Supporting Information

An Expeditious Synthesis of Sialic Acid Derivatives by Copper(I)-Catalyzed Stereodivergent Propargylation of Unprotected Aldoses

Xiao-Feng Wei, ${ }^{1}$ Yohei Shimizu, ${ }^{1, *}$ and Motomu Kanai ${ }^{1,2, *}$
${ }^{1}$ Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{2}$ ERATO, Japan Science Technology Agency, Kanai Life Science Catalysis Project, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Table of Contents

1. General Information ...S2
2. Copper-Catalyzed Stereodivergent Propargylation of Aldoses

2-1. General procedure for the stereodivergent propargylation of aldoses (Condition
A) \cdots S2

2-2. Optimization for the stereodivergent propargylation of 2-deoxy aldoses \cdots S3
2-3. General procedure for the stereodivergent propargylation of 2-deoxy aldoses (Condition B)

2-4. Gram-scale synthetic procedure for the stereodivergent propargylation of

D-mannose

\cdots. ${ }^{4}$

2-5. Effect of $\mathrm{B}(\mathrm{OMe})_{3} \quad \cdots \mathrm{~S} 4$
2-6. Characterization of propargylation products $\quad \cdots$ S6
$\begin{array}{ll}\text { 3. Rapid Synthesis of Sialic Acid Derivatives } & \\ \text { 3-1. General procedure for sialic acid synthesis } & \cdots \text { S16 }\end{array}$
3-2. Characterization of sialic acids $\quad \cdots$ S16
4. NMR spectra \cdots S21

1. General Information

NMR spectra were recorded on JEOL JNM-LA500 $\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 125 MHz for ${ }^{13} \mathrm{C}$ NMR), JEOL ECX500 (500 MHz for ${ }^{1} \mathrm{H}$ NMR and 125 MHz for ${ }^{13} \mathrm{C}$ NMR), and JEOL ECX400 (400 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR). Chemical shifts were reported in ppm on the δ scale relative to residual $\mathrm{CHCl}_{3}(\delta=7.26$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=77.0$ for ${ }^{13} \mathrm{C}$ NMR $), \mathrm{CHD}_{2} \mathrm{OD}\left(\delta=3.31\right.$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=49.0$ for ${ }^{13} \mathrm{C}$ NMR), or HDO ($\delta=4.79$ for ${ }^{1} \mathrm{H}$ NMR) as an internal reference. Infrared spectra (IR) were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. ESI-mass spectra were measured on a Waters ZQ4000 spectrometer (for LRMS) and a JEOL JMS-T100LC AccuTOF spectrometer (for HRMS). Preparative HPLC were conducted by using a JASCO HPLC system equipped with a UV-2075 spectrometer, PU-2086 pumps, a DG-2080-53 degasser, and an MX-2080-32 mixer. Reactions were carried out in dry solvents under argon atmosphere, unless otherwise stated. Reagents were purchased from Aldrich, Tokyo Chemical Industry Co., Ltd. (TCI), or Wako Pure Chemical Industries, Ltd., and used after purification by distillation or used without purification for solid substrates. Water for the HPLC analysis was purified using a Millipore MilliQ water purification system.

2. Copper-Catalyzed Stereodivergent Propargylation of Aldoses

2-1. General procedure for the stereodivergent propargylation of aldoses (Condition A)

A flame-dried 20-mL test tube was charged with mesitylcopper ($0.5 \mathrm{mg}, 0.0027 \mathrm{mmol}$), (S, S, S)-Ph-SKP ($1.7 \mathrm{mg}, 0.0026 \mathrm{mmol}$), and D-mannose 1a ($18 \mathrm{mg}, 0.10 \mathrm{mmol}$) under argon atmosphere. $\mathrm{B}(\mathrm{OMe})_{3}(22 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and dry DMF $(125 \mu \mathrm{~L})$ were then added to this mixture. The mixture was stirred for 10 min at room temperature. Allenylboronate $2(29 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ was added. After stirring for 16 h at room temperature, the reaction was quenched by the addition of MeOH and concentrated in vacuo. The process of MeOH addition followed by evaporation was repeated two-times to give a crude product. The diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis.

Products were purified by preparative reverse phase HPLC using a gradient of acetonitrile versus 0.1% TFA in water, affording 3a as a white solid $(19.8 \mathrm{mg}, 90 \%$ yield). Preparative HPLC was carried out as follows: YMC-Triart C18 (20 mm I.D. \times 250 mm) column using a linear gradient of $0-50 \%$ acetonitrile in 0.1% aqueous TFA over 30 min at room temperature with a flow rate of $7.0 \mathrm{~mL} \mathrm{~min}^{-1}$.
The configurations of $\mathbf{3 a}$ and $\mathbf{3 j}$ were determined after converting to KDN ($\mathbf{6 a}$) and Neu5Ac ($\mathbf{6 j}$), respectively. The NMR data of synthesized KDN (6a) and Neu5Ac ($\mathbf{6 j}$) were identical to the reported ones (KDN: Nakamura, M.; Furuhata, K.; Yamasaki, T.; Ogura, H. Chem. Pharm. Bull. 1991, 39 3140., Neu5Ac: Lorpitthaya, R.; Suryawanshi, S. B.; Wang, S.; Pasunooti, K. K.; Cai, S.; Ma, J.; Liu, X.-W. Angew. Chem. Int. Ed. 2011, 50, 12054). The configurations of other products were tentatively assigned accordingly.

