Supporting Information for Publication

Experimental Strategies for Functional Annotation and Metabolism Discovery: Targeted Screening of Solute Binding Proteins and Unbiased Panning of Metabolomes

*Matthew W. Vetting^{1,10}, Nawar Al-Obaidi^{1,10}, Suwen Zhao^{2,10}, Brian San Francisco^{3,10}, Jungwook Kim¹, Daniel J. Wichelecki^{3,4}, Jason T. Bouvier^{3,4}, Jose O. Solbiati³, Hoan Vu⁶, Xinshuai Zhang³, Dmitry A. Rodionov^{7,8}, James D. Love¹, Brandan S. Hillerich¹, Ronald D. Seidel¹, *Ronald J. Quinn⁶, *Andrei L. Osterman⁷, *John E. Cronan^{4,9}, *Matthew P. Jacobson², *John A. Gerlt^{3,4,5}, *Steven C. Almo¹

Table	S1.	Primers	used	in	this	study.
-------	-----	---------	------	----	------	--------

Purpose	Primer name	Primer sequence (5' to 3')
qRT-PCR	LysR_RTPCR_FOR	CAAGGAAGATGCCGTGGATC
qRT-PCR	LysR_RTPCR_REV	ATAAAGCGCCATATCGACCAGT
qRT-PCR	DctP_RTPCR_FOR	ATCAGCAGTCCGGAGGATTTC
qRT-PCR	DctP_RTPCR_REV	GTCAGATACTTCTGCACCTCG
qRT-PCR	DctQ RTPCR FOR	CCGATCTGGAGCGATGAACT
qRT-PCR	DctQ RTPCR REV	CGTATTGCCAACTCCACCAG
qRT-PCR	DctM RTPCR FOR	CTTTACGTGGCGCTGTGTG
qRT-PCR	DctM RTPCR REV	GACCGGTGATGCAATGAAGG
qRT-PCR	VanX_RTPCR_FOR	GAAATGGTGGAAACACGCTATG
qRT-PCR	VanX_RTPCR_REV	GCTCGAAATGCACGGTATGC
Knockout	VanX KO H FOR	CCGGCATCGTGCTGGAATTCGTCACGCCCACC
Knockout	VanX KO Hext REV	CATCCCTCCAGTCCGGCGGTTCGTTTCCAGCAAGC
Knockout	VanX KO Bext FOR	GCTTGCTGGAAACGAACCGCCGGACTGGAGGGATG
Knockout	VanX KO B REV	GTCGCGCCTGCCGGATCCTGCTGCGCC
Knockout	DctP KO H FOR	GGATCTGGCCCTGCTGAATTCGCCTCCCGATGATC
Knockout	DctP KO Hext REV	CCTCAAGGAAGTGAAGGAAGAAAACCGGATGTCTCCTTGTTGTTATG
Knockout	DctP_KO_Bext_FOR	CATAACAACAAGGAGACATCCGGTTTTCTTCCTTCACTTCCTTGAGG
Knockout	Dctp KO B REV	CCCCAGCAGGGGATCCACCAGCAAGGCGG
qRT-PCR	Csal0675 left	CACGCGTCGTACCATATTCC
qRT-PCR	Csal0675 right	CGATTGCAGTCGTAGACCAG
qRT-PCR	Csal0676 left	GAGCCGTTCGACTTCCTCTT
aRT-PCR	Csal0676 right	ATCAGCAGCACCGAGAC
aRT-PCR	Csal0677 left	CATCGAGGGCCTGTTTACC
aRT-PCR	Csal0677 right	TCGTGTAGAGAACGCCATACC
aRT-PCR	Csal0678 left	GGCATCACCGAGGACTACAC
aRT-PCR	Csal0678 right	TCACAGCACACCTCGAACA
aRT-PCR	Csal0679 left	TCCAGACCACCAAGGAAGAG
aRT-PCR	Csal0679 right	GTAATCCGCCGTATCGAGTG
aRT-PCR	Csal0680 left	CGATGAATGACGAACTGGTG
aRT-PCR	Csal0680 right	GCGCTTGATGTAGCGTTTG
aRT-PCR	Csal0681 left	GTGATCTGTGATCCCGAACTG
aRT-PCR	Csal0681 right	GCGTGGCAGATATTCCTTGA
$\alpha RT - PCR$	Csall6s left	AAGAAGCACCGGCTAACTCC
aRT-PCR	Csall6s right	TCCCGATCTCTACGCATTTC
Knockout	Csal0678 EcoBI Fwd	
Knockout	Csal0678 HindIII Rev	
Knockout	Csal0679 EcoBI Fwd	
Knockout	Csal0679 HindIII Rev	
ABT-PCB	LVSR RTPCR FOR	
GRT-PCR	LVSR RTPCR REV	
GRT-PCR	DC+P RTPCR FOR	
GRT-PCR	Det P RTPCR REV	
QRT ICK	Deto RTPCR FOR	
ABL-DCB	Deto RTPCR PEV	
ANT LOV	DOTA DADCO DOD DOCATION VEA	
YAI-FCA	DOCH DECC DEV	
YAI-FCA	VORY DEDCD EOD	
YRI-PCR	VANA_RIFCR_FUK	
YKI-PCK	VallA_KIPUK_KEV	GUIUGAAAIGUAUGGIAIGU

