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Section	S1.	Feedforward	Neural	Networks	[Fig.	S1,	Eqs.	S1-S5]	
	

	
Figure	 S1.	 A	 feedforward	neural	 network	 including	 the	 input,	 hidden,	 and	output	 layers	
with	neurons	(circles)	and	activation	functions	(lines)	
	
This	study	used	a	simple	feedforward	neural	network	(NN),	like	the	one	shown	in	Fig.	S1.	
In	this	diagram,	the	circles	represent	neurons.	The	 layer	of	neurons	on	the	 far	 left,	called	
the	input	layer,	is	made	up	of	the	input	numbers;	in	this	study,	these	values	describe	the	2D	
spectra.	The	neurons	in	the	middle	layer,	called	the	hidden	layer,	and	the	neurons	in	the	far	
right	layer,	called	the	output	layer,	depend	on	the	neurons	in	the	previous	layer	according	
to	Equation	S1,	

𝑎!
[!] = 𝜎 𝑤!"

[!]𝑎!
[!!!] − 𝑏!

[!]

!

	
S1	

where	𝑎!
[!]	is	 the	 value	 of	 the	 jth	 neuron	 in	 the	 lth	 layer	 and	𝑎!

[!!!]	is	 the	 value	 of	 the	 kth	
neuron	 from	 the	 previous	 layer.	 The	 terms	𝑤!"

[!]	and	𝑏!
[!]	are	 called	 weights	 and	 biases,	

respectively.	The	 subscripts	 for	 these	 terms	are	 indexes	describing	 the	neurons	 involved	
and	 the	 superscripts	 indicate	 the	 layer	 in	 the	NN.	 The	weights	 and	 biases	 are	 initialized	
randomly	 and	 change	 during	 training.	 The	 summation	 goes	 over	 all	 the	 neurons	 in	 the	
previous	layer.	The	term,	𝜎,	is	an	activation	function.1	In	this	study,	the	activation	function	
between	 the	 hidden	 and	 output	 layers	 is	 linear.	We	 considered	 two	 activation	 functions	
between	the	input	and	hidden	layers	called	the	rectified	linear	unit	(ReLU)2-4	and	the	Leaky	
ReLU,5	shown	below	in	Equations	S2	and	S3	respectively.	
	

𝜎!"#$ 𝜒 = 𝜒,               if 𝜒 > 0
0,          otherwise	

S2	

	 	

𝜎!"#$% !"#$ 𝜒 = 𝜒,                       if 𝜒 > 0
0.01𝜒,          otherwise	

S3	

The	values	of	the	neurons	at	the	output	layer	are	put	into	a	cost	function	like	that	shown	in	
Equation	S4.	The	 term,	𝒂(𝑳) 𝒙(𝟏) 	includes	 the	 initial	 input,	 𝒙(𝟏) ,	 and	 returns	 the	output	
from	the	final	layer	of	the	NN	with	number	of	layers,	L.	The	known	output	corresponding	to	
an	input	of	 𝒙(𝟏) 	is	𝒚 𝒙(𝟏) ;	the	superscript	in	Equation	S4	indicates	that	the	values	are	for	
a	 single	 input	and	corresponding	output.	By	comparing	 the	output	 from	 the	NN	with	 the	
true	value,	this	equation	is	measuring	the	accuracy	of	the	NN.	
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𝐶 𝒙(𝟏) =
1
2 𝒚 𝒙(𝟏) − 𝒂(𝑳) 𝒙(𝟏) !	 S4	

In	 Equation	 S5,	 the	 cost	 function	 is	 expanded	 to	 include	 a	 large	 set	 of	 inputs	 and	 their	
corresponding,	 known	 outputs.	 The	 multiple	 in	 front	 of	 the	 sum	 in	 Eq.	 S5	 includes	 the	
number	of	all	inputs	and	outputs	in	the	set,	X.	Using	the	chain	rule,	the	weights	and	biases	
can	be	 systematically	 improved	 to	minimize	 this	 cost	 function	 via	 gradient	 descent.	 This	
process	is	called	training	the	NN.	After	training,	the	NN	with	the	finalized	set	of	weights	and	
biases	is	tested	to	determine	its	applicability	to	the	given	problem.1	
	

𝐶 𝒙 =
1
2𝑋 𝒚 𝒙 − 𝒂(𝑳) 𝒙 !	
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Section	S2.	Spectral	Simulations	[Table	S1]	
All	 calculations	 in	 this	 work	 are	 formulated	 within	 the	 Condon	 and	 harmonic	
approximations.	For	each	vibration	m	included	in	Equation	(1),	we	account	for	a	maximum	
of	 five	 excited	 vibrational	 quanta	 and	 assume	 that	 the	 site-basis	 vibrational	 frequency	 is	
constant	across	all	electronic	states	and	molecules	(in	the	case	of	a	dimer).	Our	simulations	
of	 the	 third-order	 response	 functions	 are	 performed	 entirely	 within	 a	 time-domain	
representation,	 as	 has	 been	 employed	 in	many	 previous	works.6,7	Here,	we	 calculate	 the	
third-order	absorptive	response	 𝑅!"#