2-2. Optimization for the stereodivergent propargylation of 2-deoxy aldoses

The propargylation reaction between 2-deoxy-D-ribose (1g) and allenylboronate $\mathbf{2}$ was studied as a model reaction for 2-deoxy sugar substrates. Combinations of cationic copper salts and weak bases were examined to suppress protonolysis of allenylcopper species. A variety of mild bases, such as $\mathrm{KOAc}, \mathrm{PhCOONa}$, cesium pivalate, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Na}$, and KOAc were examined, but the desired product was obtained only in trace amounts (Table S 1 , entries 2-6). Ultimately, $\mathrm{CF}_{3} \mathrm{COOK}$ was identified as the optimum base, providing the product in 65% yield with an 18:1 diastereoselectivity (entry 7).

2-3. General procedure for the stereodivergent propargylation of 2-deoxy aldoses (Condition B)

A flame-dried $20-\mathrm{mL}$ test tube was charged with $\mathrm{CuClO}_{4}(\mathrm{MeCN})_{4}(0.8 \mathrm{mg}, 0.0025$ mmol), (S, S, S)-Ph-SKP ($1.7 \mathrm{mg}, 0.0026 \mathrm{mmol}$), $\mathrm{CF}_{3} \mathrm{COOK}(0.8 \mathrm{mg}, 0.0053 \mathrm{mmol})$, MS 3A 40 mg and 2-deoxy-D-ribose ($\mathbf{1 g}: 13.4 \mathrm{mg}, 0.10 \mathrm{mmol}$) under argon atmosphere. $\mathrm{B}(\mathrm{OMe})_{3}(22 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and dry DMF $(125 \mu \mathrm{~L})$ were then added to this mixture. The mixture was stirred at room temperature for 10 min . Allenylboronate $2(58 \mu \mathrm{~L}, 0.32$ mmol) was added. After stirring for 16 h at room temperature, the reaction was quenched by the addition of MeOH and concentrated in vacuo. The process of MeOH addition followed by evaporation was repeated two-times to give a crude product. The diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis. Products were purified by preparative reverse phase HPLC using a gradient of acetonitrile versus 0.1% TFA in water, affording 3 g as a white solid ($11.3 \mathrm{mg}, 65 \%$ yield). Preparative HPLC was carried out as follows: YMC-Triart C18 (20 mm I.D $\times 250 \mathrm{~mm}$) column using a linear gradient of $0-50 \%$ acetonitrile in 0.1% aqueous TFA over 30 min at room temperature with a flow rate of $7.0 \mathrm{~mL} \mathrm{~min}^{-1}$.

2-4. Gram-scale synthetic procedure for the stereodivergent propargylation of D-mannose

A flame-dried $20-\mathrm{mL}$ bottle was charged with mesitylcopper ($3.7 \mathrm{mg}, 0.02 \mathrm{mmol}$), (S, S, S)-Ph-SKP ($13.2 \mathrm{mg}, 0.02 \mathrm{mmol})$, and D-Mannose $\mathbf{1 a}(1.8 \mathrm{~g}, 10 \mathrm{mmol})$ under argon atmosphere. $\mathrm{B}(\mathrm{OMe})_{3}(2.2 \mathrm{~mL}, 20 \mathrm{mmol})$ and dry $\mathrm{DMF}(6.3 \mathrm{~mL})$ were then added to this mixture. The mixture was stirred for 10 min at room temperature. Allenylboronate $\mathbf{2}$ ($2.7 \mathrm{~mL}, 15 \mathrm{mmol}$) was added. After stirring for 16 h at room temperature, the reaction was quenched by the addition of MeOH and concentrated in vacuo. Addition of MeOH -concentration process was repeated two-times to give a crude product. The crude solid was washed successively with EtOAc and MeOH to provide 3a as a white solid ($1.91 \mathrm{~g}, 87 \%$ yield).

2-5. Effect of $\mathbf{B}(\mathbf{O M e})_{3}$

The ${ }^{1} \mathrm{H}$ NMR spectra in DMSO- d_{6} of a sample containing D-mannose and 2 equiv of $\mathrm{B}(\mathrm{OMe})_{3}$ (Figure S 1) indicates the existence of complicated complexation between mannose and $\mathrm{B}(\mathrm{OMe})_{3}$. The most notable difference between Figure S 1 (mannose +2 equiv of $\mathrm{B}(\mathrm{OMe})_{3}$) and Figure S 2 (mannose only) is the appearance of an aldehyde C - H proton (9.66 ppm) in Figure S1. The ratio of the aldehyde form to other species was determined to be 0.15% by ${ }^{1} \mathrm{H}$ NMR analysis using MeCN as internal standard. Thus, the addition of $\mathrm{B}(\mathrm{OMe})_{3}$ significantly increased the aldehyde form. Although the concentration of the aldehyde form was still low, this observation indicates that the
addition of $\mathrm{B}(\mathrm{OMe})_{3}$ facilitates the propargylation reaction by stabilizing the aldehyde form of aldoses (see Fig. 2 in the text).

