# Supporting Information 

# Biomimetic Kinetic Resolution: Highly Enantio- and Diastereoselective Transfer Hydrogenation of Aglain Ketones to Access Flavagline Natural Products <br> Steven D. Stone, ${ }^{\ddagger}$ Neil J. Lajkiewicz, ${ }^{\ddagger}$ Luke Whitesell, ${ }^{\star}$ Ahmed Hilmy, ${ }^{\ddagger}$ and John A. Porco, Jr. * ${ }^{\neq}$ <br> ${ }^{\dagger}$ Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States <br> ${ }^{4}$ Whitehead Institute for Biomedical Research (WIBR), Cambridge, Massachusetts 02142, United States 

## Table of Contents

I. GENERAL INFORMATION ..... S1
Instrumentation and methods ..... S1
II. EXPERIMENTAL PROCEDURES AND COMPOUND CHARACTERIZATION ..... S2
Kinetic resolution general procedure and syntheses ..... S2
Chiral HPLC traces ..... S14
X-ray crystal structure of oxazinone 19 ..... S21
Ground State Conformers for N -Acyliminiums ..... S31
Select NMR Spectra ..... S43
Biological Assays. ..... S52

## I. GENERAL INFORMATION

## A. Instrumentation and methods

${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 or 500 MHz at ambient temperature with $\mathrm{CDCl}_{3}$ (Cambridge Isotope Laboratories, Inc.) as solvent. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift, integration, multiplicity ( $\mathrm{brs}=$ broad singlet, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet ) and coupling
constants in Hz. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100.0 or 125 MHz at ambient temperature with the same solvents unless otherwise stated. ${ }^{19}$ F NMR spectra were recorded at 376 or 470 MHz at ambient temperature with the same solvents unless otherwise stated. Chemical shifts are reported in parts per million relative to the deuterated solvents. All ${ }^{13} \mathrm{C}$ NMR spectra were recorded with complete proton decoupling. Infrared spectra were recorded on a Nicolet Nexus 670 FT-IR spectrophotometer. High-resolution mass spectra were obtained in the Boston University Chemical Instrumentation Center using a Waters Q-TOF API-US mass spectrometer. Melting points were recorded on a Mel-Temp apparatus (Laboratory Devices). Analytical LCMS was performed on a Waters Acquity UPLC (Ultra Performance Liquid Chromatography (Waters MassLynx Version 4.1) with a Binary solvent manager, SQ mass spectrometer, Water 2996 PDA (PhotoDiode Array) detector, and ELSD (Evaporative Light Scattering Detector). An Acquity UPLC BEH $\mathrm{C}_{18} 1.7 \mu \mathrm{~m}$ column was used for analytical UPLC-MS. Optical rotations were recorded on an AUTOPOL III digital polarimeter at 589 nm , and specific rotations are given $[\alpha]_{\mathrm{D}}{ }^{20}$ (concentration in grams $/ 100 \mathrm{~mL}$ solvent). Chiral HPLC analysis of enantioenriched compounds was performed using a Waters 1525 Binary HPLC Pump with a Waters 2487 diode array detector. Preparative HPLC was performed on a Gilson PLC2020 using a Waters SunFire ${ }^{\text {TM }}$ Prep C18 OBD ${ }^{\text {TM }} 5 \mu \mathrm{~m}$ 19X50 mm column.

Analytical thin layer chromatography was performed using 0.25 mm silica gel $60-\mathrm{F}$ plates. Flash chromatography was performed using 200-400 mesh silica gel (Scientific Absorbents, Inc.). Yields refer to chromatographically and spectroscopically pure materials, unless otherwise stated. HPLC grade tetrahydrofuran, methylene chloride, diethyl ether, toluene, acetonitrile, and benzene were purchased from Fisher and VWR and were purified and dried by passing through a PURE SOLV ${ }^{\circledR}$ solvent purification system (Innovative Technology, Inc.). Other ACS grade solvents for chromatography were purchased from Clean Harbors.

Photochemistry experiments were performed using a Rayonet RPR-100 photochemical reator equipped with RPR-3500 irradiation lamps ( $\lambda=315-400 \mathrm{~nm}$ ). Microwave experiments were performed using a CEM Discover microwave. All other reactions were carried out in oven-dried glassware under an argon atmosphere unless otherwise noted.

## II. EXPERIMENTAL PROCEDURES AND COMPOUND CHARACTERIZATION


(-)-Methyl
(2S,3R,4S,5S,10R)-5,10-dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-3-phenyl-2,3,4,5-
tetrahydro-2,5-methanobenzo[b]oxepine-4-carboxylate 6: A dry flask was charged with a stir bar, $( \pm)-5 \mathbf{b}$ ( $107 \mathrm{mg}, 0.218 \mathrm{mmol}, 1$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. In a separate flask, $\left[\mathrm{RhCl}_{2}\left(\mathrm{Cp}^{*}\right)\right]_{2}(1.1 \mathrm{mg}, 0.00218 \mathrm{mmol}$, $1 \mathrm{~mol} \%),(R, R)$ - $N$-Tosyl diphenylethylenediamine ( $1.6 \mathrm{mg}, 0.00436 \mathrm{mmol}, 2 \mathrm{~mol} \%$ ), formic acid ( 0.008 mL , $0.059 \mathrm{mmol}, 1.0$ equiv), triethylamine ( $0.03 \mathrm{~mL}, 0.059 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were combined and stirred for 30 min . At this time, the entire contents of the separate flask were added to the reaction mixture, and the reaction was allowed to stir at room temp for 12 h . After this time, a saturated sodium bicarbonate solution was added ( 5 mL ), and the reaction was diluted and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, then dried with anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was purified via $\mathrm{SiO}_{2}$ gel column chromatography ( $2: 3 \mathrm{EtOAc} /$ hexanes) to afford ( - )-6 in $45 \%$ yield ( $46 \mathrm{mg}, 0.0946 \mathrm{mmol}$ ) as a white solid. Aglain (+)-5b (6:4 EtOAc/hexanes) was also isolated in $42 \%$ yield ( $53 \mathrm{mg}, 0.108 \mathrm{mmol}$ ) as a white solid. The enantiopurity of (-)-6 was determined using analytical chiral HPLC ( $96 \%$ ee) and the ee of $(+)-\mathbf{5 b}$ (single enantiomer) was determined by synthesizing $(-)$-methyl rocaglate from $(+) \mathbf{- 4 b}$ (see below). Spectroscopic data are identical to those previously reported. ${ }^{\text {S1 }}$ Enantiopurity was determined using analytical chiral HPLC.

Note: for reactions with other catalytic systems, identical conditions were utilized as those outlined above, with $2 \mathrm{~mol} \%$ of the other metal-ligand systems employed.

$( \pm)-7$


$(+)-7$

(-)-11
(-)-Methyl ( $\mathbf{2 S , 3 R , 4 S , 5 S , 1 0 R ) - 5 , 1 0 -}$
dihydroxy-2,3-diphenyl-2,3,4,5-tetrahydro-2,5-methanobenzo[b]oxepine-4-carboxylate 11: See general procedure A. Cycloadduct 7 was prepared using previously reported methods. ${ }^{\text {S2 }}$ The yield of the reduced product (-)-11 was $16 \%(32 \mathrm{mg}, 0.080 \mathrm{mmol})$ as a white solid; the yield of the reisolated starting material was $22 \%(43 \mathrm{mg}, 0.108 \mathrm{mmol})$. Spectroscopic data for compound $(-)-11$ were found to be identical to those previously reported.S1 Enantiopurity of (-)-11 was determined using analytical HPLC (78\% ee).

$(+)-7$

(+)-11
(+)-Methyl (2R,3S,4R,5R,10S)-5,10-dihydroxy-2,3-
diphenyl-2,3,4,5-tetrahydro-2,5-methanobenzo[b]oxepine-4-carboxylate 11: A 10 ml flask was charged

[^0]with desmethoxyaglain $(+)-7(20 \mathrm{mg}, 0.050 \mathrm{mmol})$ and trifluorotoluene $(1.25 \mathrm{~mL})$. The solution was heated to $60^{\circ} \mathrm{C}$ for 4 h , then cooled to $0^{\circ} \mathrm{C}$. Acetic acid ( $29 \mu \mathrm{l}, 0.500 \mathrm{mmol}$ ) and sodium triacetoxyborohydride ( 64 $\mathrm{mg}, 0.300 \mathrm{mmol}$ ) were then added. The solution was warmed to room temperature and stirred for 12 h . The solution was diluted with ethyl acetate $(10 \mathrm{~mL})$ and saturated aqueous ammonium chloride was added (10 mL ) and the solution was stirred for an additional 30 min . The solution was then extracted with ethyl acetate ( 3 X 10 mL ) and washed with brine ( 10 mL ), dried with anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude mixture was separated using $\mathrm{SiO}_{2}$ column chromatography ( $20 \% \mathrm{EtOAc}:$ hexanes), and the reduced product was isolated ( $8 \mathrm{mg}, 0.020 \mathrm{mmol}, 22 \%$ ) as a white solid. The spectroscopic data for compound $(+)-\mathbf{1 1}$ are identical to those previously reported. ${ }^{\text {S1 }}$ Enantiopurity was determined using analytical chiral HPLC analysis ( $19 \%$ ee)

(-)-Methyl (2S,3R,4S,5S,10R)-2-

## (4-Bromophenyl)-5,10-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,4,5-tetrahydro-2,5-

methanobenzo[b]oxepine-4-carboxylate 12: See general procedure A. Aglain 9 was prepared using methods previously reported. ${ }^{\mathrm{S} 3}$ The yield of the reduced product $\mathbf{1 2}$ was $41 \% ~(64 \mathrm{mg}, 0.130 \mathrm{mmol}$ ); the yield of the reisolated starting material 9 was $43 \%$ ( $67 \mathrm{mg}, 0.140 \mathrm{mmol}$ ). The crude material was purified using $\mathrm{SiO}_{2}$ chromatography ( $60 \%$ EtOAc:hexanes, $\boldsymbol{R}_{\boldsymbol{f}}=0.4$ ); m.p. $122-125^{\circ} \mathrm{C}$; $\mathbf{I R}$ vmax (film): 3028, 3009, 1736, 1620, 1590, 1494, 1458, 1215, 1202, 1149, 1126, 1093, 1007, 824, $757 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~m}, 3 \mathrm{H}), 6.10(\mathrm{~m}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.2,161.4,157.9,153.4,140.8,136.8,130.7,130.6,130.2,130.1,128.2,126.6,121.9,80.6,80.5,79.2$, 64.7, 56.9, 56.0, 55.4, 51.8; HR/MS: $m / z$ Calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{BrO7}+\mathrm{H}\right]^{+} 541.0862$, found 541.0880 ( +3.3 ppm ); enantiopurity was determined using analytical chiral HPLC ( $>99 \%$ ee ); ; ; $\left.{ }^{\alpha}\right]_{\mathrm{D}}{ }^{26}=-83.017^{\circ}(c=0.2$, $\mathrm{CHCl}_{3}$ ). Enantiopurity of (+)-9 was determined after conversion to its methyl rocaglate analog (see general procedure B below) ( - )-14 ( $88 \%$ ee).