Schematic of the previously determined ligands of TRAP SBPs.

These ligands map to specific clusters within the 10⁻¹²⁰ TRAP SBP SSN. C4-dicarboxylates (cluster 10, 74), alpha-keto acids (2), ectoine/5-OH ectoine (13), 2,3-diketo-L-gulonate (11), sialic acid (48,64), malonate (17), lactate (220), pyroglutamate (31,166), D-gluconate (43), quinic acid (100), coumarate/caffeate/cinnimate (28), 4-chlorobenzoate (475), taurine (78), 4OH-proline (61).

Node Color	Ligand(s)	Cluster #s in the 10 ⁻¹²⁰ SSN
navy	(S)-2-acetolactate	1, 12, 1672
lightskyblue	g-keto acids	2, 191
palegreen	4-carbon diacids	3, 9, 10, 74
sandvbrown	D-galacturonate/D-glucuronate	4, 44, 47, 65, 186, 310, 319, 452, 790
deepskyblue	D-glucuronate	5, 30, 161, 585
magenta	2.3-diketo-L-gulonate	11
cyan	ectoine, 5-hydroxyectoine	13, 254, 389, 1038
peru	pyruvate	15
indigo	malonate	17, 35
olive	phenolic acids	21, 28, 139, 180, 279, 429, 1675
darksalmon	5/6-carbon aldonic acids	27, 545
vellow	pyroglutamate	31, 124, 126, 166, 190, 946
pink	ethanolamine	33
green	6-carbon aldonic acids	43, 297
honeydew		45
blue	sialic acid	48, 64
olivedrab	L-fuconate/L-galactonate	49, 197, 403
metallic bronze	non-specific sugar acids	50
plum	trans-4-hydroxy-L-proline	61
orange	taurine	78
deep teal	glycerol-3-phosphate	87, 244
deep fir	L-guluronate/L-galacturonate	95, 323
teal	D-mannonate/L-gulonate	97, 223
lightcyan	(R)-pantoate	98
slateblue	D-quinic acid	100
firebrick	D-alanyl-D-alanine	104, 541
black	3-deoxy-D-manno-oct-2-ulosonic acid	107
burlywood	D-erythronate	123, 219
wheat	(putative) lactic acid	147
lightcoral	orotate/dihydrooroate	153
slategray	indole 3-pyruvate/indole 3-acetate	171, 588, 1677
crimson	D-mannuronate	214, 472
fandango	L-erythronate	217
lime	L-lactate	220
silver	D-taluronate/D-mannuronate	267
dove grey	diglycerol phosphate	277
lightseagreen	mandelate	350, 582
beige	(putative) suberate	426
hotpink	4-chlorobenzoate	475
cadetblue	benzoylformate	614
paleturquoise	(putative) D-ribonate	618
eggplant	L-ribonate/D-talonate	1646
royalblue	(putative) D-glycerate	1688
palevioletred	(putative) hydroxylated aromatic carboxylate	1690

Table S2 Mapping of ligand, cluster number and their associated colors within the E⁻¹²⁰ SSN (Figure 3)