Figure S1. Mannose +2 equiv of $\mathrm{B}(\mathrm{OMe})_{3}+1$ equiv of MeCN

Figure S2. Mannose

2-6. Characterization of propargylation products

(2R,3R,4R,5R,6S)-non-8-yne-1,2,3,4,5,6-hexaol (3a)
A white solid, Yield: 90%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 3.99(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 82.8,71.8,71.6,70.1,69.7,68.5,63.9,23.6$; IR (KBr): 3365, 3231, 1445, 1306, 1094, 1028, 849, $729 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{Na}]^{+} 243.0840$ Found 243.0842; $[\alpha]_{\mathrm{D}}^{23.2}=+0.2\left(c=0.53, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3R,4R,5R,6R)-non-8-yne-1,2,3,4,5,6-hexaol (4a)
A white solid, Yield: $81 \%{ }^{1}{ }^{1} \mathrm{H}$ NR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.88(\mathrm{dt}, J=8.6,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74-3.57(\mathrm{~m}, 5 \mathrm{H}), 3.50(\mathrm{dd}, J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dt}, J=17.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (ddd, $J=17.2,8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ 82.7, 72.8, 71.5, 71.4, 71.2, 70.5, 70.2, 63.9, 21.7; IR (KBr): 3375, 2962, 2896, 1423, 1392, 1088, 1035, 752, $634 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$ 243.0840 Found 243.0835; [$\alpha]_{\mathrm{D}}^{22.2}=+6.4\left(c=0.50, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3S,4R,5S,6S)-non-8-yne-1,2,3,4,5,6-hexaol (3b)
A white solid, Yield: 73%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 3.83(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.52 (dt, $J=17.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (ddd, $J=17.4,5.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 75.1,72.0,71.3,69.7,68.0,64.9,40.9,28.7$; IR
(KBr): 3297, 1422, 1112, 1086, $1033 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{Na}]^{+} 243.0840$ Found 243.0842; $[\alpha]_{\mathrm{D}}{ }^{22.4}=+4.4\left(c=0.50, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3S,4R,5S,6R)-non-8-yne-1,2,3,4,5,6-hexaol (4b)
A white solid, Yield: $66 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.80-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 3 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.22$ (brs, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 81.9,73.6,73.2,71.7,71.4,71.2,64.9,24.3$; IR (KBr): 3398 , 2925, 1433, 1103, 1055, $680 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$ 243.0840 Found 243.0832; $[\alpha]_{\mathrm{D}}{ }^{22.1}=+6.1\left(c=0.35, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3R,4R,5S,6S)-non-8-yne-1,2,3,4,5,6-hexaol (3c)
A white solid, Yield: $76 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.86(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.74-3.70 (m, 1H), 3.66-3.57 (m, 4H), 3.49 (dd, $J=11.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dt}, J=17.3$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, J=17.3,6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 81.9,74.6,73.6,71.8,71.7,69.2,68.8,63.1,23.0$; IR (KBr): 3280, 2918, 1427, 1096, 1028, $667 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$ 243.0840 Found 243.0835; $[\alpha]_{\mathrm{D}}{ }^{22.9}=+2.0\left(c=0.51, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3R,4R,5S,6R)-non-8-yne-1,2,3,4,5,6-hexaol (4c)
A white solid, Yield: 72%. (inseparable mixture of $\mathbf{3 c}$ and $\mathbf{4 c}$) For $\mathbf{4 c}:{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.95(\mathrm{dd}, J=5.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{td}, J=6.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.60(\mathrm{~m}$, $5 \mathrm{H}), 2.52(\mathrm{dd}, J=6.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 82.0,74.7,73.9,71.8,71.7,70.6,70.0,63.5,23.7$; IR (KBr): 3387, 2925, 1675, 1204, $1076 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 243.0840$ Found 243.0832.

(2R,3S,4R,5S)-oct-7-yne-1,2,3,4,5-pentaol (3d)
A white solid, Yield: $84 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 4 \mathrm{H}), 2.47(\mathrm{ddd}, J=16.9,7.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=$ $16.9,6.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 82.6,71.6$, $71.2,71.0,70.2,69.1,63.9,23.7$; IR (KBr): 3388, 3217, 1452, 1389, 1294, 1231, 1105, 1052, 735, $657 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 213.0734$ Found $213.0737 ;[\alpha]_{\mathrm{D}}^{22.8}=+4.3(c=0.15, \mathrm{MeOH})$.

(2R,3S,4R,5R)-oct-7-yne-1,2,3,4,5-pentaol (4d)
A white solid, Yield: $81 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.87(\mathrm{dt}, J=8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=8.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{dt}, J=17.2$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddd}, J=17.2,7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 82.6,72.9,71.6,71.5,71.2,71.0,63.7,21.8$; IR (KBr): 3326, 2952, 2900, 1458, 1411, 1222, 1095, 1048, 1030, 860, 695, $654 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 213.0734$ Found $213.0731 ;[\alpha]_{\mathrm{D}}{ }^{20.8}=+9.4\left(c=0.86, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3S,4R,5S)-oct-7-yne-1,2,3,4,5-pentaol (3e)
A white solid, Yield: $95 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.76(\mathrm{dd}, J=11.2,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{dd}, J=6.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H})$, $3.51-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.40$ (ddd, $J=17.4,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=17.4,6.4,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 81.7,72.0,71.9,71.8,71.7$, $71.2,63.5,23.4$; IR (KBr): 3430, 3285, 1434, 1089, $1042 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 213.0734$ Found $213.0737 ;[\alpha]_{\mathrm{D}}{ }^{21.5}=-0.4\left(c=0.52, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3S,4R,5R)-oct-7-yne-1,2,3,4,5-pentaol (4e)
A white solid, Yield: 93%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 3.72-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{ddd}, J$ $=8.8,6.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=11.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dt}, J=17.3,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.37 (ddd, $J=17.3,5.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 82.2,71.9,71.9,71.5,69.8,68.9,63.9,23.9 ; \operatorname{IR}(\mathrm{KBr}): 3305,2949,1286$, 1082, 1041, $644 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 213.0734$ Found $213.0737 ;[\alpha]_{\mathrm{D}}{ }^{22.7}=-4.8\left(c=0.48, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3S,4S,5S)-oct-7-yne-1,2,3,4,5-pentaol (3f)
A white solid, Yield: 65%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 3.75-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.60-3.57$ (m, 1H), 3.52-3.43 (m, 2H), 2.49 (dt, $J=17.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (ddd, $J=17.3,6.0,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 82.0,73.7,73.0,72.0$, 70.2, 69.0, 63.0, 23.4; IR (KBr): 3389, 2934, 1421, 1067, $657 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 213.0734$ Found 213.0741; $[\alpha]_{\mathrm{D}}{ }^{22.6}=+6.4\left(c=0.91, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3S,4S,5R)-oct-7-yne-1,2,3,4,5-pentaol (4f)
A white solid, Yield: $60 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 3.81-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.67(\mathrm{~m}$, 1 H), 3.61-3.55 (m, 3H), 3.51-3.47 (dd, $J=11.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41-2.32 (m, 2H), 2.24 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 81.9,73.2,72.5,71.9,71.8,70.4,63.4,23.5$; IR (KBr): 3388, 1420, 1067, $669 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 213.0727 Found 213.0734; $[\alpha]_{\mathrm{D}} 22.8=+2.9\left(c=0.68, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3S,5S)-oct-7-yne-1,2,3,5-tetraol (3g)
A white solid, Yield: $65 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.97$ (dq, $J=8.1,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=11.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dt}, J=6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (ddd, $J=14.3,4.6,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.66-1.60 (dt, $J=14.3,9.2 \mathrm{H}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 81.7,76.3,72.4$, $71.4,70.0,64.4,39.5,27.8$; IR (KBr): 3376, 2923, 1677, 1424, 1204, 1071, $651 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 197.0785$ Found 197.0781; $[\alpha]_{\mathrm{D}}{ }^{22.9}=$ $-1.6(c=0.57, \mathrm{MeOH})$.