[^1]

Methyl (2S,3R,4S,5S,10R)-6,8-difluoro-5,10-dihydroxy-2-(4-methoxyphenyl)-3-phenyl-2,3,4,5-tetrahydro-2,5-methanobenzo[b]0xepine-4-carboxylate 13: 3-HF SI1 was prepared according to a previously reported procedure. ${ }^{\text {S4 }}$ To a Pyrex tube was added 3-HF SI1 ( $115 \mathrm{mg}, 0.394 \mathrm{mmol}, 1$ equiv), methyl cinnamate ( $320 \mathrm{mg}, 1.97 \mathrm{mmol}$, 5 equiv), chloroform ( 9.2 mL ), and 2,2,2-trifluoroethanol ( 4 mL ). The resulting mixture was first sonicated, then sparged with argon while sonicating for 10 min . The tube was then sealed and chilled to $0{ }^{\circ} \mathrm{C}$. The resulting solution was irradiated using a Rayonet RPR-100 photochemical reator for 3 h at $0^{\circ} \mathrm{C}$. The reaction mixture was then concentrated and purified via column chromatography to provide ( $\pm$ )-10 as a yellow oil ( $80 \mathrm{mg}, 0.172 \mathrm{mmol}, 44 \%$ ). For reduction procedure, see general procedure A. The yield of the reduced product was $13 \%(9 \mathrm{mg}, 0.0192 \mathrm{mmol})$ as a white solid; the yield of the reisolated starting material was $31 \%(22 \mathrm{mg}, 0.047 \mathrm{mmol})$ as a clear oil. The crude material was purified using $\mathrm{SiO}_{2}$ chromatography. $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ ( $30 \% \mathrm{EtOAc}$ :hexanes); m.p. decomposed; IR vmax (film): 2926, 2850, 1742, 1624, 1600, 1518, 1491, 1441, 1255, 1178, 1124, 1047, $1009831.5,758 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( 5 0 0 ~}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H})$, $4.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,159.0,140.8,130.2,130.1,128.9,128.1,126.5,113.0,100.6(\mathrm{~d}, J=3.6$ $\mathrm{Hz}), 97.0\left(\mathrm{dd}, J_{1}=J_{2}=1.5 \mathrm{~Hz}\right), 90.2,85.6,79.5,64.5,56.2,55.1,52.3,49.7 ;{ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 108.7 (dd, $J_{1}=8.7, J_{2}=17.3 \mathrm{~Hz}$ ), -117.6 (m); HR/MS: $m / z$ Calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{6}+\mathrm{Na}\right]^{+} 491.1282$, found 491.1270 $(-2.4 \mathrm{ppm})$; Enantiopurity of $\mathbf{1 3}$ was determined using analytical chiral HPLC (74\% ee); [ $\left.{ }^{\alpha}\right]_{\mathrm{D}}{ }^{26}=-27.785^{\circ}(\mathrm{c}$ $\left.=0.1, \mathrm{CHCl}_{3}\right)$.


Methyl rocaglate 1: To a flame dried round bottom flask was added (+)-5b ( $5 \mathrm{mg}, 0.0102 \mathrm{mmol}$ ) in methanol $(0.4 \mathrm{~mL})$. To the solution was added a freshly prepared solution of sodium methoxide in methanol $(0.090 \mathrm{~mL}, 0.3 \mathrm{M}, 0.0255 \mathrm{mmol})$ and the solution was heated at $60^{\circ} \mathrm{C}$ and stirred for 30 min . The solution

[^2]was cooled to rt and was concentrated in vacuo. Upon redilution in ethyl acetate ( 10 mL ), the reaction was quenched with saturated aqueous ammonium chloride ( 5 mL ) followed by $1 \mathrm{~N} \mathrm{HCl}(0.5 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ( 3 X 10 mL ) and the combined organic fractions were dried with anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude mixture was taken to the next step without further purification. The crude mixture was diluted in $\mathrm{MeCN}(1 \mathrm{~mL})$ and to this solution was added acetic acid $(10 \mu \mathrm{~L}, 0.102 \mathrm{mmol})$ and tetramethylammonium triacetoxyborohydride ( $16.1 \mathrm{mg}, 0.0612 \mathrm{mmol}$ ). The solution was stirred overnight at room temperature. The solution was then quenched with saturated aqueous ammonium chloride for 30 min . The mixture was extracted with ethyl acetate ( 3 X 10 mL ) and the combined organic fractions were dried with anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude mixture was purified using $\mathrm{SiO}_{2}$ column chromatography ( $1: 1 \mathrm{EtOAc}$ :hexanes) to afford a white solid ( $4 \mathrm{mg}, 0.008 \mathrm{mmol}, 80 \%$ ). The spectroscopic data was identical to those previously reported. ${ }^{\text {S2 }}$ Enantiopurity of (-)-1 (and therefore of (+)-5b) was determined using analytical chiral HPLC ( $>99 \%$ ee).

$(+)-9$


$(-)-14$
(-)-Methyl
(1R,2R,3S,3aR,8bS)-3a-(4-

## bromophenyl)-1,8b-dihydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-

cyclopenta[b]benzofuran-2-carboxylate 14: See general procedure B. Enantiopurity was determined using analytical chiral HPLC ( $88 \%$ ee $) .\left[{ }^{\alpha}\right]_{D}{ }^{26}=-75.37^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$; other spectroscopic data are identical to those previously reported. ${ }^{\text {S3 }}$

$(+)-10$

(-)-15 (-)-Methyl (1R,2R,3S,3aR,8bS)-6,8-difluoro-1,8b-

## dihydroxy-3a-(4-methoxyphenyl)-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-2-

carboxylate 15: See general procedure B. $\boldsymbol{R}_{\boldsymbol{f}}=0.3$ ( $2: 8 \mathrm{EtOAc}$ :hexanes); m.p. decomposed; IR vmax (film): $3000,1738,1631,1616,1515,1495,1443,1300,1254,1217,1175,1118,1089,1036,998,829,758 ;{ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10-7.05(\mathrm{~m}, 5 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45\left(\mathrm{dd}, J_{I}=J_{2}=9.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.91(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99\left(\mathrm{dd}, J_{I}\right.$

[^3]$\left.=5.5 \mathrm{~Hz}, J_{2}=14.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{brs}, 1 \mathrm{H}), 1.90(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,159.0,136.2,128.7,127.9,127.6,126.8,125.5,113.0,97.3,95.5,93.3,78.5,56.0,55.1$, $52.4,50.6 ;{ }^{19}$ F NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $-106.2\left(\mathrm{dd}, J_{1}=8.9, J_{2}=14.1 \mathrm{~Hz}\right),-113.7\left(\mathrm{dd}, J_{l}=J_{2}=8.9 \mathrm{~Hz}\right)$; HR/MS: $m / z$ Calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{6}+\mathrm{Na}\right]^{+} 491.1282$, found 491.1281 ( -0.20 ppm ); Enantiopurity was determined using analytical chiral HPLC ( $41 \%$ ee $) ;\left[{ }^{\alpha}\right]_{D}{ }^{26}=-73.480^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.

(+)-Aglaiastatin (2): To a flame-dried round bottom flask was added hydrate $(+)-\mathbf{5 b}(46 \mathrm{mg}, 0.0946 \mathrm{mmol}, 1$ equiv) in methanol ( 3 mL ) at rt under an argon atmosphere. To this solution was added sodium methoxide, $0.3 \mathrm{M}(0.10 \mathrm{~mL}, 0.296 \mathrm{mmol}, 3$ equiv $)$ and the reaction mixture was stirred for 30 min at $60^{\circ} \mathrm{C}$. The reaction was cooled to rt , then concentrated in vacuo. The reaction was then diluted with ethyl acetate $(20 \mathrm{~mL})$ then quenched with concentrated ammonium chloride ( 20 mL ) followed by $1 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate ( $3 \times 20 \mathrm{~mL}$ ). The combined organic fractions were dried with sodium sulfate, filtered, and concentrated in vacuo. The crude material (keto-rocaglate 8) was taken forward without further purification. The crude mixture (8) was diluted in toluene ( 2 mL ) and was heated to $110{ }^{\circ} \mathrm{C} .4,4-$ dimethoxybutanamine ( $12 \mathrm{mg}, 0.0946 \mathrm{mmol}, 1.0$ equiv) and 4-dimethylaminopyridine ( $3 \mathrm{mg}, 0.0236 \mathrm{mmol}$, 0.25 equiv) were added and the reaction was heated using microwave conditions ( 300 W ) at $130{ }^{\circ} \mathrm{C}$ for 5 min . The crude reaction mixture was concentrated in vacuo then used in the next reaction without further purification. The crude material (16) was diluted in THF ( 1 mL ) and cooled to $0^{\circ} \mathrm{C}$. At $0{ }^{\circ} \mathrm{C}$ a saturated ammonium chloride solution $/ 1 \mathrm{~N} \mathrm{HCl}$ aqueous solution $(1 \mathrm{~mL})$ was added dropwise. A precipitate formed immediately. After addition, the reaction was brought to rt and was stirred for 30 min . The reaction mixture was then extracted with ethyl acetate ( $3 \times 10 \mathrm{~mL}$ ). The combined organic fractions were washed with brine, dried over sodium sulfate, then concentrated in vacuo. The crude material was taken without purification to the next step. The crude hemiaminal (17) was diluted in THF ( 3 mL ) in a dry flask under argon. Ammonium acetate, dried with a vacuum dessicator for $4 \mathrm{~h}(78 \mathrm{mg}, 0.946 \mathrm{mmol}, 10$ equiv) was added along with a stir bar under argon and the solution was heated and stirred at $60^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to rt , then diluted with ethyl acetate $(10 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The organic phase was separated, and the aqueous layer
was then extracted with ethyl acetate ( $3 \times 10 \mathrm{~mL}$ ). The combined organic extracts were washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. ${ }^{1} \mathrm{H}$ NMR analysis revealed a 10:1 mixture of diastereomers. The crude material was purified via $\mathrm{SiO}_{2}$ gel column chromatography (4:6 $\rightarrow$ 1:0 EtOAc/hexanes, bright blue spot under short wave UV) to afford ( + )-aglaiastatin (2) in $62 \%$ ( $31 \mathrm{mg}, 0.0589$ mmol). Aglaiastatin (2) was found to be unstable to air (readily oxidizes to aglaroxin C (3)) $\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (8:2 EtOAc/hexanes); $[\alpha]_{\mathrm{D}}{ }^{27}=+86.1^{\circ}\left(c=0.2, \mathrm{CHCl}_{3}\right)$; m.p. $157^{\circ} \mathrm{C}$; IR $\operatorname{vmax}$ (film): 2953, 2924, 2854, 1621, 1514, 1464, 1428, 1251, 1204, 1149, $1114 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCL}_{3}$ ) $\delta 7.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.03\left(\mathrm{dd}, J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{~h}\right), 6.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 163.9,162.3,161.1,158.4,157.5,138.8,128.5,128.2,127.4,127.3,125.9,112.4,107.2$, 105.1, $92.8,89.4,88.1,70.2,57.3,55.7,55.5,55.0,44.0,33.3,22.8 ;$ HR-MS: $m / z$ Calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$527.2182, found 527.2159 (-4.4 ppm).

Table SI-1 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra for natural and synthetic aglaiastatin (2)


| Position | Natural ${ }^{\text {S5 }}$ | Synthetic | Natural ${ }^{\text {S5 }}$ | Synthetic |
| :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathrm{H}}(\mathrm{ppm})$ | $\delta_{\mathrm{H}}(\mathrm{ppm})$ | $\delta_{\text {C }}(\mathrm{ppm})$ | $\delta_{\text {C }}(\mathrm{ppm})$ |
| 1 |  |  | 157.2 | 157.5 |
| 2 |  |  | 106.5 | 106.3 |
| 3 | 4.60 (1H, s) | 4.60 (1H, s) | 57.3 | 57.4 |
| 3 a |  |  | 105.1 | 105.2 |
| 4 a |  |  | 161.1 | 161.2 |
| 5 | $6.28(1 \mathrm{H}, \mathrm{d}, J=2.0)$ | $6.28(1 \mathrm{H}, \mathrm{d}, J=2.0)$ | 89.4 | 89.5 |
| 6 |  |  | 164 | 164.0 |
| 7 | $6.08(1 \mathrm{H}, \mathrm{d}, J=2.0)$ | $6.08(1 \mathrm{H}, \mathrm{d}, J=2.0)$ | 92.8 | 92.9 |
| 8 |  |  | 157.5 | 157.6 |
| 8 a |  |  | 107.2 | 107.3 |
| 8 b |  |  | 88.2 | 88.3 |
| $6-\mathrm{OCH}_{3}$ | 3.83 (3H, s) | 3.83 (3H, s) | $55.5^{b}$ | 55.6 |
| $8-\mathrm{OCH}_{3}$ | 3.83 (3H, s) | $3.84(3 \mathrm{H}, \mathrm{s})$ | $55.8{ }^{\text {b }}$ | 55.9 |
| $8 \mathrm{~b}-\mathrm{OH}$ | 1.97 (1H, br s) | 1.88 (1H, br s) |  |  |
| 1 ' |  |  | 127.2 | 127.47 |
| 2',6‘ | 7.13 (2H, d, $J=9.0)$ | $7.132 \mathrm{H}, \mathrm{d}, J=9.0)$ | 128.3 | 128.4 |
| $3^{\prime}, 5^{\text {' }}$ | $6.58(2 \mathrm{H}, \mathrm{d}, J=9.0)$ | $6.59(2 \mathrm{H}, \mathrm{d}, J=9.0)$ | 112.5 | 112.5 |
| 4 |  |  | 158.5 | 158.5 |
| $4^{6}-\mathrm{OCH}_{3}$ | 3.66 (3H, s) | 3.66 (3H, s) | 55 | 55.1 |
| $1{ }^{\text {، }}$ |  |  | 138.8 | 139.0 |
| 2' ${ }^{\prime}$ 6" | 7.10 (2H, d, $J=7.4)$ | 7.10 (2H, d, $J=7.5)$ | 128.5 | 128.6 |
| 3'‘,5" | 7.03 (2H, dd, $J=7.4,7.4)$ | 7.03 (2H, dd, $J=7.5,7.5)$ | 127.4 | 127.49 |
| $4{ }^{\prime}$ | $6.95(1 \mathrm{H}, \mathrm{dd}, J=7.4,7.4)$ | 6.96 (1H, dd, $J=7.5,7.5)$ | 126 | 126.0 |
| $1^{\prime \prime} \times$ |  |  | 162.3 | 162.5 |
| 3'، | 3.48 (1H, m) | 3.50 (1H, m) | 44 | 44.1 |
|  | 3.62 (1H, m) | 3.62 (1H, m) |  |  |
| 4، " | $1.94-2.06(2 \mathrm{H}, \mathrm{m})$ | 2.01 (2H, m) | 22.8 | 22.9 |
| 5، ${ }^{\prime}$ | $1.97-2.06(1 \mathrm{H}, \mathrm{m})$ | $2.01(1 \mathrm{H}, \mathrm{m})$ | 32.5 | 32.5 |
|  | 2.47 (1H, m) | 2.46 (1H, m) |  |  |
| 5 a ، ${ }^{\text {c }}$ | 5.23 (1H, m) | 5.23 (1H, m) | 70.3 | 70.3 |
| 6"'*-NH | $5.24(1 \mathrm{H}, \mathrm{s})$ | $5.24(1 \mathrm{H}, \mathrm{s})$ |  |  |