Table S3 Number of sequences that map to the 71 clusters for which ligands were determined in this study						
Cluster #	Ligand	# of sequences	Cluster #	Ligand	# of sequences	
1	(S)-2-acetolactate	142	33	ethanolamine	68	
12	(S)-2-acetolactate	83	297	6-carbon aldonic acids	i-carbon aldonic acids 3	
1672	(S)-2-acetolactate	1	49	L-fuconate/L-galactonate	152	
191	α-keto acids	12	197	L-fuconate/L-galactonate	5	
3	4-carbon diacids	226	403	L-fuconate/L-galactonate	2	
9	4-carbon diacids	30	50	non-specific sugar acids	64	
4	D-galacturonate/D-glucuronate	70	87	glycerol-3-phosphate	32	
30	D-galacturonate/D-glucuronate	164	244	glycerol-3-phosphate	6	
44	D-galacturonate/D-glucuronate	149	95	L-guluronate/L-galacturonate	18	
47	D-galacturonate/D-glucuronate	67	323	L-guluronate/L-galacturonate	3	
65	D-galacturonate/D-glucuronate	35	97	D-mannonate/L-gulonate	9	
186	D-galacturonate/D-glucuronate	5	223	D-mannonate/L-gulonate	11	
310	D-galacturonate/D-glucuronate	4	98	(R)-pantoate	21	
319	D-galacturonate/D-glucuronate	3	104	D-alanyl-D-alanine	29	
452	D-galacturonate/D-glucuronate	2	541	D-alanyl-D-alanine	2	
290	D-galacturonate/D-glucuronate	3	107	3-deoxy-D-manno-oct-2-ulosonic acid	16	
5	D-glucuronate	74	123	D-erythronate	12	
161	D-glucuronate	8	219	D-erythronate	6	
585	D-glucuronate	2	147	lactic acid	8	
254	ectoine, 5-hydroxyectoine	5	153	orotate/dihydrooroate	6	
389	ectoine, 5-hydroxyectoine	2	171	indole 3-pyruvate/indole 3-acetate	indole 3-pyruvate/indole 3-acetate 4	
1038	ectoine, 5-hydroxyectoine	1	588	indole 3-pyruvate/indole 3-acetate	2	
15	pyruvate	322	1677	indole 3-pyruvate/indole 3-acetate	1	
21	phenolic acids	35	214	D-mannuronate	7	
139	phenolic acids	8	472	D-mannuronate 2		
180	phenolic acids	5	217	L-erythronate 4		
279	phenolic acids	5	267	D-taluronate/D-mannuronate 4		
429	phenolic acids	2	277	diglycerol phosphate	4	
1675	phenolic acids	1	350	mandelate	9	
27	5/6-carbon aldonic acids	62	582	mandelate	2	
545	5/6-carbon aldonic acids	2	426	suberate	2	
124	pyroglutamate	11	614	benzoylformate	2	
126	pyroglutamate	12	618	D-ribonate	2	
190	pyroglutamate	8	1646	L-ribonate/D-talonate	1	
946	pyroglutamate	2	1688	D-glycerate	1	
			1690	phenolic acids	1	

TRAP SBP FOLD.

A) Stereo ribbon diagram of Bamb_6123 from *Burkholderia ambifaria* with bound D-galacturonate (PDBID=4N17). TRAP SBPs are composed of two domains, domain 1 (shown in yellow) and domain 2 (shown in cyan), and a four helix α -helical wrapper (shown in red). **B)** Schematic of the TRAP SBP fold. Strands are shown as circles and α -helicies are show as triangles.

X-FTMS of TRAP Ligands.

In **panels A-C** and **E-F** free ligands were separated from the TRAP SBP by methanol extraction. All proteins were expressed in *E. coli* and purified by metal affinity and size exclusion chromatography. In **panel D**, cellular extracts of *E. coli* (no expression plasmid) were methanol extracted to obtain a small molecule metabolome sample for X-FTMS analysis. X-FTMS peaks for **A)** indole 3-pyruvate extracted from Dde_0634, **B)** diglycerol phosphate extracted from Desal_0342, **C)** 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) extracted from RD1_0742, **D)** diglycerol phosphate extracted from *E. coli* whole cells, **E)** sn-glycerol 3-phosphate extracted from FN1258 and **F)** (R)-pantoate extracted from Veis_3954.

Fig: qRT-PCR for the RD1_0742 neighborhood, 1h and 24 h after inoculation. KDO vs Glucose .

Figure S4

qRT-PCR transcriptional analysis of the up-regulation (fold change in expression) of the KDO TRAP transporter (RD1_0742) and related catabolic genes during incubation of *R. denitrificans* with KDO versus glucose at 1 hr and 24 hr. While these genes are upregulated in the presence of KDO *R. denitrificans* was not able to utilize KDO as a carbon source.

S10

ESI-FTMS of Copurified Ligand TRAP SBP Complexes.

All experiments were performed on a Bruker Solarix 12 Tesla ESI-FTMS. Mass spectra were recorded in the positive ion mode from 50 to 6000 *m/z*. Each spectrum was an average of 32 scans. The $\Delta m/z$ for the unbound protein and the protein:ligand complex ions was multiplied by the charge state (z) to directly afford the MW of the bound ligand, using the following equation: MW ligand = $\Delta m/z \times z$. **A)** Ddes_1525 sn-glycerol phosphate complex. **B)** FN1258 sn-glycerol phosphate complex. **C)** RPB_2686 (S)-2-Acetolactate complex. **D)** Desal_2161 orotic acid complex. **E)** BB3421 (R)-pantoate complex.