(2R,3S,5R)-oct-7-yne-1,2,3,5-tetraol (4g)
A white solid, Yield: 53\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.98$ (dddd, $J=9.2,6.3,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.786$ (ddd, $J=9.8,6.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dd, $J=11.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dt}, J=6.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77$ (ddd, $J=14.4,9.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (ddd, $J=14.4,9.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 81.9,76.6,71.3,70.2,67.8,64.7,40.2,28.7$; IR (KBr): 3375, 2921, 1420, 1064, $652 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 197.0785 Found 197.0781; $[\alpha]_{D}{ }^{20.6}=-28.2\left(c=0.64, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3R,4R,6S)-non-8-yne-1,2,3,4,6-pentaol (3h)
A white solid, Yield: 74%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.03-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (ddd, $J=7.6,6.7,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.64-3.58 (m, 2H), 3.36 (dd, $J=7.6,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.41-2.31 (m, 2H), $2.27(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (ddd, $J=14.3,9.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (ddd, $J=14.3,9.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 82.5,74.4,71.9,71.2$, 68.3, 66.8, 63.7, 39.2, 27.6; IR (KBr): 3280, 3192, 2952, 1466, 1422, 1065, 1030, 707
cm^{-1}; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 227.0890$ Found 227.0887; [$\left.\alpha\right]_{\mathrm{D}}{ }^{22.8}$ $=+23.8\left(c=0.49, \mathrm{H}_{2} \mathrm{O}\right)$.

(2R,3R,4R,6R)-non-8-yne-1,2,3,4,6-pentaol (4h)
A white solid, Yield: $67 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.00(\mathrm{dq}, J=8.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{dd}, J=7.5,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.42-2.31 (m, 2H), $2.28(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (ddd, $J=14.2,4.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55$ (ddd, $J=14.2,9.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 81.7,84.6 .9,71.8,71.7$, $70.1,64.8,40.2,27.9$; IR (neat): $3375,1422,1069 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \quad[\mathrm{M}+\mathrm{Na}]^{+} 227.0890$ Found 227.0882, $[\alpha]_{\mathrm{D}}{ }^{21.5}=+9.4\left(c=0.53, \mathrm{H}_{2} \mathrm{O}\right)$.

($\mathbf{2 R , 3 S}, 4 R, 6 S$)-non-8-yne-1,2,3,4,6-pentaol (3i)
A white solid, Yield: 59\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.13-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.91$ (m, 1H), 3.78 (dd, $J=10.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (ddd, $J=8.0,5.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J$ $=10.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (s, 1H), 2.36 (dd, $J=6.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (t, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94 (ddd, $J=14.3,10.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.53 (ddd, $J=14.3,9.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 82.0,75.5,73.2,71.3,68.3,68.0,65.1,41.2,28.6$; IR (neat): 3290, 1420, 1092, 1074, $1025 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \quad[\mathrm{M}+\mathrm{Na}]^{+}$ 227.0890 Found 227.0900; $[\alpha]_{\mathrm{D}}{ }^{23.8}=+31.9(c=0.28, \mathrm{MeOH})$.

(2R,3S,4R,6R)-non-8-yne-1,2,3,4,6-pentaol (4i)
A white solid, Yield: $52 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.06(\mathrm{dt}, J=7.4,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94(\mathrm{dq}, J=11.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{ddd}, J=8.1$, $6.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=8.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H})$,
2.42-2.33 (m, 2H), $2.28(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 81.7,74.5,73.0,71.4,69.9,69.5,65.1,40.3,27.9$; IR (KBr): 3280, 2918, 1432, 1089, 1033, $638 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \quad[\mathrm{M}+\mathrm{Na}]^{+} 227.0890$ Found 227.0900; $[\alpha]_{\mathrm{D}}{ }^{22.4}=+6.5\left(c=0.26, \mathrm{H}_{2} \mathrm{O}\right)$.