(!) 𝑡!, 𝑡!, 𝑡! 	as	the	sum	of	the	real	rephasing	and	non-
rephasing	 signals,	 which	 both	 contain	 ground-state	 bleach	 and	 stimulated	 emission	
responses.	Fast	Fourier	 transformation	(FFT)	of	 𝑅!"#

(!) 𝑡!, 𝑡!, 𝑡! 	with	respect	 to	𝑡!,	which	
is	 the	 time	 delay	 between	 the	 two	 pump	 light-matter	 interactions,	 yields	 the	 excitation	
frequency	 (𝜔!)	 resolution.	Likewise,	we	FFT	along	𝑡!	(the	delay	between	 the	probe	pulse	
and	 signal	 emission	 event)	 to	 obtain	 resolution	 in	 the	 detection	 frequency	 axis	 (𝜔!).	
Therefore,	absorptive	signals	used	as	 inputs	to	the	NN	are	of	mixed	frequency-	and	time-
domain	 representation	 𝑅!"#

(!) 𝜔!, 𝑡!,𝜔! .	 Spectral	 linewidths	 were	 captured	 by	

multiplying	𝑅!"#
(!) 𝑡!, 𝑡!, 𝑡! 	by	a	lineshape	function	that	accounts	for	energy	gap	fluctuations	

(∆𝐸)	 and	 a	 correlation	 timescale	 (𝑡!).8	Table	 S1	 summarizes	 these	parameters	 as	well	 as	
additional	values	pertaining	specifically	to	time-simulation	of	𝑅!"#

(!) 𝑡!, 𝑡!, 𝑡! .		
	
Table	 S1.	 Phenomenological	 system-bath	 parameters	 and	 metrics	 for	 time-domain	
simulations	used	to	produce	the	theoretical	2DES	spectra	in	this	study.	These	values	were	
held	constant	for	all	simulations.	

Parameter	 𝑡!, 𝑡!	domains	 𝑡!	domain	
∆𝐸		 1200	cm-1	 50	cm-1	

𝑡! 		 40	fs	 300	fs	
step	size	(∆𝑡)	 3	fs	 30	fs	
initial	time	 0	fs	 0	fs	
final	time	 186	fs	 1500	fs	
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As	 shown	 in	 Table	 S1,	𝑅!"#

(!) 𝑡!, 𝑡!, 𝑡! 	was	 calculated	 from	 0	 to	 186	 fs	 along	 the	 t1	 and	 t3	
domains	 with	 a	 step	 size	 of	 3	 fs.	 Without	 zero	 padding,	 this	 translates	 to	 a	 frequency	
resolution	 of	 approximately	 176	 cm-1	 for	 both	 the	 ω1	 and	 ω3	 axes.	 Prior	 to	 Fourier	
transformation	of	 the	data	along	 the	 t1	 and	 t3	dimensions,	we	zero	padded	 the	data	by	a	
factor	of	four.	Since	zero	padding	by	a	factor	of	two	improves	resolution	by	accounting	for	
causality,9	the	effective	frequency	resolution	along	ω1	and	ω3	is	approximately	88	cm-1.	
	
As	most	 of	 the	molecular	 response	 occurs	 within	 a	 relatively	 small	 fraction	 of	 the	 total	
frequency	range	(𝜔!,𝜔!),	we	cut	the	2D	spectra	down	to	a	window	of	5000	cm-1	in	both	𝜔!	
and	𝜔!	dimensions	prior	to	proceeding	with	NN	analyses.	This	window	was	automatically	
centered	 at	 the	 (𝜔!,𝜔!)	 coordinates	 of	 the	 maximum	 signal	 plus	 one	 quantum	 of	 the	
highest-frequency	 vibration	 present.	 In	 cases	 where	 the	 0-0	 vibronic	 band	 did	 not	
correspond	to	the	highest	signal	intensity	(i.e.,	for	dimers	with	J	≥	400	cm-1	and	monomers	
with	λ	=	1	for	the	high-frequency	vibration),	we	recentered	this	window	in	both	𝜔!	and	𝜔!	
dimensions	to	the	energy	of	the	electronic	energy	gap	(ε in	Eq.	1)	plus	one	quantum	of	the	
highest-frequency	 vibration	 present.	 This	 cutting	 process	 kept	 the	 inputs	 to	 the	 NN	
tractable	 in	 size	while	 preserving	 the	majority	 of	 the	 signal	within	 the	 viewing	window,	
which	in	turn	also	removes	any	physical	meaning	in	absolute	shifts	in	the	signal	along	𝜔!	
and	𝜔!.	
	