[^4]
(6R,6aR,11bS,12aR)-
11b-Hydroxy-9,11-dimethoxy-6a-(4-methoxyphenyl)-6-phenyl-1,2,3,6,6a,11b,12,12a-octahydro-5Hbenzofuro[ $\left.2^{\prime}, 3^{\prime}: 4,5\right]$ cyclopenta[1,2-d]pyrrolo[1,2-a]pyrimidin-5-one 18: Hemiaminal 17 was prepared from aglain ( $\pm$ )-5b ( $40 \mathrm{mg}, 0.0825 \mathrm{mmol}, 1$ equiv) following the first three steps outlined for $(+)$-aglaiastatin (2) (vide supra). The crude hemiaminal $\mathbf{1 7}$ was diluted with THF ( 2 mL ) in a dry flask under argon. Ammonium formate (dried with a vacuum dessicator for $4 \mathrm{~h}, 76 \mathrm{mg}, 1.21 \mathrm{mmol}, 15$ equiv) was added along with a stir bar under argon. To the resulting mixture was added formic acid ( $0.005 \mathrm{~mL}, 0.08 \mathrm{mmol}, 1$ equiv) and the mixture was stirred at rt for 6 d . The reaction was cooled to $0{ }^{\circ} \mathrm{C}$, then quenched with a saturated sodium bicarbonate solution. The mixture was diluted with ethyl acetate ( 10 mL ) and water $(5 \mathrm{~mL})$. The organic phase was separated and the aqueous layer was then extracted with ethyl acetate ( $3 \times 10 \mathrm{~mL}$ ). The combined organic extracts were washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. ${ }^{1} \mathrm{H}$ NMR analysis revealed a 1.2:1:1.2 ratio of products $\mathbf{2}: \mathbf{1 8}: 19$. The crude material was purified via $\mathrm{SiO}_{2}$ gel column chromatography ( $4: 6 \rightarrow$ 1:0 EtOAc/hexanes) to afford ( $\pm$ )-aglaiastatin (2) in $23 \%(10 \mathrm{mg}$, $0.0190 \mathrm{mmol}),( \pm)-1818 \%(8 \mathrm{mg}, 0.0152 \mathrm{mmol})$, and $( \pm)-1928 \%(12 \mathrm{mg}, 0.0228 \mathrm{mmol})$ yields as amorphous white solids. Epi-aglaiastatin 18: $\boldsymbol{R}_{\boldsymbol{f}}=0.16$ (2:1 EtOAc:hexanes); IR vmax (film): 3395, 2954, 1621, 1513, 1454, 1427, 1250, 1148, $1113 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.03-6.99 (ovrlp m, 3H), 6.95 (br d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 3.63(\mathrm{ddd}, J=11.5,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{ddd}, J=11.5,9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.04(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 163.9,162.9,161.3,158.6,157.7,157.2,138.3,129.7$ (2C), 128.9 (2C), 127.3 (2C), 127.0, 126.4, 112.3 (2C), 107.3, 106.2, 104.0, $92.8,89.6,89.4,72.5,58.9,55.90,55.86,55.2,43.0$, 33.0, 21.7; HR-MS: $m / z$ Calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$527.2182, found 527.2169 ( -2.5 ppm ).


17
$( \pm)-19$
( $6 R, 6 \mathrm{a} R, 11 \mathrm{bS}, 12 \mathrm{a} R$ )-11b-hydroxy-9,11-dimethoxy-6a-
(4-methoxyphenyl)-6-phenyl-1,2,3,6a,11b,12a-hexahydrobenzofuro[3',2':3,4]cyclopenta[1,2-
e]pyrrolo[2,1-b][1,3]oxazin-5(6H)-one 41: Hemiaminal 17 was prepared from aglain ( $\pm$ )-5b (18 mg, 0.0367 mmol, 1 equiv) following the first three steps outlined for ( + )-aglaiastatin (1) (vide supra). The crude hemiaminal 17 was diluted with THF ( 2 mL ) in a dry flask under argon. Magnesium sulfate ( $48 \mathrm{mg}, 0.399$ mmol, 11 equiv) was added along with a stir bar under argon. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to rt , then filtered, and concentrated in vacuo. The crude material was purified via $\mathrm{SiO}_{2}$ gel column chromatography ( $4: 6 \rightarrow 7: 3 \mathrm{EtOAc} /$ hexanes ) to afford $( \pm) \mathbf{- 1 9}(8 \mathrm{mg}, 0.0152 \mathrm{mmol})$ in $42 \%$ yield as an amorphous white solid. Oxazinone 19 was recrystallized from EtOAc with slow diffusion of hexanes. $\boldsymbol{R}_{\boldsymbol{f}}=0.59$ (EtOAc); m.p. $192-195^{\circ} \mathrm{C}$; IR $\operatorname{vmax}$ (film): 3509, 2955, 1658, 1623, 1514, 1501, 1456, 1441, 1351, 1251, 1149, 1114, $1043 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.11-6.99$ (ovrlp m, 7H), 6.57 (br d, $J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddd}, J=5.5,4.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}$, 1 H ), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72$ (ddd, $J=12.5 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (s, 3H), 3.42 (ddd, $J=$ $12.5,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=13.0,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{ddd}, J=$ $13.5,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.96 (ddd, $J=13.0,7.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}$ ); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,164.0$, $161.3,160.8,158.6,158.1,137.8,128.68$ (2C), 128.66 (2C), 127.8 (2C), 126.9, 126.6, 112.53, 112.45 (2C), 106.3, 103.7, $92.8,91.8,89.1,88.0,55.8,55.7,55.6,55.1,44.7,31.822 .4$; HR-MS: $m / z$ Calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{7}+\mathrm{H}\right]^{+} 528.2022$, found $528.2006(-3.0 \mathrm{ppm})$.

(+)-aglaiastatin (2)

(-)-aglaroxin C (3)
(-)-Aglaroxin C (3): To a dry 10 mL flask was added (+)aglaiastatin (2) ( $7 \mathrm{mg}, 0.0133 \mathrm{mmol}, 1$ equiv), a stir bar, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ under argon. DDQ ( 3.3 mg , $0.0146 \mathrm{mmol}, 1.1$ equiv) was added in one portion under argon and the reaction was stirred for 30 min at rt . The reaction mixture was filtered with cotton and was purified using preparative TLC (9:1 EtOAc/hexanes).

Aglaroxin C (3) was isolated as an amorphous yellow solid in $66 \%$ yield ( $4.6 \mathrm{mg}, 0.00877 \mathrm{mmol}$ ). $\boldsymbol{R}_{\boldsymbol{f}}=0.08$ (EtOAc); $\left[{ }^{\alpha}\right]_{D}{ }^{27}=-49.2^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$ IR $v \max (f i l m): 3802,3326,2973,2927,2854,1677,1616$, $1579,1261,1149 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06($ ovrlp m, 3 H$), 6.89(\mathrm{~m}$, $2 \mathrm{H}), 6.56(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{ovrlp} \mathrm{m}$, 2H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), \quad 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 166.9,166.2,163.6,161.0,159.2,158.7,158.2,137.1,129.4$ (2C), 129.1 (2C), 127.9 (2C), $127.2,126.9,121.8,112.4$ (2C), 107.4, 103.7, $92.8,90.5,89.2,57.1,55.81,55.75,55.2,46.9,33.0,19.7$; HR-MS: $m / z$ Calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}\right]^{+} 547.1845$, found 547.1860 ( +2.7 ppm ).

Table SI-2 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra for natural and synthetic aglaroxin C (3)

|  | ome |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Position | $\text { Natural }^{\text {S6 }}$ | Synthetic | $\text { Natural }^{\text {S6 }}$ | Synthetic |
|  | $\delta_{\text {H }}(\mathrm{ppm})$ | $\delta_{\mathrm{H}}(\mathrm{ppm})$ | $\delta_{\text {C }}(\mathrm{ppm})$ | $\delta_{\text {C }}(\mathrm{ppm})$ |
| 1 |  |  | 159.0 | 159.2 |
| 2 |  |  | 90.3 | 90.5 |
| 3 | 4.69 (1H, s) | 4.69 (1H, s) | 56.9 | 57.1 |
| 3 a |  |  | 103.6 | 103.7 |
| 4a |  |  | 160.8 | 161.0 |
| 5 | $6.19(1 \mathrm{H}, \mathrm{d}, J=2.0)$ | $6.20(1 \mathrm{H}, \mathrm{d}, J=2.0)$ | 92.6 | 92.8 |
| 6 |  |  | 163.4 | 163.6 |
| 7 | $6.04(1 \mathrm{H}, \mathrm{d}, J=2.0)$ | $6.05(1 \mathrm{H}, \mathrm{d}, J=2.0)$ | 89.0 | 89.2 |
| 8 |  |  | 158.0 | 158.2 |
| 8 a |  |  | 107.2 | 107.4 |
| 8 b |  |  | 121.4 | 121.8 |
| $6-\mathrm{OCH}_{3}$ | 3.78 (3H, s) | 3.79 (3H, s) | 55.5 | 55.75 |
| $8-\mathrm{OCH}_{3}$ | 3.83 (3H, s) | 3.84 (3H, s) | 55.6 | 55.81 |
| $8 \mathrm{~b}-\mathrm{OH}$ | 3.35 (1H, s) | 3.31 (1H, s) |  |  |
| $1{ }^{\text {c }}$ |  |  | 127.0 | 127.2 |
| $2^{\text {¢ }}$, ${ }^{\text {c }}$ | 7.08 (2H, d, $J=9.0)$ | 7.08 ( $2 \mathrm{H}, \mathrm{d}, J=9.0)$ | 128.9 | 129.1 |
| 3',5‘ | 6.55 (2H, d, $J=9.0)$ | 6.56 (2H, d, $J=9.0)$ | 112.2 | 112.4 |
| $4{ }^{6}$ |  |  | 158.6 | 158.7 |
| $4^{4}-\mathrm{OCH}_{3}$ | 3.65 (3H, s) | 3.66 (3H, s) | 54.9 | 55.2 |
| 1 " |  |  | 136.9 | 137.1 |
| 2",6" | 7.06 (2H, m) | 7.06 (2H, m) | 129.2 | 129.4 |
| 3",5" | $6.89(2 \mathrm{H}, \mathrm{m})$ | $6.89(2 \mathrm{H}, \mathrm{m})$ | 127.6 | 127.9 |
| 4" | 7.06 (1H, m) | 7.06 (1H, m) | 126.7 | 126.9 |
| 1"، |  |  | 166.7 | 166.9 |
| 2"، | 4.09 ( $2 \mathrm{H}, \mathrm{m}$ ) | 4.12 (2H, m) | 46.7 | 46.9 |
| 3"* | 2.25 (2H, m) | 2.30 (2H, m) | 19.4 | 19.7 |
| 4"* | 3.20 (2H, m) | 3.22 (2H, m) | 32.7 | 33.0 |
| 5 "* |  |  | 166.0 | 166.2 |

[^5]Chiral HPLC Analysis of ( - )-6 and (+)-6: A Chiralpak AD column was used, with an isocratic mobile phase of isopropanol:hexanes (1:4) with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for 30 min .


|  | Name | Retention Time <br> $(\mathrm{min})$ | Area <br> $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$ | \% Area | Height <br> $(\mu \mathrm{V})$ | Int Type |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| 1 |  | 14.402 | 2896 | 1.02 | 85 | bb |
| 2 |  | 24.328 | 282336 | 98.98 | 4448 | bb |



|  | Name | Retention Time <br> $(\mathrm{min})$ | Area <br> $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$ | $\%$ Area | Height <br> $(\mu \mathrm{V})$ | Int Type |
| :--- | :---: | :---: | :---: | ---: | :--- | :--- |
| 1 |  | 14.057 | 87442829 | 50.05 | 1570207 | bb |
| 2 |  | 22.722 | 87259888 | 49.95 | 745483 | bb |

Chiral HPLC Analysis of (-)-11 and (+)-11: A Chiralpak AD column was used, with an isocratic mobile phase of isopropanol:hexanes (1:4) with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for 15 min .