$\mathbf{N - (} \mathbf{(4 S , 5 R , 6 R , 7 S , 8 R}) \mathbf{4 , 6 , 7 , 8 , 9 - p e n t a h y d r o x y n o n - 1 - y n - 5 - y l) a c e t a m i d e ~ (3 j) ~}$
A white solid, Yield: $70 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.13(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=12.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.57$ $(\mathrm{m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=12.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.22(\mathrm{~m}, 3 \mathrm{H})$, $1.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.8,81.8,72.4,71.4,71.2,69.7,68.7$, 65.2, 54.7, 25.3, 22.6; IR (KBr): 3499, 3362, 1623, 1541, $1074 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 284.1105$ Found 284.1106; $[\alpha]_{\mathrm{D}}{ }^{22.8}=-28.9(c=0.67$, $\mathrm{H}_{2} \mathrm{O}$).

$\mathbf{N - ((4 R , 5 R , 6 R , 7 S , 8 R) - 4 , 6 , 7 , 8 , 9 - p e n t a h y d r o x y n o n - 1 - y n - 5 - y l) a c e t a m i d ~ (4 j) ~}$

A white solid, Yield: $51 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.10(\mathrm{dd}, J=8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.98 (ddd, $J=7.7,5.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.9,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.57 (ddd, $J=9.1,6.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (dd, $J=11.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (dd, $J=9.1$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=17.0,4.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=17.0,7.7,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.9,82.1,71.7$, 71.1, 70.2, 69.4, 63.7, 54.3, 22.7, 22.6; IR (neat): 3293, 1639, 1547, 1424, 1378, 1203, 1078, $1031 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{6} \quad[\mathrm{M}+\mathrm{Na}]^{+} 284.1105$ Found 284.1118; $[\alpha]_{\mathrm{D}}^{23.3}=-4.4(c=0.84, \mathrm{MeOH})$.

($2 R, 3 R, 4 R, 5 S, 6 S$)-5-acetamidonon-8-yne-1,2,3,4,6-pentayl pentabenzoate (3k-Bz) A white solid, Yield: $55 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-8.09(\mathrm{~m}, 2 \mathrm{H})$, 7.95-7.93 (m, 2H), 7.86-7.84 (m, 4H), 7.70-7.69 (m, 2H), 7.68 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.20$ (dd, $J=13.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (dd, $J=8.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (dd, $J=11.9,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48$ (dd, $J=11.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (ddd, $J=17.0,7.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (ddd, J $=17.0,6.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone-d6) $\delta 170.4,166.3,166.1,165.9,165.8,134.3,134.2,134.0,133.9,133.7,131.0$, $130.9,130.9,130.8,130.7,130.6,130.5,130.3,130.2,129.4,129.3,129.2,129.1,129.0$, $79.8,72.5,72.0,71.9,71.0,70.4,69.5,64.3,50.5,50.4,22.9,21.9$; IR (neat): 3390, 1721, 1683, 1259, 1092, 1067, $708 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{NO}_{11}$ $[\mathrm{M}+\mathrm{Na}]^{+} 804.2416$ Found 804.2399; $[\alpha]_{\mathrm{D}}{ }^{22.9}=-13.9(c=0.65, \mathrm{MeOH})$.

($2 R, 3 R, 4 R, 5 S, 6 R$)-5-acetamidonon-8-yne-1,2,3,4,6-pentayl pentabenzoate ($4 \mathrm{k}-\mathrm{Bz}$)
A white solid, Yield: 40%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.95$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.86-7.80 (m, 6H), $7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=13.1,7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.42$ (dd, $J=10.8,4.4 \mathrm{~Hz}, 4 \mathrm{H}$), 7.32-7.24 (m, 8H), 5.93-5.89 (m, 4H), 5.26 (dd, $J=11.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (dd, $J=11.9,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.48 (dd, $J=11.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (ddd, $J=17.3,5.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, $J=$ $17.3,5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.92 (t, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone-d6) $\delta 170.9,166.3,166.1,166.0,165.9,134.2,134.1,134.0,133.9,133.8,130.9$, $130.8,130.6,130.5,130.4,130.3,130.2,130.1,129.3,129.2,129.1,129.0,79.6,73.2$, $72.8,71.4,70.9,70.2,64.5,50.4,22.8,22.3$; IR (neat): $3376,1719,1683,1246,1092$, 1067, $708 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{NO}_{11}[\mathrm{M}+\mathrm{Na}]^{+} 804.2416$ Found $804.2399 ;[\alpha]_{\mathrm{D}}{ }^{22.8}=-17.4(c=0.45, \mathrm{MeOH})$.

($2 R, 3 S, 4 R, 5 S, 6 S$)-5-acetamidonon-8-yne-1,2,3,4,6-pentayl pentabenzoate (3l-Bz)
A white solid, Yield: $45 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.99(\mathrm{~m}, 4 \mathrm{H}), 7.847 .82$ (m, 2H), 7.73 (dd, $J=8.1,7.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.54 (dt, $J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 8 \mathrm{H})$, 7.26-7.17 (m, 5H), 5.99-5.92 (m, 2H), 5.85 (dt, $J=5.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (dd, $J=13.2$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (dd, $J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (dd, $J=12.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J$ $=12.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (ddd, $J=17.2,6.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J=17.2,5.9,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone-d6) $\delta 171.1$, 166.5, 166.1, 165.8, 165.7, 134.2, 134.1, 134.1, 134.0, 133.9, 130.8, 130.7, 130.6,130.6, $130.6,130.5,130.4,130.4,130.2,129.4,129.4,129.3,129.2,129.2,129.0,79.8,72.4$, $72.0,71.3,71.2,70.4,63.2, ~, 51.9,51.8,23.0,22.2$; IR (neat): 3418, 1717, 1653, 1261, 1093, $709 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{NO}_{11}[\mathrm{M}+\mathrm{Na}]^{+} 804.2416$ Found $804.2399 ;[\alpha]_{\mathrm{D}}{ }^{22.8}=+12.6(c=0.44, \mathrm{MeOH})$.