Section	S3.	Image	Modifications	[Fig.	S2]	
For	 each	 model	 Hamiltonian,	 the	 simulated	 spectral	 dataset	 is	 a	 3D	 array	 of	 size:	
𝑛!! ,𝑛!! ,𝑛!! 	where	𝑛!! 	is	 the	 number	 of	 waiting	 times	 considered,	𝑛!! 	is	 the	 number	 of	
data	 points	 along	 the	 excitation	 axis,	 and	𝑛!! is	 the	 number	 of	 data	 points	 along	 the	
emission	axis.	As	stated	 in	the	manuscript,	𝑛!! = 51,	 since	spectra	were	collected	at	30	 fs	
intervals	 from	0	to	1500	fs.	𝑛!! 	and	𝑛!! 	were	equal	and	always	either	114	or	113,	due	to	
variation	in	how	the	axes	of	2DES	spectra	were	cut.	
	
Prior	 to	 running	 the	NNs,	 the	2D	spectra	were	modified	using	an	 in-house	 trimming	and	
resizing	script.	The	main	purpose	of	these	modifications	was	to	insure	the	input	layer	was	
the	same	size	 for	all	 spectra	 (as	some	spectra	had	114*114	data	points	while	others	had	
113*113	data	points)	and	to	cut	down	on	the	size	of	the	input	layer.	Prior	to	trimming,	the	
images	were	re-centered	to	give	the	most	even	distribution	of	𝑅!"#

(!) 	magnitudes	around	the	
new	𝜔!	and	𝜔!	center	coordinates.	The	images	were	then	cut	to	contain	~95%	and	~90%	
of	the	total	amount	of	𝑅!"#

(!) 	magnitudes.	Images	were	also	left	unchanged	by	the	trimming	
script	(‘no	trim’	in	the	manuscript).	The	images	were	then	resized	to	arrays	of	size:	40*40,	
50*50,	and	60*60.	This	resizing	was	accomplished	with	a	bilinear	interpolation	script	that	
averaged	𝑅!"#

(!) 	values	across	the	𝜔!	and	𝜔!	indices.	
	



	

	

S-5	

	
Figure	 S2.	 2D	 spectrum	 from	 a	 monomer	 at	𝑡! = 0 𝑓𝑠	with	 high-	 and	 mid-	 frequency	
modes	with	𝜆	values	of	0.35	and	0.25,	respectively	(a)	before	image	modifications,	(b)	after	
re-centering	the	image	and	trimming	to	90%,	and	(c)	after	resizing	the	trimmed	image	to	
have	50*50	data	points.	
	
An	example	of	 the	 trimming	and	resizing	process	 is	 shown	 in	Fig.	 S2.	Figure	S2(a)	 is	 the	
original	spectrum;	 the	original	 image	has	114	points	along	𝜔!	and	𝜔!.	Figure	S2(b)	 is	 the	
image	after	re-centering	and	trimming	to	~90%;	the	image	now	has	83	points	along	𝜔!	and	
𝜔!.		Finally,	Fig.	S2(c)	is	the	image	following	resizing	to	contain	50	points	along	𝜔!	and	𝜔!.		
	
Section	S4.	Number	of	Epochs	and	Learning	Curves	
To	determine	 the	number	of	epochs	 to	use	while	optimizing	 the	hyperparameters	 in	 this	
study,	 we	 did	 preliminary	 training	 and	 testing	 runs	 at	 various	 hyperparameter	
combinations.	We	 found	 that	 using	 100	 epochs	 resulted	 in	 training	 learning	 curves	 that	
decreased	 monotonically	 and	 stabilized	 at	 low	 loss	 values	 while	 also	 returning	 high	
accuracy	values	for	the	test	set.	100	epochs	was	also	computationally	affordable.	Figure	S3	
shows	example	learning	curves	for	training	a	NN	for	Question	5	along	with	corresponding	
accuracy	values	 for	 the	 test	 set	at	each	epoch.	The	 training	 learning	curve,	Fig.	S3(a)	has	
more	points	 compared	 to	 the	 test	accuracy	curve,	Fig.	 S3(b)	because	we	printed	 the	 loss	
value	several	times	while	training	with	minibatches.	As	shown	in	Fig.	S3(a),	the	loss	while	
training	drops	rapidly	and	stabilizes	close	to	0	after	~50	epochs.	In	Fig.	S3(b),	the	accuracy	
of	the	test	set	increases	and	stays	above	90%	after	~30	epochs.	
	

	
Figure	S3.	(a)	An	example	learning	curve	from	training	for	Question	5	showing	the	loss	vs.	
epochs	and	(b)	the	corresponding	accuracy	values	generated	for	the	test	set	at	each	epoch;	
the	hyperparameters	are:	spectra	 trimming	=	none,	 input	size	=	3600,	neurons	 in	hidden	
layer	=	500,	activation	function	=	ReLU,	batch	size	=	500,	learning	rate	=	0.001.	
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