Chiral HPLC Analysis of (-)-12 and (+)-12: A Chiralpak AD column was used, with an isocratic mobile phase of isopropanol:hexanes (1:4) with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for 30 min .


Chiral HPLC Analysis of (-)-13 and (+)-13: A Chiralpak AD column was used, with an isocratic mobile phase of isopropanol:hexanes ( $1: 4$ ) with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for 15 min .


Chiral HPLC Analysis of (-)-1 and (+)-1: A Regis Pirkle covalent ( $R, R$ ) WHELK-O 1 column was used, with an isocratic mobile phase of isopropanol:hexanes (1:4) with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for 60 min .


|  | Name | Retention Time <br> $(\mathrm{min})$ | Area <br> $\left(\mu \mathrm{V}^{\star} \mathrm{sec}\right)$ | $\%$ Area | Height <br> $(\mu \mathrm{V})$ | Int Type |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| 1 | 24.619 | 19579203 | 100.00 | 220251 | bb |  |



|  | Name | Retention Time <br> $(\mathrm{min})$ | Area <br> $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$ | $\%$ Area | Height <br> $(\mu \mathrm{V})$ | Int Type |
| :--- | :--- | ---: | :---: | ---: | ---: | :--- |
| 1 |  | 20.048 | 20129680 | 50.01 | 271443 | bb |
| 2 |  | 25.814 | 20124230 | 49.99 | 206837 | bb |

Chiral HPLC Analysis of (-)-14 and (+)-14: A Regis Pirkle covalent $(R, R)$ WHELK-O 1 column was used, with an isocratic mobile phase of isopropanol:hexanes (1:4) with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for 45 min .


Chiral HPLC Analysis of ( - )-15 and (+)-15: A Regis Pirkle covalent $(R, R)$ WHELK-O 1 column was used, with an isocratic mobile phase of isopropanol:hexanes (1:4) with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ for 30 min .


|  | Name | Retention Time <br> $(\mathrm{min})$ | Area <br> $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$ | \% Area | Height <br> $(\mu \mathrm{V})$ | Int Type |
| :--- | :--- | ---: | ---: | ---: | ---: | :--- |
| 1 |  | 6.695 | 1589326 | 29.54 | 100792 | bb |
| 2 |  | 7.688 | 3790519 | 70.46 | 201936 | bb |



|  | Name | Retention Time <br> $(\mathrm{min})$ | Area <br> $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$ | $\%$ Area | Height <br> $(\mu \mathrm{V})$ |
| :--- | :--- | ---: | ---: | ---: | :---: |
| 1 |  | 6.586 | 449925 | 49.46 | 29922 |
| 2 |  | 7.558 | 459775 | 50.54 | 26542 |

## X-ray Crystal Structure of Oxazinone 19

Crystals of compound ( $\pm$ )-19 suitable for X-ray analysis were obtained by vapor diffusion from EtOAc/hexanes. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 1028723). Copies of the data can be obtained free of charge through application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)- 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).


Identification code 19

## Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

## Results and discussion

## Computing details

Program(s) used to solve structure: XT (Sheldrick, 2008); program(s) used to refine structure: XL (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex 2 (Dolomanov et al., 2009).

## References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Table SI-3. Crystal data and structure refinement for oxazinone 19.

## Crystal data

| $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{7}$ | $V=5024.1(4) \AA^{3}$ |
| :--- | :--- |
| $M_{r}=527.55$ | $Z=8$ |
| Triclinic, $P^{-} 1$ | $F(000)=2224$ |
| $a=16.4623(7) \AA$ | $D_{\mathrm{x}}=1.395 \mathrm{Mg} \mathrm{m}^{-3}$ |
| $b=16.6870(7) \AA$ | $\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$ |
| $c=21.9358(10) \AA$ | $\mu=0.81 \mathrm{~mm}^{-1}$ |
| $\alpha=72.571(3)^{\circ}$ | $T=100 \mathrm{~K}$ |
| $\beta=74.463(2)^{\circ}$ | Prism, colorless |
| $\gamma=62.139(2)^{\circ}$ | $0.17 \times 0.09 \times 0.07 \mathrm{~mm}$ |

## Data collection

| Absorption correction: multi-scan <br> $S A D A B S$ (Sheldrick, 1997) | $\theta_{\max }=66.8^{\circ}, \theta_{\min }=3.1^{\circ}$ |
| :--- | :--- |
| $T_{\min }=0.665, T_{\max }=0.753$ | $h=-18 \rightarrow 19$ |
| 17631 measured reflections | $k=-18 \rightarrow 19$ |
| 17631 independent reflections | $l=0 \rightarrow 26$ |
| 15808 reflections with $I>2 \sigma(I)$ |  |

## Refinement

| Refinement on $F^{2}$ | Primary atom site location: structure-invariant <br> direct methods |
| :--- | :--- |
| Least-squares matrix: full | Hydrogen site location: inferred from <br> neighbouring sites |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$ | H-atom parameters constrained |
| $w R\left(F^{2}\right)=0.154$ | $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.067 P)^{2}+2.886 P\right]$ <br> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$ |
| $S=1.03$ | $(\Delta / \sigma)_{\max }=0.001$ |
| 17631 reflections | $\Delta\rangle_{\max }=0.56$ e $\AA^{-3}$ |
| 1432 parameters | $\Delta\rangle_{\min }=-0.38$ e $\AA^{-3}$ |
| 1392 restraints |  |

## Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ | Occ. ( $<1$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O5B | 0.30430 (10) | 0.65161 (10) | 0.92696 (7) | 0.0279 (3) |  |
| H5B | 0.3296 | 0.6759 | 0.9397 | 0.042* |  |
| O4B | 0.13564 (10) | 0.64900 (10) | 1.01547 (7) | 0.0263 (3) |  |
| O4C | 0.14391 (11) | 0.64588 (11) | 0.51652 (7) | 0.0303 (3) |  |
| O5A | 0.78779 (10) | 0.65898 (11) | 0.95595 (7) | 0.0277 (3) |  |
| H5A | 0.8327 | 0.6711 | 0.9343 | 0.042* |  |
| O4A | 0.70705 (10) | 0.57801 (10) | 0.89879 (7) | 0.0266 (3) |  |
| O7B | 0.22828 (11) | 0.77819 (11) | 1.02839 (7) | 0.0309 (3) |  |
| O2C | 0.32761 (10) | 0.66842 (11) | 0.32699 (7) | 0.0321 (3) |  |
| O3B | -0.04113 (10) | 0.66348 (12) | 0.91134 (7) | 0.0320 (3) |  |
| O2B | 0.13865 (10) | 0.84045 (11) | 0.82912 (7) | 0.0294 (3) |  |
| 07C | 0.27871 (11) | 0.72180 (12) | 0.53158 (8) | 0.0354 (4) |  |
| O7A | 0.86846 (10) | 0.66356 (11) | 0.81284 (7) | 0.0295 (3) |  |
| O5C | 0.15065 (11) | 0.81588 (11) | 0.43020 (8) | 0.0317 (3) |  |
| H5C | 0.1805 | 0.8370 | 0.4414 | 0.048* |  |
| O00D | 0.15821 (11) | 0.29929 (11) | 0.46433 (8) | 0.0324 (3) |  |
| H00D | 0.1692 | 0.3459 | 0.4457 | 0.049* |  |
| O2A | 0.58680 (10) | 0.86717 (11) | 0.90515 (7) | 0.0302 (3) |  |
| O00F | 0.08866 (11) | 0.21168 (11) | 0.40466 (8) | 0.0336 (4) |  |
| O6B | 0.05047 (12) | 1.09445 (11) | 0.92440 (8) | 0.0359 (4) |  |
| O3A | 0.43146 (11) | 0.67726 (13) | 0.96602 (9) | 0.0387 (4) |  |
| O3C | 0.16713 (13) | 0.46989 (12) | 0.41489 (8) | 0.0381 (4) |  |
| O6C | 0.59310 (11) | 0.56501 (13) | 0.42586 (8) | 0.0416 (4) |  |
| O00K | 0.14803 (12) | 0.38938 (12) | 0.32102 (8) | 0.0369 (4) |  |
| N1B | 0.02179 (12) | 0.60528 (13) | 1.00497 (9) | 0.0268 (4) |  |
| O1C | 0.09357 (12) | 1.06719 (12) | 0.17123 (9) | 0.0403 (4) |  |
| O1A | 0.71592 (14) | 0.91966 (15) | 1.13264 (10) | 0.0521 (5) |  |
| O000 | 0.37893 (12) | 0.12002 (13) | 0.41397 (9) | 0.0449 (4) |  |
| N1C | 0.10598 (14) | 0.52922 (14) | 0.50644 (9) | 0.0321 (4) |  |
| N1A | 0.56553 (12) | 0.55752 (13) | 0.93383 (9) | 0.0289 (4) |  |
| O6A | 0.72086 (13) | 0.96290 (13) | 0.68649 (8) | 0.0451 (4) |  |
| O00S | 0.21359 (14) | -0.06548 (12) | 0.46349 (10) | 0.0475 (5) |  |
| O1B | 0.51109 (13) | 0.67316 (15) | 0.64372 (9) | 0.0492 (5) |  |
| O00U | 0.43715 (16) | 0.21242 (16) | 0.65269 (12) | 0.0612 (6) |  |
| C24B | 0.18221 (14) | 0.81272 (15) | 0.92743 (10) | 0.0269 (4) |  |
| C22B | 0.14818 (14) | 0.67364 (15) | 0.95004 (10) | 0.0251 (4) |  |
| C30B | 0.18399 (15) | 0.84395 (16) | 0.97907 (11) | 0.0283 (4) |  |