Interactions of TRAP SBPs with glycerol phosphates

A) Desal_0342 diglycerol phosphate complex. B) FN1258 sn-glycerol phosphate complex.
C) Ddes_1525 sn-glycerol 3phosphate complex. Residues that are similarly positioned between Desal_0342 and FN1258 are shown in BOLD. Residues of Ddes_1525 that are similarly positioned and make similar interactions to FN1258 are shown BOLD. Lys32 of FN1258 and Lys37 of Ddes_1525 do not superimpose.

Interactions of TRAP SBPs with (S)-2-Acetolactate

Interactions of **A)** RBP_2686 and **B)** H16_A1328 with (S)-2-Acetolactate. Despite low homology RBP_2686 and H16_A1328 coordinate (S)-2-Acetolatate in similar fashions. Residues that are similarly positioned and make similar interactions between Desal_0342 and FN1258 are shown in BOLD. The structurally conserved interactions are two arginines (Arg178, Arg157, RPB_2686 numbering) and two asparagines (Asn154, Asn218) that coordinate the alpha-hydroxy acid group with six hydrogen bonds, while a non-positionally conserved asparagine (Asn41, RPB_2686 or Asn 100, H16_A1328) coordinates the keto group. H16_A1328 has an additional hydrogen bond between Gln79 (H16_A1328 numbering) and the carboxylate of 2-acetolactate that is not observed in RBP_2686.

Figure S8.

Interactions of the TRAP SBP Dde_0634 with indole acids.

Interactions of **A**) D-tryptophan **B**) 3-Indolepyruvate and **C**) 3-indole acetate with Dde_0634 from *Desulfovibrio alaskensis*. Extensive hydrophobic and polar interactions between the protein and the indole moiety are not shown for clarity. Of note, the D-Trp and 3-IPA complexes are the only TRAP-SBP structures determined in this study where the carboxylate does not participate in two hydrogen bonds with the conserved arginine. Instead the keto acid group/peptide backbone is rotated 90 degrees, with one carboxylate oxygen making a bifurcated hydrogen bond with R173NH2 and Tyr100OH and the other hydrogen bonded to Ser97OG. In contrast, the structure of the IAA complex (2.25 Å) displayed the more classic two hydrogen bonds between the carboxylate and the conserved arginine.

A)			
,	Agrobacterium tumefaciens C58	C-source	N-source
	Glucose	+++	
	NH ₄ Cl		+++
	Ethanolamine	-	++
	Glycine	-	+++
	L-glutamate	+++	+++

Chromohalobacter salexigens DSM3043	C-source	N-source
Glucose	+++	
NH ₄ Cl		+++
Ethanolamine		+
Glycine	-	++
L-glutamate	+++	+++

Figure S9.

Analysis of growth of A. tumefaciens C58 and C. salexigens on ethanolamine.

A) Growth characteristics of *A. tumefaciens* and *C. salexigens* with NH₄Cl, ethanolamine, glycine, or L-glutamate (20 mM) as the sole source of nitrogen during aerobic growth. *A. tumefaciens* and *C. salexigens* were unable to utilize ethanolamine or glycine as a carbon source. Growth rate of *A. tumefaciens* (green squares) and *C. salexigens* (orange triangles) with ethanolamine as the sole source of nitrogen. **B)** qRT-PCR transcriptional analysis of the up-regulation (fold change in expression) of the ethanolamine TRAP transporter and related catabolic genes during growth of *C. salexigens* on ethanolamine, relative to growth with NH₄Cl, as the sole source of nitrogen. Fold changes are the averages of at least three biological replicates. **C)** Growth of C. salexigens strains with genetic disruptions in the TRAP SBP (Csal_0678 KO, orange squares) or glutamine synthetase (Csal_0679 KO, green triangles) on ethanolamine as the sole nitrogen source. *C. salexigens* WT is shown for comparison (red diamonds).

Figure S10.

LC-FTMS *m*/*z* peaks for ethanolamine utilization pathway intermediates and products.

Intermediates in ethanolamine metabolism detected in cell extracts of *A. tumefaciens* after feeding with 20 mM ethanolamine (shown, t=30 min), analyzed by LC-FTMS in negative (-) ion mode. The mass of each detected metabolite was within \pm 0.0003 Da of the exact mass.