($\mathbf{2 R}, \mathbf{3 S}, \mathbf{4 R}, 5 S, 6 R$)-5-acetamidonon-8-yne-1,2,3,4,6-pentayl pentabenzoate (41-Bz) A white solid, Yield: 51%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.07(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.03$ (m, 2H), 8.03-7.99 (m, 2H), 7.92-7.88 (m, 2H), 7.84 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=$ $15.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ (dd, $J=13.0,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.33$ (m, 10H), 7.19 (t, $J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 6.33 (dd, $J=8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.81-5.72$ (m, 4H), 5.01-4.95 (m, 1H), 4.79 (dd, $J=12.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=12.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H})$, $1.70(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone-d6) $\delta 170.9,166.5,166.5,166.4$, $166.3,134.5,134.2,134.2,134.0,133.9,130.8,130.8,130.7,130.6,130.6,130.5,130.3$, $130.3,130.2,129.5,129.3,129.2,129.2,100.8,79.7,72.3,72.1,71.8,70.6,63.1,51.5$, 22.7, 22.5; IR (neat): $3384,1711,1674,1241,1090,1066,1024,706 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{NO}_{11}[\mathrm{M}+\mathrm{Na}]^{+} 804.2416$ Found 804.2399; $[\alpha]_{\mathrm{D}}{ }^{23.1}=+19.8$ (c $=1.17, \mathrm{MeOH}$).

(2R,3R,4R,5S,6S)-3-(($2 S, 3 R, 4 S, 5 R, 6 R)-3,4,5-$ trihydroxy-6-(hydroxymethyl)tetrahy dro-2H-pyran-2-yl)oxy)non-8-yne-1,2,4,5,6-pentaol (3m)
A white solid, Yield: 56%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (s, 1 H), 3.78-3.38 (m, 12H), 2.45 (dt, $J=17.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (ddd, $J=17.3,6.1,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.23(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 104.1,82.2,82.1,75.9,73.7$, 73.2, 72.1, 71.9, 71.8, 69.3, 69.1, 68.9, 62.7, 61.7, 23.1; IR (neat): 3398, 1642, 1424, $1074 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{11}[\mathrm{M}+\mathrm{Na}]^{+} 405.1368$ Found 405.1367; $[\alpha]_{\mathrm{D}}^{23.0}=+7.4\left(c=0.87, \mathrm{H}_{2} \mathrm{O}\right)$.

$(2 R, 3 R, 4 R, 5 S, 6 R)$-3-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahy dro-2H-pyran-2-yl)oxy)non-8-yne-1,2,4,5,6-pentaol (4m)
A white solid, Yield: $45 \%{ }^{1}{ }^{1} \mathrm{H}$ NR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.34(\mathrm{~d}, J=7.5 \mathrm{~Hz} \mathrm{1H})$, 3.90-3.87 (m, 1H), 3.81-3.47 (m, 11H), 3.38-3.35 (m, 1H), $2.38(\mathrm{ddd}, J=9.4,7.4,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 103.7$, $82.5,79.8,75.6,73.5,73.2,71.9,71.8,71.7,70.6,70.0,69.2,62.7,61.5,23.8 ;$ IR (neat): 3409, 1643, 1423, $1075 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{11}[\mathrm{M}+\mathrm{Na}]^{+} 405.1368$ Found 405.1367; $[\alpha]_{\mathrm{D}}{ }^{23.1}=+6.7\left(c=1.09, \mathrm{H}_{2} \mathrm{O}\right)$.

3. Rapid Synthesis of Sialic Acid Derivatives

3-1. General procedure for sialic acid synthesis

3-Deoxy-D-glycero- β-D-galacto-2-nonulosonic acid (6a)

To a 100 mL round bottom flask containing compound $\mathbf{3 a}(1.1 \mathrm{~g}, 5 \mathrm{mmol})$ in 22.5 mL $\mathrm{H}_{2} \mathrm{O}$ was added $\mathrm{Br}_{2}(2.0 \mathrm{~g}, 25 \mathrm{mmol})$. The resulting reaction mixture was stirred for 10 min at room temperature to afford $5 \mathbf{a}$. Excess amounts of bromine were removed via extraction with hexane ($30 \mathrm{~mL}, 3$ times). The aqueous solution containing the product was used directly into the next step without purification.

To a solution of $\mathbf{5 a}$ in $\mathrm{H}_{2} \mathrm{O}(22.5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(3.46 \mathrm{~g}, 25 \mathrm{mmol})$. The mixture was stirred for 1 h at room temperature until TLC analysis indicated completion of the reaction. Subsequently, $\mathrm{CH}_{3} \mathrm{COOH}$ was added to the reaction mixture until $\mathrm{pH}=4$. To the mixture were added $t \mathrm{BuOH}(22.5 \mathrm{~mL})$ and 2-methyl-2-butene ($5.3 \mathrm{~mL}, 50 \mathrm{mmol}$). NaClO_{2} (497 mg , 5.5 mmol) dissolved in 5 mL water was added dropwise, and the mixture was stirred for 10 min at room temperature. The solvent was evaporated, and the resulting crude residue was passed through a Dowex 1X8 resin (formate form) using aqueous formic acid solution ($0-1 \mathrm{M}$) as an eluent. The solvent was removed via lyophilization to afford 6 a as white powder ($1.02 \mathrm{~g}, 76 \%$ yield).