| O00Y | 0.44669 (13) | 0.27942 (15) | 0.19687 (9) | 0.0494 (5) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C24C | 0.30847 (16) | 0.69099 (16) | 0.42913 (11) | 0.0302 (5) |  |
| C22A | 0.66365 (14) | 0.65074 (15) | 0.92804 (10) | 0.0265 (4) |  |
| C16B | 0.10384 (14) | 0.66330 (15) | 0.91190 (10) | 0.0262 (4) |  |
| C16C | 0.15658 (15) | 0.61788 (16) | 0.41350 (11) | 0.0304 (5) |  |
| C9B | 0.13241 (14) | 0.69493 (16) | 0.84117 (10) | 0.0276 (4) |  |
| H9B | 0.0755 | 0.7453 | 0.8233 | 0.033* |  |
| N014 | 0.08346 (15) | 0.06501 (14) | 0.43673 (10) | 0.0392 (5) |  |
| C30C | 0.34289 (17) | 0.68586 (17) | 0.48221 (11) | 0.0328 (5) |  |
| C25B | 0.13717 (15) | 0.87825 (16) | 0.87692 (10) | 0.0284 (5) |  |
| C22C | 0.16618 (15) | 0.66135 (15) | 0.45157 (10) | 0.0280 (5) |  |
| C27B | 0.09555 (15) | 1.00121 (16) | 0.92740 (11) | 0.0308 (5) |  |
| C17B | 0.02275 (14) | 0.64238 (15) | 0.94078 (10) | 0.0264 (4) |  |
| C19B | -0.03906 (16) | 0.61274 (17) | 1.11263 (11) | 0.0324 (5) |  |
| H19E | -0.0697 | 0.5840 | 1.1522 | 0.039* |  |
| H19F | -0.0601 | 0.6786 | 1.1133 | 0.039* |  |
| C10B | 0.17358 (14) | 0.62062 (16) | 0.80166 (11) | 0.0281 (5) |  |
| C23C | 0.21044 (15) | 0.72743 (15) | 0.41732 (11) | 0.0289 (5) |  |
| C29B | 0.14131 (16) | 0.93841 (16) | 0.97899 (11) | 0.0316 (5) |  |
| H29B | 0.1433 | 0.9600 | 1.0138 | 0.038* |  |
| C17C | 0.14157 (16) | 0.53333 (16) | 0.44313 (11) | 0.0311 (5) |  |
| C25C | 0.37034 (16) | 0.65649 (16) | 0.37674 (11) | 0.0309 (5) |  |
| C15B | 0.18268 (16) | 0.64710 (18) | 0.73422 (11) | 0.0326 (5) |  |
| H15B | 0.1607 | 0.7110 | 0.7145 | 0.039* |  |
| C26B | 0.09297 (15) | 0.97243 (16) | 0.87483 (11) | 0.0308 (5) |  |
| H26B | 0.0625 | 1.0152 | 0.8395 | 0.037* |  |
| C8C | 0.22699 (15) | 0.71836 (16) | 0.34353 (11) | 0.0293 (5) |  |
| C21B | 0.10210 (15) | 0.57704 (15) | 1.03512 (11) | 0.0278 (4) |  |
| H21B | 0.1526 | 0.5181 | 1.0233 | 0.033* |  |
| C23B | 0.21437 (14) | 0.71681 (15) | 0.91552 (10) | 0.0254 (4) |  |
| C15A | 0.55823 (15) | 0.65111 (17) | 1.10328 (12) | 0.0326 (5) |  |
| H15A | 0.5896 | 0.5985 | 1.0838 | 0.039* |  |
| C23A | 0.70966 (14) | 0.71243 (15) | 0.92381 (10) | 0.0264 (4) |  |
| C18B | -0.05953 (15) | 0.60315 (17) | 1.05210 (11) | 0.0309 (5) |  |
| H18E | -0.0642 | 0.5440 | 1.0588 | 0.037* |  |
| H18F | -0.1177 | 0.6552 | 1.0385 | 0.037* |  |
| C21A | 0.66567 (15) | 0.51188 (15) | 0.92935 (11) | 0.0283 (5) |  |
| H21A | 0.6835 | 0.4801 | 0.9734 | 0.034* |  |
| C9A | 0.54733 (14) | 0.75712 (16) | 0.99146 (11) | 0.0286 (5) |  |
| H9A | 0.4885 | 0.8055 | 0.9751 | 0.034* |  |


| C25A | 0.65193 (16) | 0.85471 (16) | 0.85074 (11) | 0.0304 (5) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C10A | 0.52808 (14) | 0.73966 (16) | 1.06456 (11) | 0.0291 (5) |  |
| C7A | 0.72005 (16) | 0.79947 (18) | 1.09631 (12) | 0.0357 (5) |  |
| H7A | 0.7511 | 0.7576 | 1.1316 | 0.043* |  |
| C5A | 0.65530 (15) | 0.82691 (16) | 1.00129 (11) | 0.0291 (5) |  |
| C20B | 0.06692 (15) | 0.56107 (16) | 1.10703 (11) | 0.0305 (5) |  |
| H20E | 0.0915 | 0.5861 | 1.1299 | 0.037* |  |
| H20F | 0.0859 | 0.4942 | 1.1256 | 0.037* |  |
| C24A | 0.72506 (15) | 0.76863 (15) | 0.85715 (11) | 0.0274 (4) |  |
| C26C | 0.46563 (16) | 0.61317 (17) | 0.37517 (11) | 0.0341 (5) |  |
| H26C | 0.5066 | 0.5881 | 0.3392 | 0.041* |  |
| C5C | 0.19377 (16) | 0.81069 (16) | 0.29679 (11) | 0.0298 (5) |  |
| C5B | 0.28375 (15) | 0.72081 (16) | 0.79160 (11) | 0.0290 (5) |  |
| C20C | 0.06354 (18) | 0.56893 (18) | 0.60744 (11) | 0.0369 (5) |  |
| H20G | -0.0025 | 0.5827 | 0.6251 | 0.044* |  |
| H20H | 0.0863 | 0.5956 | 0.6304 | 0.044* |  |
| C20A | 0.69544 (16) | 0.44134 (16) | 0.88884 (12) | 0.0320 (5) |  |
| H20I | 0.7049 | 0.3796 | 0.9165 | 0.038* |  |
| H20J | 0.7539 | 0.4366 | 0.8592 | 0.038* |  |
| C16A | 0.57809 (15) | 0.67472 (16) | 0.96302 (11) | 0.0290 (5) |  |
| C10C | 0.11127 (16) | 0.68652 (16) | 0.30067 (11) | 0.0314 (5) |  |
| C30A | 0.79765 (15) | 0.74941 (16) | 0.80540 (11) | 0.0294 (5) |  |
| C14B | 0.22324 (17) | 0.58166 (18) | 0.69578 (12) | 0.0371 (5) |  |
| H14B | 0.2297 | 0.6009 | 0.6501 | 0.044* |  |
| C29C | 0.43879 (17) | 0.64517 (17) | 0.48194 (12) | 0.0355 (5) |  |
| H29C | 0.4631 | 0.6427 | 0.5175 | 0.043* |  |
| C6A | 0.69999 (15) | 0.76673 (17) | 1.05430 (11) | 0.0319 (5) |  |
| H6A | 0.7166 | 0.7023 | 1.0613 | 0.038* |  |
| C4A | 0.63226 (16) | 0.92013 (17) | 0.99220 (12) | 0.0337 (5) |  |
| H4A | 0.6026 | 0.9617 | 0.9563 | 0.040* |  |
| C6C | 0.09970 (16) | 0.87313 (16) | 0.30274 (11) | 0.0314 (5) |  |
| H6C | 0.0566 | 0.8574 | 0.3368 | 0.038* |  |
| C2A | 0.69507 (16) | 0.89382 (19) | 1.08730 (12) | 0.0381 (5) |  |
| C17A | 0.51740 (15) | 0.63629 (17) | 0.95674 (11) | 0.0310 (5) |  |
| C30D | 0.23712 (18) | 0.32789 (18) | 0.31438 (12) | 0.0363 (5) |  |
| C9C | 0.18593 (16) | 0.64950 (16) | 0.34308 (11) | 0.0303 (5) |  |
| H9C | 0.2389 | 0.5946 | 0.3273 | 0.036* |  |
| C11B | 0.20418 (15) | 0.52683 (17) | 0.82928 (11) | 0.0324 (5) |  |
| H11B | 0.1982 | 0.5073 | 0.8750 | 0.039* |  |
| C21C | 0.07501 (16) | 0.60745 (17) | 0.53560 (11) | 0.0320 (5) |  |


| H21C | 0.0140 | 0.6560 | 0.5227 | 0.038* |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C3A | 0.65160 (18) | 0.95465 (19) | 1.03465 (13) | 0.0398 (6) |  |
| H3A | 0.6352 | 1.0190 | 1.0277 | 0.048* |  |
| C27C | 0.49855 (16) | 0.60824 (17) | 0.42917 (12) | 0.0357 (5) |  |
| C6D | 0.27523 (18) | 0.21189 (17) | 0.56535 (12) | 0.0365 (5) |  |
| H6D | 0.2113 | 0.2257 | 0.5699 | 0.044* |  |
| C4B | 0.35565 (15) | 0.63268 (17) | 0.79428 (11) | 0.0320 (5) |  |
| H4B | 0.3517 | 0.5844 | 0.8296 | 0.038* |  |
| C8B | 0.19709 (15) | 0.74107 (15) | 0.84193 (10) | 0.0270 (4) |  |
| C28B | 0.05276 (18) | 1.12923 (17) | 0.97568 (12) | 0.0371 (5) |  |
| H28D | 0.0163 | 1.1965 | 0.9681 | 0.056* |  |
| H28E | 0.1172 | 1.1146 | 0.9773 | 0.056* |  |
| H28F | 0.0263 | 1.1005 | 1.0168 | 0.056* |  |
| C3B | 0.43349 (16) | 0.61315 (18) | 0.74658 (12) | 0.0355 (5) |  |
| H3B | 0.4821 | 0.5524 | 0.7496 | 0.043* |  |
| C7C | 0.06887 (16) | 0.95684 (16) | 0.26007 (11) | 0.0325 (5) |  |
| H7C | 0.0048 | 0.9979 | 0.2646 | 0.039* |  |
| C28C | 0.63071 (18) | 0.5518 (2) | 0.48145 (13) | 0.0432 (6) |  |
| H28G | 0.6980 | 0.5142 | 0.4747 | 0.065* |  |
| H28H | 0.6017 | 0.5201 | 0.5194 | 0.065* |  |
| H28I | 0.6183 | 0.6121 | 0.4884 | 0.065* |  |
| C8D | 0.30369 (17) | 0.14694 (18) | 0.46745 (12) | 0.0390 (6) |  |
| C18C | 0.1115 (2) | 0.44464 (18) | 0.55444 (12) | 0.0397 (6) |  |
| H18G | 0.1660 | 0.3894 | 0.5416 | 0.048* |  |
| H18H | 0.0543 | 0.4353 | 0.5612 | 0.048* |  |
| C8A | 0.62596 (15) | 0.79154 (15) | 0.95856 (11) | 0.0278 (5) |  |
| C11A | 0.48187 (15) | 0.81549 (17) | 1.09440 (11) | 0.0327 (5) |  |
| H11A | 0.4591 | 0.8763 | 1.0687 | 0.039* |  |
| C29A | 0.79332 (17) | 0.81767 (17) | 0.74971 (11) | 0.0335 (5) |  |
| H29A | 0.8432 | 0.8058 | 0.7147 | 0.040* |  |
| C14C | -0.04688 (19) | 0.73866 (19) | 0.28515 (13) | 0.0421 (6) |  |
| H14C | -0.1098 | 0.7507 | 0.3031 | 0.051* |  |
| C19A | 0.61537 (16) | 0.47750 (17) | 0.85079 (12) | 0.0339 (5) |  |
| H19I | 0.6219 | 0.5230 | 0.8110 | 0.041* |  |
| H19J | 0.6126 | 0.4262 | 0.8389 | 0.041* |  |
| C19C | 0.12179 (19) | 0.46497 (18) | 0.61455 (12) | 0.0390 (5) |  |
| H19G | 0.0976 | 0.4306 | 0.6544 | 0.047* |  |
| H19H | 0.1876 | 0.4486 | 0.6154 | 0.047* |  |
| C3C | 0.22366 (17) | 0.92121 (18) | 0.20315 (12) | 0.0376 (5) |  |
| H3C | 0.2666 | 0.9371 | 0.1690 | 0.045* |  |


