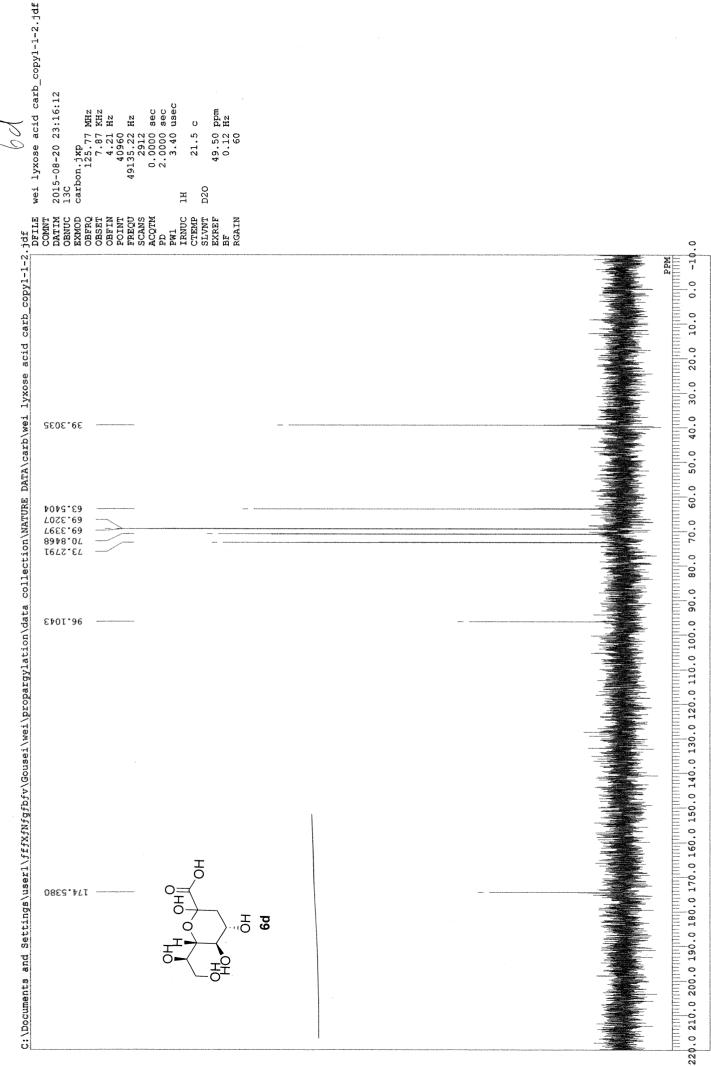

wei Neu5Ac HPLC new-1-1.als		2015-05-12 20:32:38	IH	proton.jxp	500.16 MHz	2.41 KHz	6,01 Hz	13107	7507.51 Hz	14	1.7459 sec	5.0000 sec	5.55 usec	HI	21.5 c	D20	4.65 ppm	0.12 Hz	30	L.
DFILE W	COMNT	DATIM 2	OBNUC 1	EXMOD P	OBFRQ	OBSET	OBFIN	POINT	FREQU	SCANS	ACQTM	PD	LWI	IRNUC 1	CTEMP	SLVNT D	EXREF	BF	RGAIN	

