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Recombination of a singlet CT state towards the ground state

In the main text, we restricted ourselves to recombination of 3CT towards triplet excitons,

which based on spin statistics is expected to be the dominant channel for bimolecular re-

combination. Here, we present a brief derivation showing that the case of recombination of

1CT towards the ground state is formally equivalent to that of 3CT towards triplets.

For 1CT, the recombination rate is given by

Γ1CT =
2π

h̄
|〈G|Hr|1CT〉|2ρG, (S1)

with |G〉 denoting the ground state, and ρG the associated density of (vibrationally dressed)

states. The recombination Hamiltonian is identical to eq 3, except that the triplet exciton

creation operator is omitted,

Hr =
∑

~m∈D,~n∈A

b~mc~n tiδ(~m,~n− x̂). (S2)

Since the CT Hamiltonian, given by eq 2, is spin-independent, its 1CT eigenstates are

identical to 3CT eigenstates. Hence, also the 1CT eigenstates can be expressed as |α〉 =∑
~m∈D,~n∈A c

α
~m,~n|~m,~n〉. Combining this expression with eqs S1 and S2, we obtain

Γα =
2π

h̄
|
∑

~m∈D,~n∈A

〈G|b~mc~n tiδ(~m,~n+ x̂)|α〉|2ρG

∝ |
∑
y,z

cα(N,y,z),(N+1,y,z)|2, (S3)

which is identical to the 3CT result given by eq 4. Hence, the results for 3CT presented in

the main text hold equally well for 1CT.
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Analytical derivation for an unbound CT state in a 2×1×2 hetero-

junction

The coherent suppression of charge recombination upon wavefunction delocalization in an

idealized heterojunction can be demonstrated analytically when the Coulomb interaction

between the electron and hole is neglected. The Hamiltonian in the subspace of CT states

can then be expressed as a sum of a hole and electron contribution,

H0 = Hh ⊕He. (S4)

Consequentially, each CT state can be expressed as a product of states in the hole and

electron subspaces, |α〉 = |β〉h ⊗ |γ〉e.

For the sake of simplicity, we restrict ourselves to a 2 × 1 × 2 heterojunction as shown

in Figure S1; the smallest setup in which charge delocalization can occur. Since for such a

configuration the charge movements are restricted to the z-direction, the hole and electron

Figure S1: Representation of the hole and electron transfer integrals, analoguous to Figure
2. For an idealized 2 × 1 × 2 heterojunction as depicted here, and neglecting the Coulomb
interaction, the coherent suppression of charge recombination can be demonstrated analyti-
cally.
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Hamiltonians can be formulated as

Hh = tzh(b†1b2 + b†2b1) (S5)

and

He = tze(c†1c2 + c†2c1). (S6)

Here, the subscript of the creation and annihilation operators refers to the z-coordinate,

while it is understood that the hole and electron reside inside the donor and acceptor regions,

respectively. Furthermore, the recombination rate is given by

Γα =
2π

h̄
|
∑
z=1,2

〈Rz|d†zbzczti|α〉|2ρR. (S7)

Diagonalization of the hole and electron Hamiltonians is trivial, yielding the well-known

symmetric (+) and antisymmetric (−) wavefunctions. Accordingly, the hole eigenfunctions

are given by

|±〉h =
|1〉h ± |2〉h√

2
, (S8)

with the associated eigenenergies E±h = ±tzh. The electron eigenfunctions and eigenenergies

take up an analogues form. The CT eigenstates are given by different combinations of the

product of hole and electron wavefunctions. An example of such a product state is

|α〉 = |+〉h ⊗ |−〉e

=
(|1〉h + |2〉h)⊗ (|1〉e − |2〉e)

2
, (S9)

which we denote simply as (+,−), referring to the symmetric and antisymmetric character

of the hole and electron wavefunctions, respectively. Substitution of this CT state into eq
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S7 yields a recombination rate rigorously equal to zero,

Γ(+,−) =
πt2i
2h̄
|〈R|d†1b1c1|1〉h ⊗ |1〉e − 〈R|d

†
2b2c2|2〉h ⊗ |2〉e|2ρR

= 0. (S10)

Hence, a complete cancellation of recombination occurs due to the neighboring electron-hole

pairs located at z = 1 and those located at z = 2 being in antiphase. It follows readily that

a similar cancellation affects recombination of the CT state (−,+), while (+,+) and (−,−)

experience a recombination rate of π t2i ρR/h̄.

The CT energies, on the other hand, are given by a sum of the hole and electron energies,

Eα = E±h + E±e = ±tzh ± tze . (S11)

Since typically tzh,e � kBT at room temperature, the occurrence of charge recombination in a

thermalized heterojunction depends on whether the band-bottom state is of the form (+,−)

or (−,+), or of the form (+,+) or (−,−). This in turn depends on the sign of the hole and

electron transfer integrals. More specifically, the lowest-value eigenenergy is given by

E−h + E−e , if tzh, t
z
e > 0,

E+
h + E+

e , if tzh, t
z
e < 0,

E−h + E+
e , if tzh > 0, tze < 0,

E+
h + E−e , if tzh < 0, tze > 0. (S12)

This demonstrates that a coherent suppression of charge recombination through either (+,−)

or (−,+) requires the hole and electron transfer integrals (in the direction perpendicular to

the donor-acceptor interface) to be of opposite sign. Generalized in more dimensions, this

condition needs to be fulfilled at least in one direction.
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