| C31B | 0.2506 (2) | 0.80941 (18) | 1.07310 (13) | 0.0442 (6) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H31D | 0.2828 | 0.8489 | 1.0493 | 0.066* |  |
| H31E | 0.2909 | 0.7559 | 1.1015 | 0.066* |  |
| H31F | 0.1933 | 0.8449 | 1.0992 | 0.066* |  |
| C18A | 0.52956 (16) | 0.52302 (18) | 0.89760 (12) | 0.0353 (5) |  |
| H18I | 0.4793 | 0.5743 | 0.8743 | 0.042* |  |
| H18J | 0.5061 | 0.4776 | 0.9264 | 0.042* |  |
| C7D | 0.30639 (19) | 0.22668 (18) | 0.61205 (13) | 0.0411 (6) |  |
| H7D | 0.2639 | 0.2511 | 0.6478 | 0.049* |  |
| C2D | 0.4000 (2) | 0.20570 (19) | 0.60628 (14) | 0.0461 (6) |  |
| C12B | 0.24361 (17) | 0.46112 (18) | 0.79054 (13) | 0.0384 (5) |  |
| H12B | 0.2632 | 0.3972 | 0.8100 | 0.046* |  |
| C29D | 0.30161 (18) | 0.33356 (18) | 0.25873 (12) | 0.0381 (5) |  |
| H29D | 0.2835 | 0.3845 | 0.2235 | 0.046* |  |
| C22D | 0.16481 (16) | 0.17140 (17) | 0.43468 (11) | 0.0336 (5) |  |
| C12C | 0.0704 (2) | 0.73521 (18) | 0.19293 (12) | 0.0410 (6) |  |
| H12C | 0.0884 | 0.7456 | 0.1474 | 0.049* |  |
| C11C | 0.13612 (18) | 0.70084 (17) | 0.23363 (12) | 0.0362 (5) |  |
| H11C | 0.1993 | 0.6868 | 0.2154 | 0.043* |  |
| C31A | 0.95455 (16) | 0.65361 (18) | 0.77052 (11) | 0.0343 (5) |  |
| H31J | 0.9470 | 0.6600 | 0.7262 | 0.051* |  |
| H31K | 1.0033 | 0.5924 | 0.7845 | 0.051* |  |
| H31L | 0.9720 | 0.7016 | 0.7719 | 0.051* |  |
| C15C | 0.01883 (17) | 0.70536 (17) | 0.32596 (12) | 0.0365 (5) |  |
| H15C | 0.0002 | 0.6954 | 0.3715 | 0.044* |  |
| C27A | 0.71671 (18) | 0.90321 (17) | 0.74465 (11) | 0.0363 (5) |  |
| C31C | 0.31045 (19) | 0.7390 (2) | 0.57884 (13) | 0.0444 (6) |  |
| H31G | 0.3459 | 0.7760 | 0.5572 | 0.067* |  |
| H31H | 0.3503 | 0.6800 | 0.6035 | 0.067* |  |
| H31I | 0.2569 | 0.7729 | 0.6082 | 0.067* |  |
| C20D | -0.04518 (18) | 0.19115 (19) | 0.39516 (13) | 0.0415 (6) |  |
| H20A | -0.1039 | 0.1938 | 0.4237 | 0.050* | 0.703 (8) |
| H20B | -0.0569 | 0.2527 | 0.3665 | 0.050* | 0.703 (8) |
| H20C | -0.1036 | 0.2406 | 0.4112 | 0.050* | 0.297 (8) |
| H20D | -0.0257 | 0.2143 | 0.3491 | 0.050* | 0.297 (8) |
| C21D | 0.02978 (17) | 0.16299 (17) | 0.43463 (12) | 0.0361 (5) |  |
| H21D | 0.0012 | 0.1744 | 0.4793 | 0.043* |  |
| C13A | 0.49878 (17) | 0.71545 (19) | 1.19867 (12) | 0.0391 (5) |  |
| H13A | 0.4892 | 0.7073 | 1.2444 | 0.047* |  |
| C5D | 0.33533 (17) | 0.17734 (18) | 0.51200 (12) | 0.0390 (5) |  |


| C14A | 0.54279 (17) | 0.63920 (18) | 1.17006 (12) | 0.0378 (5) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H14A | 0.5625 | 0.5786 | 1.1962 | 0.045* |  |
| C26A | 0.64367 (17) | 0.92420 (17) | 0.79530 (11) | 0.0349 (5) |  |
| H26A | 0.5912 | 0.9825 | 0.7923 | 0.042* |  |
| C2B | 0.43941 (17) | 0.68329 (19) | 0.69459 (12) | 0.0378 (5) |  |
| C2C | 0.13110 (17) | 0.98177 (17) | 0.21017 (12) | 0.0338 (5) |  |
| C12A | 0.46870 (16) | 0.80368 (18) | 1.16055 (12) | 0.0369 (5) |  |
| H12A | 0.4389 | 0.8562 | 1.1801 | 0.044* |  |
| C24D | 0.26687 (17) | 0.25272 (18) | 0.36631 (12) | 0.0371 (5) |  |
| C17D | 0.16742 (19) | 0.01942 (17) | 0.45761 (12) | 0.0397 (6) |  |
| C10D | 0.26190 (18) | 0.03983 (17) | 0.57199 (13) | 0.0387 (5) |  |
| C15D | 0.17208 (19) | 0.06372 (18) | 0.60629 (13) | 0.0412 (6) |  |
| H15D | 0.1212 | 0.0850 | 0.5841 | 0.049* |  |
| C16D | 0.19950 (18) | 0.08357 (17) | 0.46652 (12) | 0.0386 (5) |  |
| C6B | 0.29095 (18) | 0.78983 (18) | 0.73908 (11) | 0.0360 (5) |  |
| H6B | 0.2423 | 0.8506 | 0.7358 | 0.043* |  |
| C4C | 0.25410 (16) | 0.83606 (17) | 0.24658 (12) | 0.0352 (5) |  |
| H4C | 0.3180 | 0.7945 | 0.2414 | 0.042* |  |
| C7B | 0.36860 (19) | 0.77106 (19) | 0.69115 (12) | 0.0407 (6) |  |
| H7B | 0.3727 | 0.8193 | 0.6558 | 0.049* |  |
| C23D | 0.21740 (16) | 0.22601 (17) | 0.43259 (11) | 0.0346 (5) |  |
| C25D | 0.35765 (18) | 0.18897 (19) | 0.36007 (12) | 0.0409 (6) |  |
| C13B | 0.25435 (17) | 0.4885 (2) | 0.72378 (13) | 0.0416 (6) |  |
| H13B | 0.2829 | 0.4435 | 0.6974 | 0.050* |  |
| C12D | 0.31978 (19) | -0.00048 (18) | 0.67246 (13) | 0.0431 (6) |  |
| H12D | 0.3705 | -0.0223 | 0.6949 | 0.052* |  |
| C13C | -0.02154 (19) | 0.75427 (18) | 0.21913 (13) | 0.0426 (6) |  |
| H13C | -0.0670 | 0.7781 | 0.1916 | 0.051* |  |
| C27D | 0.39088 (19) | 0.2660 (2) | 0.25485 (12) | 0.0418 (6) |  |
| C9D | 0.28047 (18) | 0.06005 (18) | 0.49837 (12) | 0.0400 (6) |  |
| H9D | 0.3341 | 0.0045 | 0.4840 | 0.048* |  |
| C13D | 0.2299 (2) | 0.02586 (19) | 0.70571 (13) | 0.0451 (6) |  |
| H13D | 0.2187 | 0.0228 | 0.7510 | 0.054* |  |
| C14D | 0.1566 (2) | 0.05664 (19) | 0.67252 (14) | 0.0444 (6) |  |
| H14D | 0.0951 | 0.0730 | 0.6954 | 0.053* |  |
| C31D | 0.1256 (2) | 0.47649 (19) | 0.27590 (13) | 0.0433 (6) |  |
| H31A | 0.1319 | 0.4670 | 0.2326 | 0.065* |  |
| H31B | 0.1680 | 0.5028 | 0.2755 | 0.065* |  |
| H31C | 0.0615 | 0.5192 | 0.2888 | 0.065* |  |
| C4D | 0.42779 (19) | 0.1637 (2) | 0.50480 (14) | 0.0474 (6) |  |


| H4D | 0.4697 | 0.1447 | 0.4672 | 0.057* |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C1C | 0.15620 (19) | 1.09610 (19) | 0.12185 (13) | 0.0424 (6) |  |
| H1CA | 0.1853 | 1.0545 | 0.0912 | 0.064* |  |
| H1CB | 0.2043 | 1.0943 | 0.1413 | 0.064* |  |
| H1CC | 0.1221 | 1.1594 | 0.0991 | 0.064* |  |
| C11D | 0.33536 (19) | 0.00505 (18) | 0.60648 (13) | 0.0415 (6) |  |
| H11D | 0.3973 | -0.0152 | 0.5842 | 0.050* |  |
| C26D | 0.42214 (18) | 0.1914 (2) | 0.30492 (13) | 0.0437 (6) |  |
| H26D | 0.4840 | 0.1446 | 0.3017 | 0.052* |  |
| C3D | 0.4588 (2) | 0.1776 (2) | 0.55194 (16) | 0.0527 (7) |  |
| H3D | 0.5219 | 0.1674 | 0.5464 | 0.063* |  |
| C18D | 0.0473 (2) | 0.0287 (2) | 0.40200 (17) | 0.0550 (8) |  |
| H18A | 0.0068 | -0.0001 | 0.4319 | 0.066* | 0.703 (8) |
| H18B | 0.0982 | -0.0170 | 0.3775 | 0.066* | 0.703 (8) |
| H18C | 0.0507 | -0.0335 | 0.4250 | 0.066* | 0.297 (8) |
| H18D | 0.0808 | 0.0258 | 0.3573 | 0.066* | 0.297 (8) |
| C1A | 0.6712 (2) | 1.0153 (2) | 1.13357 (17) | 0.0562 (8) |  |
| H1AA | 0.6947 | 1.0495 | 1.0940 | 0.084* |  |
| H1AB | 0.6838 | 1.0253 | 1.1712 | 0.084* |  |
| H1AC | 0.6040 | 1.0373 | 1.1362 | 0.084* |  |
| C1B | 0.5919 (2) | 0.5901 (2) | 0.64986 (15) | 0.0515 (7) |  |
| H1BA | 0.6413 | 0.5956 | 0.6145 | 0.077* |  |
| H1BB | 0.5790 | 0.5392 | 0.6480 | 0.077* |  |
| H1BC | 0.6119 | 0.5774 | 0.6913 | 0.077* |  |
| C28D | 0.5332 (2) | 0.2057 (2) | 0.18639 (14) | 0.0515 (7) |  |
| H28A | 0.5621 | 0.2181 | 0.1414 | 0.077* |  |
| H28B | 0.5250 | 0.1486 | 0.1950 | 0.077* |  |
| H28C | 0.5733 | 0.1986 | 0.2154 | 0.077* |  |
| C28A | 0.6407 (2) | 1.0484 (2) | 0.67552 (14) | 0.0549 (8) |  |
| H28J | 0.6505 | 1.0826 | 0.6314 | 0.082* |  |
| H28K | 0.6303 | 1.0855 | 0.7064 | 0.082* |  |
| H28L | 0.5863 | 1.0359 | 0.6813 | 0.082* |  |
| C1D | 0.3812 (3) | 0.2201 (3) | 0.71478 (19) | 0.0741 (11) |  |
| H1DA | 0.3271 | 0.2802 | 0.7116 | 0.111* |  |
| H1DB | 0.4179 | 0.2150 | 0.7454 | 0.111* |  |
| H1DC | 0.3601 | 0.1704 | 0.7299 | 0.111* |  |
| C19D | -0.0089 (3) | 0.1182 (3) | 0.3562 (2) | 0.0447 (12) | 0.703 (8) |
| H19A | 0.0316 | 0.1317 | 0.3159 | 0.054* | 0.703 (8) |
| H19B | -0.0604 | 0.1131 | 0.3449 | 0.054* | 0.703 (8) |
| C19E | -0.0589 (6) | 0.1057 (6) | 0.4028 (4) | 0.042 (3) | 0.297 (8) |


| H19C | -0.0861 | 0.1092 | 0.3664 | $0.051^{*}$ | $0.297(8)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| H19D | -0.0984 | 0.0940 | 0.4441 | $0.051^{*}$ | $0.297(8)$ |

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].