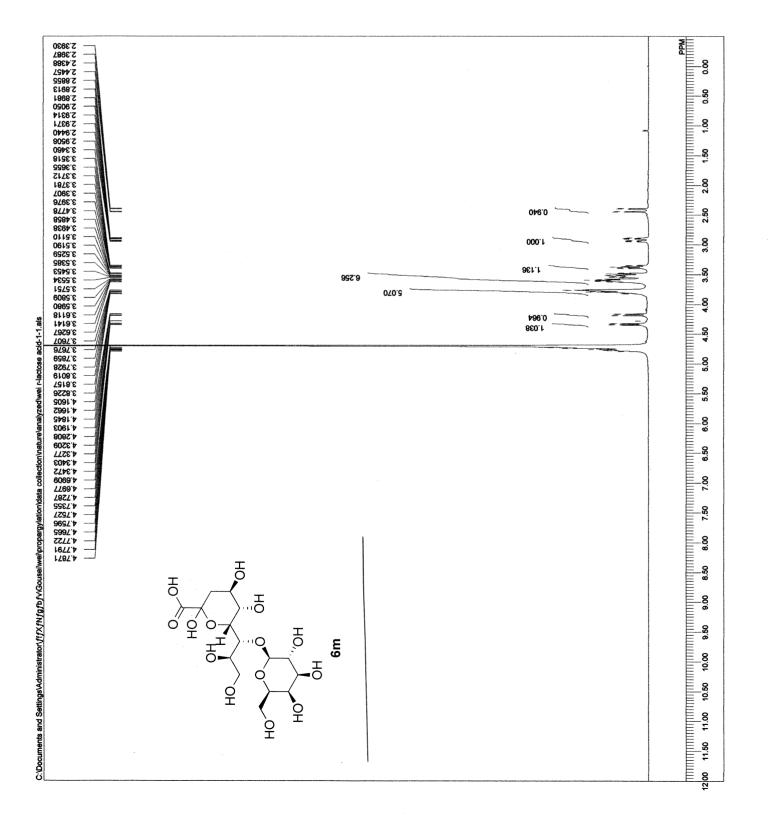


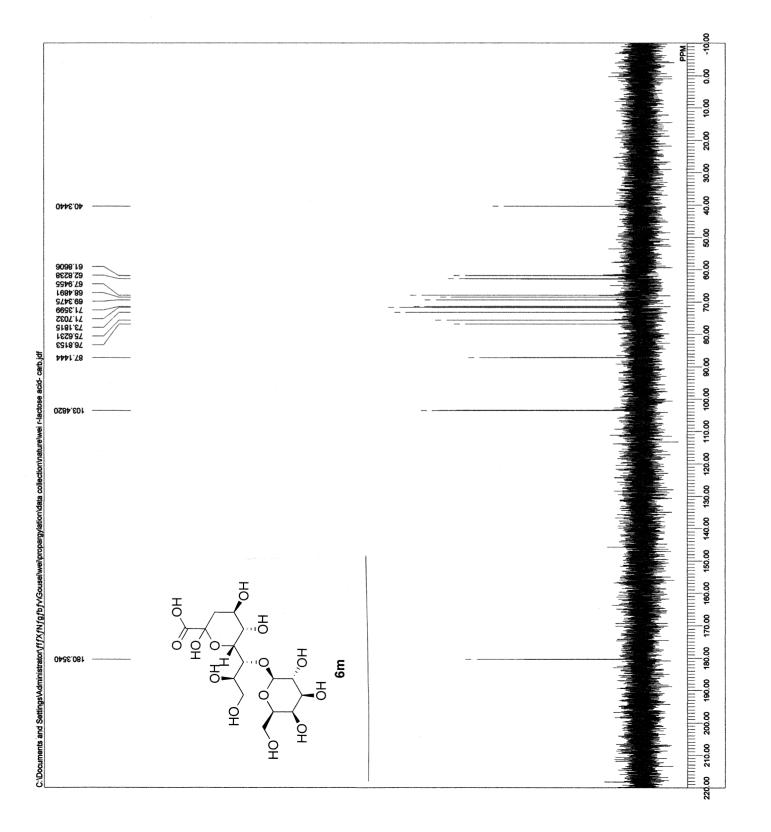




Neu5Ac- most new.jdf		9	2.41 KHz 6.01 Hz	6384	.38 Hz	14	7459 sec	0000 sec	5.55 usec		21.2 c		4.65 ppm	.12 Hz	34	
wei epi		broton.			9384.38		• •••	5.0	n	1H		D20		0		
DFILE COMNT	OBNUC	OBFRQ	OBSET	POINT	FREQU	SCANS	ACQTM	DD	PW1	IRNUC	CTEMP	SLUNT	EXREF	BF	RGAIN	






ഹ

wei r-lactose acid-1-1.als 23-07-2015 18:11:40 1H 391.72 MHz 391.72 MHz 31107 582.36 Hz 1882.35 Hz 18 2.2282 sec 5822.35 Hz 18 2.2282 sec 50000 sec 5.0000 sec 10.00 ppm 0.12 Hz 0.00 ppm 0.12 Hz	8
DFILE COMNIT COM	

DFILE weir lectose acid- carbidr COMNT 23-07-2015 18:14:23 DATIM 23-07-2015 18:14:23 DATIM 23-07-2015 18:14:23 DBET 13-07-2015 18:14:23 DBFT 23-07-2015 18:14:23 DBFT 23-07-214 14:23 DBFT 23-07-214 14:23 DBFT 23-07-214 14:23 DD 2000 sec PV1 23-06 36 PD 2.1000 sec PV1 23-06 36 PD 2.13 16 BFREF 43-50 ppm BFREF 43-50 ppm