3-2. Characterization of sialic acids

(4S,5R,6R)-2-(dibromomethyl)-6-((1R,2R)-1,2,3-trihydroxypropyl)tetrahydro-2H-p yran-2,4,5-triol (5a)
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 5.81(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.70-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=9.75 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J$ $=12.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}) 1.59(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 97.9$, 73.7, 72.3, 71.8, 71.0, 69.9, 65.0, 53.9, 39.5;IR (KBr): 3376, 1655, 1420, 1066, 1034;

HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 418.9135$ Found 418.9146; $[\alpha]_{\mathrm{D}}{ }^{23.5}$ $=-12.7(c=0.49, \mathrm{MeOH})$.

KDN (6a)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) δ 3.93-3.88 (m, 2H), 3.79-3.75 (m, 2H), 3.67-3.64 (m, 1H), $3.57(\mathrm{dd}, J=12.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=13.2,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.74(\mathrm{t}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 173.9,95.9,72.4,71.1,70.7$, 69.3, 68.5, 63.9, 39.2; IR (KBr): 3399, 1743, 1440, 1281, 1210, $691 \mathrm{~cm}^{-1}$ HRMS (ESI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{9}[\mathrm{M}-\mathrm{H}]^{-}$267.0721 Found 267.0721. $[\alpha]_{\mathrm{D}}{ }^{25}=-42\left(c=1, \mathrm{H}_{2} \mathrm{O}\right)$.

Neu5Ac (6j)

The reaction was conducted by following the general procedure, using $\mathbf{3 j}$ ($26.1 \mathrm{mg}, 0.1$ $\mathrm{mmol}), \mathrm{Br}_{2}(40 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 5 min . Excess amounts of bromine were removed via extraction with hexane. The aqueous solution containing the product was used directly into the next step. $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($69.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to the aqueous solution (0.5 mL) containing the crude product. The reaction was stirred for 30 min . Then $\mathrm{CH}_{3} \mathrm{COOH}$ was added dropwise until $\mathrm{pH}=4$, and Pinnick oxidation using $\mathrm{NaClO}_{2}(9.9 \mathrm{mg}, 0.11 \mathrm{mmol})$, $t \mathrm{BuOH}(0.5 \mathrm{~mL})$, and 2-methyl-2-butene ($0.11 \mathrm{~mL}, 1 \mathrm{mmol}$) was carried out in one pot. The solution was evaporated, and the resulting crude residue was passed through a Dowex 1X8 resin (formate form) using aqueous formic acid solution ($0-1 \mathrm{M}$) as an eluent. The solvent was removed via lyophilization to afford $\mathbf{6 j}$ as white powder (22.9 $\mathrm{mg}, 74 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 3.94-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $11.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{ddd}, J=9.1,6.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=11.9,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38 (dd, $J=9.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dd, $J=13.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ (s, 3H), 1.70 (dd, J $=13.0,11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 175.6,174.0,96.0,71.1,70.9,68.9$, 67.4, 63.9, 52.8, 39.5, 22.8; IR (KBr): 3433, 3398, 1719, 1637, 1559, 1457, 1128, 1069,
$1036 \mathrm{~cm}^{-1}$ HRMS (ESI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{9} \quad[\mathrm{M}-\mathrm{H}]^{-} 308.0987$ Found 308.0994, $[\alpha]_{\mathrm{D}}{ }^{23.4}=-13.2\left(c=0.27, \mathrm{H}_{2} \mathrm{O}\right)$.

4-epi-Neu5Ac ($6{ }^{\prime}$ ')

Using $4 \mathbf{j}(26.1 \mathrm{mg}, 0.1 \mathrm{mmol})$, the reaction was conducted by following the procedure for preparing $\mathbf{6 j}$. The corresponding product was obtained as a pale pink solid (20.1 mg , 65% from $\mathbf{4 j}$). Mixture of anomers. For the major isomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) δ $4.20(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=11.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (ddd, $J=9.0,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{dd}, J=14.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (dd, J $=14.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 174.9,174.0,95.8,70.7$, 69.1, 66.7, 66.4, 63.9, 48.3, 36.8, 22.6; IR (KBr): 3397, 1750, 1735, 1654, 1637, 1628, 1125, 1089, $1031 \mathrm{~cm}^{-1}$ HRMS (ESI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{9}[\mathrm{M}-\mathrm{H}]^{-} 308.0987$ Found 308.0994,

(4S,5R,6S)-6-((R)-1,2-dihydroxyethyl)-2,4,5-trihydroxytetrahydro-2H-pyran-2-car boxylic acid (6d)
Using $4 \mathbf{d}$ ($19 \mathrm{mg}, 0.1 \mathrm{mmol}$), the reaction was conducted by following the procedure for preparing $\mathbf{6 j}$. The corresponding product was obtained as a white solid. ($19.5 \mathrm{mg}, 82 \%$ from 4d).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 3.91-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{ddd}, J=11.6,9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.07$ (dd, $J=13.0$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{t}, J=13.0,1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 174.5,96.1,73.3,70.8$, 69.3, 69.3, 63.5, 39.3; IR (KBr): 3406, 1685, 1438, 1403, 1207, 1142, $624 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]^{-} 237.0615$ Found 237.0626; $[\alpha]_{\mathrm{D}}{ }^{22.6}=-4.5(c=6.78$, $\mathrm{H}_{2} \mathrm{O}$)