## Ground State Conformers for $\boldsymbol{N}$-Acyliminiums

The following calculations were done using Spartan '10 (Wavefunction, Inc. Irvine, CA):

## Rotamer 20a with Acetate Counterion

A conformer distribution for N -acyliminium 20a with an acetate counterion was searched (MMFF level of theory) and the single point energies of the lowest energy structures were computed using B3LYP/6-31G* level of theory. The lowest energy conformer was then subjected to an equilibrium geometry calculation at the B3LYP/6-31G* level to provide the ground state of 20a shown:


Table SI-3 Cartesian Coordinates for the Ground State of Rotamer 20a with Acetate Counterion

| Atom | $\mathrm{X}(\AA)$ | $\mathrm{Y}(\AA)$ | $\mathrm{Z}(\AA)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)$ | -3.0827 | -3.3004 | -0.4968 |
| $\mathrm{H}(2)$ | -3.582 | -4.1125 | -1.0093 |
| $\mathrm{C}(3)$ | -3.5312 | -2.9674 | 0.8033 |
| $\mathrm{C}(4)$ | -2.946 | -1.9323 | 1.5484 |
| $\mathrm{H}(5)$ | -3.2773 | -1.6635 | 2.5422 |
| $\mathrm{C}(6)$ | -1.907 | -1.2376 | 0.9354 |
| $\mathrm{C}(7)$ | -1.4607 | -1.5282 | -0.3468 |
| $\mathrm{C}(8)$ | -2.0326 | -2.5848 | -1.0576 |
| $\mathrm{O}(9)$ | -1.4636 | -2.8328 | -2.2932 |
| $\mathrm{O}(10)$ | -4.5563 | -3.731 | 1.2458 |
| $\mathrm{C}(11)$ | -2.1051 | -3.786 | -3.1507 |
| $\mathrm{H}(12)$ | -2.0617 | -4.7914 | -2.7181 |
| $\mathrm{H}(13)$ | -1.5503 | -3.7646 | -4.0895 |
| $\mathrm{H}(14)$ | -3.1477 | -3.5041 | -3.3287 |
| $\mathrm{C}(15)$ | -5.1076 | -3.4662 | 2.534 |
| $\mathrm{H}(16)$ | -4.3587 | -3.6059 | 3.3227 |
| $\mathrm{H}(17)$ | -5.9121 | -4.1907 | 2.6634 |
| $\mathrm{H}(18)$ | -5.5163 | -2.4503 | 2.5885 |
| $\mathrm{O}(19)$ | -1.2139 | -0.2225 | 1.5116 |


| $\mathrm{C}(20)$ | -0.3064 | -0.6237 | -0.6664 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(21)$ | -0.4491 | 0.4931 | 0.4475 |
| $\mathrm{C}(22)$ | 1.7118 | -0.5839 | 0.6388 |
| $\mathrm{C}(23)$ | 1.0294 | -1.2953 | -0.3171 |
| $\mathrm{C}(24)$ | 0.9746 | 0.6903 | 1.0562 |
| $\mathrm{H}(25)$ | 0.8665 | 0.7312 | 2.1438 |
| $\mathrm{C}(26)$ | -1.2359 | 1.7515 | 0.1451 |
| $\mathrm{C}(27)$ | -2.836 | 4.0612 | -0.163 |
| $\mathrm{C}(28)$ | -1.2823 | 2.7474 | 1.1411 |
| $\mathrm{C}(29)$ | -2.0249 | 1.9361 | -0.9929 |
| $\mathrm{C}(30)$ | -2.8151 | 3.0774 | -1.156 |
| $\mathrm{C}(31)$ | -2.0608 | 3.8819 | 0.995 |
| $\mathrm{H}(32)$ | -0.7073 | 2.6273 | 2.0542 |
| $\mathrm{H}(33)$ | -2.0229 | 1.197 | -1.7816 |
| $\mathrm{H}(34)$ | -3.4049 | 3.1815 | -2.0593 |
| $\mathrm{H}(35)$ | -2.0908 | 4.647 | 1.7642 |
| $\mathrm{C}(36)$ | 1.7683 | 1.9112 | 0.5995 |
| $\mathrm{C}(37)$ | 3.3466 | 4.0987 | -0.194 |
| $\mathrm{C}(38)$ | 1.9595 | 2.1965 | -0.7625 |
| $\mathrm{C}(39)$ | 2.3834 | 2.7311 | 1.5524 |
| $\mathrm{C}(40)$ | 3.1675 | 3.8183 | 1.1602 |
| $\mathrm{C}(41)$ | 2.7372 | 3.2862 | -1.1539 |
| $\mathrm{H}(42)$ | 1.4723 | 1.5874 | -1.5203 |
| $\mathrm{H}(43)$ | 2.25 | 2.5162 | 2.6099 |
| $\mathrm{H}(44)$ | 3.6345 | 4.4454 | 1.9146 |
| $\mathrm{H}(45)$ | 2.8588 | 3.5086 | -2.2108 |
| $\mathrm{H}(46)$ | 3.9498 | 4.9485 | -0.5007 |
| $\mathrm{O}(47)$ | -3.5598 | 5.2084 | -0.218 |
| $\mathrm{C}(48)$ | -4.3702 | 5.445 | -1.3625 |
| $\mathrm{H}(49)$ | -4.8505 | 6.4094 | -1.192 |
| $\mathrm{H}(50)$ | -5.1391 | 4.6702 | -1.4754 |
| $\mathrm{H}(51)$ | -3.7663 | 5.4955 | -2.2774 |
| $\mathrm{C}(52)$ | 2.9879 | -0.8471 | 1.2271 |
| $\mathrm{O}(53)$ | 3.4406 | -0.5195 | 2.2958 |
| $\mathrm{C}(54)$ | 5.0665 | -2.4417 | 0.8728 |
| $\mathrm{C}(55)$ | 6.1244 | -2.5037 | -0.2546 |
| $\mathrm{C}(56)$ | 5.4374 | -1.8544 | -1.4888 |
| $\mathrm{H}(57)$ | 4.6032 | -3.4074 | 1.0996 |
| $\mathrm{H}(58)$ | 7.0122 | -1.9328 | 0.0267 |
| $\mathrm{H}(59)$ | 6.4395 | -3.5292 | -0.4538 |
| $\mathrm{H}(60)$ | 5.1293 | -2.5801 | -2.256 |
| $\mathrm{H}(61)$ | 6.0557 | -1.1131 | -2.0078 |
| $\mathrm{~N}(62)$ | 1.3477 | -2.4419 | -0.9722 |
| $\mathrm{H}(63)$ | 1.9913 | -3.1006 | -0.5565 |
|  |  |  |  |


| $\mathrm{O}(64)$ | -0.2255 | -0.1583 | -2.0059 |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}(65)$ | -0.6891 | -0.81 | -2.561 |
| $\mathrm{H}(66)$ | 0.6028 | -2.8691 | -1.5171 |
| $\mathrm{H}(67)$ | 5.4176 | -2.0023 | 1.8075 |
| $\mathrm{C}(68)$ | 4.2224 | -1.2182 | -0.9115 |
| $\mathrm{H}(69)$ | 3.5472 | -0.5279 | -1.4111 |
| $\mathrm{~N}(70)$ | 4.0138 | -1.5475 | 0.3159 |

## Rotamer 20b with Acetate Counterion

A conformer distribution for N -acyliminium 20b with an acetate counterion was searched (MMFF level of theory) and single point energies of the lowest energy structures were computed using B3LYP/6-31G* level of theory. The lowest energy conformer was then subjected to an equilibrium geometry calculation at the B3LYP/6-31G* level to provide the ground state of $\mathbf{2 0 b}$ shown:


Table SI-4 Cartesian Coordinates for the Ground State of Rotamer 20b with Acetate Counterion

| Atom | $\mathrm{X}(\AA)$ | $\mathrm{Y}(\AA)$ | $\mathrm{Z}(\AA)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)$ | 1.1028 | 4.1147 | 0.5616 |
| $\mathrm{H}(2)$ | 1.4875 | 5.0035 | 1.0448 |
| $\mathrm{C}(3)$ | 0.7528 | 4.2088 | -0.8055 |
| $\mathrm{C}(4)$ | 0.2256 | 3.1185 | -1.5132 |
| $\mathrm{H}(5)$ | -0.0663 | 3.1771 | -2.553 |
| $\mathrm{C}(6)$ | 0.0554 | 1.9354 | -0.797 |
| $\mathrm{C}(7)$ | 0.3866 | 1.8157 | 0.5478 |
| $\mathrm{C}(8)$ | 0.9273 | 2.9094 | 1.2336 |
| $\mathrm{O}(9)$ | 1.2333 | 2.6866 | 2.5555 |
| $\mathrm{O}(10)$ | 0.9682 | 5.4284 | -1.351 |
| $\mathrm{C}(11)$ | 1.681 | 3.7978 | 3.3399 |
| $\mathrm{H}(12)$ | 2.6272 | 4.1929 | 2.9538 |
| $\mathrm{H}(13)$ | 1.8279 | 3.4102 | 4.3486 |
| $\mathrm{H}(14)$ | 0.9282 | 4.593 | 3.3557 |
| $\mathrm{C}(15)$ | 0.5993 | 5.6509 | -2.71 |
| $\mathrm{H}(16)$ | 1.1648 | 4.9992 | -3.3873 |
| $\mathrm{H}(17)$ | 0.8475 | 6.6925 | -2.9153 |
| $\mathrm{H}(18)$ | -0.4752 | 5.4931 | -2.8596 |
| $\mathrm{O}(19)$ | -0.4344 | 0.7888 | -1.3264 |
| $\mathrm{C}(20)$ | 0.1277 | 0.3977 | 0.9795 |
| $\mathrm{C}(21)$ | -0.766 | -0.1581 | -0.2115 |
| $\mathrm{C}(22)$ | 1.3374 | -1.3231 | -0.187 |


| $\mathrm{C}(23)$ | 1.4198 | -0.4123 | 0.8436 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(24)$ | -0.1135 | -1.506 | -0.6452 |
| $\mathrm{H}(25)$ | -0.1542 | -1.5605 | -1.7368 |
| $\mathrm{C}(26)$ | -2.2683 | -0.126 | -0.0557 |
| $\mathrm{C}(27)$ | -5.0896 | 0.0666 | -0.0032 |
| $\mathrm{C}(28)$ | -2.9207 | 0.7698 | 0.8103 |
| $\mathrm{C}(29)$ | -3.0681 | -0.9008 | -0.9047 |
| $\mathrm{C}(30)$ | -4.4593 | -0.8183 | -0.887 |
| $\mathrm{C}(31)$ | -4.3037 | 0.8638 | 0.8425 |
| $\mathrm{H}(32)$ | -2.3482 | 1.4013 | 1.4769 |
| $\mathrm{H}(33)$ | -2.6088 | -1.5925 | -1.6021 |
| $\mathrm{H}(34)$ | -5.0349 | -1.4435 | -1.5592 |
| $\mathrm{H}(35)$ | -4.803 | 1.5496 | 1.5194 |
| $\mathrm{C}(36)$ | -0.706 | -2.7951 | -0.0805 |
| $\mathrm{C}(37)$ | -1.713 | -5.2309 | 0.897 |
| $\mathrm{C}(38)$ | -1.0028 | -2.9473 | 1.2818 |
| $\mathrm{C}(39)$ | -0.9138 | -3.8804 | -0.9405 |
| $\mathrm{C}(40)$ | -1.4137 | -5.0907 | -0.4579 |
| $\mathrm{C}(41)$ | -1.5075 | -4.1548 | 1.7634 |
| $\mathrm{H}(42)$ | -0.862 | -2.1202 | 1.9719 |
| $\mathrm{H}(43)$ | -0.6744 | -3.7803 | -1.9964 |
| $\mathrm{H}(44)$ | -1.568 | -5.9208 | -1.1415 |
| $\mathrm{H}(45)$ | -1.7446 | -4.2534 | 2.8193 |
| $\mathrm{H}(46)$ | -2.1057 | -6.1702 | 1.2761 |
| $\mathrm{O}(47)$ | -6.4318 | 0.2272 | 0.1119 |
| $\mathrm{C}(48)$ | -7.2859 | -0.5588 | -0.7111 |
| $\mathrm{H}(49)$ | -8.3032 | -0.2705 | -0.4429 |
| $\mathrm{H}(50)$ | -7.1491 | -1.6306 | -0.5207 |
| $\mathrm{H}(51)$ | -7.118 | -0.3522 | -1.7756 |
| $\mathrm{C}(52)$ | 2.3511 | -2.114 | -0.7958 |
| $\mathrm{O}(53)$ | 2.2692 | -3.0759 | -1.5219 |
| $\mathrm{C}(54)$ | 4.9348 | -2.586 | -0.6524 |
| $\mathrm{C}(55)$ | 6.1752 | -1.679 | -0.5124 |
| $\mathrm{C}(56)$ | 5.6694 | -0.2632 | -0.8953 |
| $\mathrm{H}(57)$ | 4.8738 | -3.1276 | -1.5995 |
| $\mathrm{H}(58)$ | 6.5346 | -1.6824 | 0.5201 |
| $\mathrm{H}(59)$ | 6.995 | -2.0133 | -1.1502 |
| $\mathrm{H}(60)$ | 5.9179 | 0.0252 | -1.9278 |
| $\mathrm{H}(61)$ | 6.0473 | 0.5424 | -0.2561 |
| $\mathrm{~N}(62)$ | 2.4306 | -0.1225 | 1.698 |
| $\mathrm{H}(63)$ | 2.1906 | 0.5008 | 2.4628 |
| $\mathrm{O}(64)$ | -0.3779 | 0.2201 | 2.2885 |
| $\mathrm{H}(65)$ | -0.3941 | 1.0847 | 2.7304 |
| $\mathrm{H}(66)$ | 3.1165 | -0.829 | 1.9243 |
|  |  |  |  |


| $\mathrm{H}(67)$ | 4.803 | -3.3055 | 0.1584 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(68)$ | 4.1892 | -0.3963 | -0.7944 |
| $\mathrm{H}(69)$ | 3.4591 | 0.4036 | -0.8817 |
| $\mathrm{~N}(70)$ | 3.8028 | -1.6133 | -0.6301 |

## Rotamer SI2a with Formate Counterion



SI2a
A conformer distribution of N -acyliminium SI2a with a formate counterion (the counterpart to 20a) was searched (MMFF level of theory) and single point energies of the lowest energy structures were computed using B3LYP/6-31G* level of theory. The lowest energy conformer was then subjected to an equilibrium geometry calculation at the B3LYP/6-31G* level to provide the ground state of SI2a shown. Rotamer SI2a was $1.0 \mathrm{kcal} / \mathrm{mol}$ lower in energy than rotamer SI2b (page S40).