$(4 R, 5 S, 6 R)-6-((1 R, 2 R)-2,3-d i h y d r o x y-1-(((2 S, 3 R, 4 S, 5 R, 6 R)-3,4,5-t r i h y d r o x y-6-(h y d ~$ roxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propyl)-2,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (6m)
The reaction was conducted by following the general procedure, using $\mathbf{3 m}$ (100 mg , $0.26 \mathrm{mmol}), \mathrm{KBr}(74.8 \mathrm{mg}, 0.63 \mathrm{mmol})$, and Oxone ($193 \mathrm{mg}, 0.63 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(2.4$ $\mathrm{mL})$. The reaction mixture was stirred at room temperature for 5 min . Inorganic salts were roughly removed using C_{18} reverse phase column, and the crude product was used directly for the next step without further purification. $\mathrm{K}_{2} \mathrm{CO}_{3}(144 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added to the crude product dissolved in $\mathrm{H}_{2} \mathrm{O}(2.4 \mathrm{~mL})$. The reaction was stirred for 30 min . Then $\mathrm{CH}_{3} \mathrm{COOH}$ was added dropwise until $\mathrm{pH}=4$, and Pinnick oxidation using $\mathrm{NaClO}_{2}(25.9 \mathrm{mg}, 0.29 \mathrm{mmol}), t \mathrm{BuOH}(2.4 \mathrm{~mL})$, and 2-methyl-2-butene ($275 \mu \mathrm{~L}, 0.90$ mmol) was carried out in one pot. The crude product was passed through a Dowex 1X8 resin (acetate form) using aqueous $\mathrm{CH}_{3} \mathrm{COOH}$ solution $(0-2 \mathrm{M})$ as an eluent. Products were purified by preparative reverse phase HPLC using a gradient of acetonitrile versus 0.1% TFA in water, affording $\mathbf{6 m}$ as a white solid ($59.3 \mathrm{mg}, 53 \%$ from $\mathbf{3 m}$). Preparative HPLC was carried out as follows: YMC-Triart C18 (20 mm I.D $\times 250 \mathrm{~mm}$) column using a linear gradient of $0-50 \%$ acetonitrile in 0.1% aqueous TFA over 30 min at room temperature with a flow rate of $7.0 \mathrm{~mL} \mathrm{~min}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.33(\mathrm{dd}, J=7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=9.3,2.1 \mathrm{~Hz}$, 1 H), 3.83-3.76 (m, 5H), 3.63-3.48 (m, 6H), 3.40-3.35 (m, 1H), 2.92 (ddd, $J=18.1,5.1$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=18.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 180.4,103.5$, 87.1, 76.8, 75.6, 73.2, 71.7, 71.4, 69.3, 68.5, 67.9, 62.8, 61.9, 40.3; IR (neat): 3389, 1758, 1638, 1077, 1043; HRMS (ESI): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{14}$ [M-H] 429.1249 Found 429.1266; $[\alpha]_{\mathrm{D}}^{21.3}=+21.5\left(c=2.28, \mathrm{H}_{2} \mathrm{O}\right)$.


```
ON
```

```
ON
```


$66 I \cdot \varepsilon$

3d S-SKP lyxose alkyne.als
2015-04-27 16:50:14
1H
proton.jxp
500.16 MHz
2.41 KHz
6.01 Hz
13107
7507.51 Hz
12

1.7459 sec
5.0000 sec
5.55 usec
画

4d R-skp lyxose alkyne.als

$3 e$ s-skp arabinose-1-1.jdf
$2015-07-0816: 22: 18$

1-1.als

0

I1172.20.1.201 lusersldeltalDocumentsiJEOL Idatalwei r-skp xylose new carb-1-1. daf


```
ஞ
```


4g r-skp 2-d-ribose-1-1.jdf
2015-07-17 18:10:32
1H
proton. jxp


```
    \(-09-0921: 18: 11\)

\(0 \mathrm{n} . j \mathrm{xp}\)
125.77 MHz
7.87 KHz
4.21 Hz
32767
39308.18 Hz
1533 J
0.8336 sec
2.0000 sec
3.40 usec
13 C
carb
焉 음
```


r-skp 2-d-galactose alkyne-1-1.jdf


```
\(4 i\) r-skp 2-d-glu carb-1-1.als
```



```
wei R-SKP mannosamin alkyne-1
2015-06-22 20:12:07
1H
prot
```



```
- 唇葉
```



```
अ ㅗㅗㅁ
```


wei S-SKP galactosamin-2-1.als

wei R-SKP galactosamin-2-1.als 2015-04-24 08:44:49

wei R-SKP glucosamin-2-1.als

\%


```
wei PGF-lactose S-SKP-1-1.jdf
2015-05-22 20:38:01
1H
```



```
                - 范䍐
```



```
                                出 음
```


4m R-skp lactose alkyne.als

kdn acid fresh carb-1-1.jdf 2015-08-23 17:25:14


```
wei Neu5Ac HPLC new-1-1.als
2015-05-12 20:32:38
    N\mp@code{NNM}
EK
~, ص~NO
* % N
```


แ


```
wei epi Neu5Ac- most new.jdf
2015-09-02 23:09:55
```


1-1-2.jd 2015-08-20 23:16:12

C:IDocuments and Settings:Administrator fff $X f \mathrm{~N}$ fg gfbfviGouseliweilpropargylationldata collectioninaturelwei r -lactose acid- carb.jdf