Table SI-5 Cartesian Coordinates for the Ground State of Rotamer SI2a with Formate Counterion

| Atom | $\mathrm{X}(\AA)$ | $\mathrm{Y}(\AA)$ | $\mathrm{Z}(\AA)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)$ | -1.298 | 4.309 | 0.434 |
| $\mathrm{H}(2)$ | -1.31 | 5.262 | 0.945 |
| $\mathrm{C}(3)$ | -1.889 | 4.243 | -0.842 |
| $\mathrm{C}(4)$ | -1.904 | 3.059 | -1.587 |
| $\mathrm{H}(5)$ | -2.348 | 2.98 | -2.571 |
| $\mathrm{C}(6)$ | -1.316 | 1.946 | -0.987 |
| $\mathrm{C}(7)$ | -0.749 | 1.965 | 0.279 |
| $\mathrm{C}(8)$ | -0.706 | 3.171 | 0.988 |
| $\mathrm{O}(9)$ | -0.044 | 3.16 | 2.185 |
| $\mathrm{O}(10)$ | -2.428 | 5.42 | -1.276 |
| $\mathrm{C}(11)$ | -0.067 | 4.338 | 2.979 |
| $\mathrm{H}(12)$ | 0.43 | 5.176 | 2.473 |
| $\mathrm{H}(13)$ | 0.474 | 4.091 | 3.894 |
| $\mathrm{H}(14)$ | -1.095 | 4.626 | 3.23 |
| $\mathrm{C}(15)$ | -3.048 | 5.442 | -2.553 |
| $\mathrm{H}(16)$ | -2.337 | 5.191 | -3.35 |
| $\mathrm{H}(17)$ | -3.405 | 6.464 | -2.694 |


| $\mathrm{H}(18)$ | -3.899 | 4.75 | -2.598 |
| :---: | :---: | :---: | :---: |
| $\mathrm{O}(19)$ | -1.224 | 0.734 | -1.595 |
| $\mathrm{C}(20)$ | -0.172 | 0.594 | 0.559 |
| $\mathrm{C}(21)$ | -0.862 | -0.282 | -0.572 |
| $\mathrm{C}(22)$ | 1.545 | -0.388 | -0.81 |
| $\mathrm{C}(23)$ | 1.309 | 0.532 | 0.195 |
| $\mathrm{C}(24)$ | 0.279 | -1.127 | -1.229 |
| $\mathrm{H}(25)$ | 0.148 | -1.057 | -2.314 |
| $\mathrm{C}(26)$ | -2.153 | -1.02 | -0.261 |
| $\mathrm{C}(27)$ | -4.636 | -2.321 | 0.091 |
| $\mathrm{C}(28)$ | -2.792 | -1.68 | -1.329 |
| $\mathrm{C}(29)$ | -2.795 | -1.02 | 0.979 |
| $\mathrm{C}(30)$ | -4.024 | -1.665 | 1.161 |
| $\mathrm{C}(31)$ | -4.008 | -2.322 | -1.164 |
| $\mathrm{H}(32)$ | -2.33 | -1.678 | -2.312 |
| $\mathrm{H}(33)$ | -2.334 | -0.524 | 1.823 |
| $\mathrm{H}(34)$ | -4.484 | -1.644 | 2.142 |
| $\mathrm{H}(35)$ | -4.495 | -2.831 | -1.99 |
| $\mathrm{C}(36)$ | 0.327 | -2.609 | -0.869 |
| $\mathrm{C}(37)$ | 0.446 | -5.357 | -0.276 |
| $\mathrm{C}(38)$ | 0.495 | -3.047 | 0.452 |
| $\mathrm{C}(39)$ | 0.234 | -3.567 | -1.885 |
| $\mathrm{C}(40)$ | 0.291 | -4.931 | -1.595 |
| $\mathrm{C}(41)$ | 0.548 | -4.409 | 0.745 |
| $\mathrm{H}(42)$ | 0.588 | -2.331 | 1.262 |
| $\mathrm{H}(43)$ | 0.125 | -3.24 | -2.917 |
| $\mathrm{H}(44)$ | 0.218 | -5.658 | -2.4 |
| $\mathrm{H}(45)$ | 0.671 | -4.728 | 1.777 |
| $\mathrm{H}(46)$ | 0.489 | -6.418 | -0.044 |
| $\mathrm{O}(47)$ | -5.831 | -2.981 | 0.159 |
| $\mathrm{C}(48)$ | -6.494 | -3.027 | 1.411 |
| $\mathrm{H}(49)$ | -7.406 | -3.604 | 1.247 |
| $\mathrm{H}(50)$ | -6.759 | -2.022 | 1.766 |
| $\mathrm{H}(51)$ | -5.882 | -3.526 | 2.175 |
| $\mathrm{C}(52)$ | 2.76 | -0.693 | -1.478 |
| $\mathrm{O}(53)$ | 2.952 | -1.415 | -2.437 |
| $\mathrm{C}(54)$ | 4.403 | 1.359 | -1.347 |
| $\mathrm{C}(55)$ | 5.805 | 1.537 | -0.711 |
| $\mathrm{C}(56)$ | 6.034 | 0.263 | 0.151 |
| $\mathrm{H}(57)$ | 3.656 | 2.055 | -0.957 |
| $\mathrm{H}(58)$ | 6.571 | 1.627 | -1.485 |
| $\mathrm{H}(59)$ | 5.842 | 2.441 | -0.1 |
|  |  |  |  |


| $\mathrm{H}(60)$ | 6.044 | 0.449 | 1.229 |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}(61)$ | 6.954 | -0.277 | -0.101 |
| $\mathrm{~N}(62)$ | 2.167 | 1.305 | 0.899 |
| $\mathrm{H}(63)$ | 1.693 | 1.868 | 1.603 |
| $\mathrm{O}(64)$ | -0.318 | 0.175 | 1.894 |
| $\mathrm{H}(65)$ | 0.517 | -0.248 | 2.224 |
| $\mathrm{H}(66)$ | 2.987 | 0.796 | 1.312 |
| $\mathrm{H}(67)$ | 4.401 | 1.398 | -2.44 |
| $\mathrm{C}(68)$ | 4.839 | -0.578 | -0.141 |
| $\mathrm{H}(69)$ | 4.671 | -1.59 | 0.202 |
| $\mathrm{~N}(70)$ | 4.004 | -0.007 | -0.936 |
| $\mathrm{C}(71)$ | 3.2 | -1.013 | 2.895 |
| $\mathrm{H}(72)$ | 3.728 | -1.705 | 3.589 |
| $\mathrm{O}(73)$ | 3.971 | -0.286 | 2.177 |
| $\mathrm{O}(74)$ | 1.955 | -1.037 | 2.919 |

## Rotamer SI2b with Formate Counterion



A conformer distribution of $N$-acyliminium SI2b with a formate counterion (the counterpart to 20b) was searched (MMFF level of theory) and single point energies of the lowest energy structures were computed using B3LYP/6-31G* level of theory. The lowest energy conformer was then subjected to an equilibrium geometry calculation at the B3LYP/6-31G* level to provide the ground state of $\mathbf{2 0 b}$ pictured above. Rotamer $\mathbf{2 0 b} /$ formate was $1.0 \mathrm{kcal} / \mathrm{mol}$ higher in energy than rotamer $\mathbf{2 0 a}$ /formate.

Table SI-6 Cartesian Coordinates for the Ground State of Rotamer SI2b with Formate Counterion

| Atom | $\mathrm{X}(\AA)$ | $\mathrm{Y}(\AA)$ | $\mathrm{Z}(\AA)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)$ | -1.236 | 4.457 | 0.156 |
| $\mathrm{H}(2)$ | -1.239 | 5.434 | 0.621 |
| $\mathrm{C}(3)$ | -1.781 | 4.346 | -1.137 |
| $\mathrm{C}(4)$ | -1.806 | 3.126 | -1.822 |
| $\mathrm{H}(5)$ | -2.216 | 3.012 | -2.817 |
| $\mathrm{C}(6)$ | -1.279 | 2.029 | -1.143 |
| $\mathrm{C}(7)$ | -0.754 | 2.093 | 0.137 |
| $\mathrm{C}(8)$ | -0.703 | 3.331 | 0.789 |
| $\mathrm{O}(9)$ | -0.097 | 3.361 | 2.014 |
| $\mathrm{O}(10)$ | -2.266 | 5.515 | -1.649 |
| $\mathrm{C}(11)$ | -0.14 | 4.571 | 2.759 |
| $\mathrm{H}(12)$ | 0.401 | 5.379 | 2.249 |
| $\mathrm{H}(13)$ | 0.347 | 4.351 | 3.711 |
| $\mathrm{H}(14)$ | -1.174 | 4.886 | 2.942 |
| $\mathrm{C}(15)$ | -2.858 | 5.487 | -2.938 |
| $\mathrm{H}(16)$ | -2.138 | 5.175 | -3.706 |
| $\mathrm{H}(17)$ | -3.18 | 6.511 | -3.141 |
| $\mathrm{H}(18)$ | -3.728 | 4.819 | -2.967 |


| $\mathrm{O}(19)$ | -1.216 | 0.782 | -1.685 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(20)$ | -0.244 | 0.72 | 0.518 |
| $\mathrm{C}(21)$ | -0.894 | -0.187 | -0.625 |
| $\mathrm{C}(22)$ | 1.532 | -0.348 | -0.713 |
| $\mathrm{C}(23)$ | 1.255 | 0.603 | 0.26 |
| $\mathrm{C}(24)$ | 0.277 | -1.058 | -1.213 |
| $\mathrm{H}(25)$ | 0.199 | -0.958 | -2.301 |
| $\mathrm{C}(26)$ | -2.177 | -0.917 | -0.259 |
| $\mathrm{C}(27)$ | -4.561 | -2.31 | 0.343 |
| $\mathrm{C}(28)$ | -3.296 | -0.844 | -1.104 |
| $\mathrm{C}(29)$ | -2.28 | -1.712 | 0.889 |
| $\mathrm{C}(30)$ | -3.456 | -2.399 | 1.196 |
| $\mathrm{C}(31)$ | -4.471 | -1.525 | -0.812 |
| $\mathrm{H}(32)$ | -3.244 | -0.241 | -2.003 |
| $\mathrm{H}(33)$ | -1.444 | -1.797 | 1.568 |
| $\mathrm{H}(34)$ | -3.491 | -2.997 | 2.099 |
| $\mathrm{H}(35)$ | -5.333 | -1.463 | -1.469 |
| $\mathrm{C}(36)$ | 0.242 | -2.552 | -0.912 |
| $\mathrm{C}(37)$ | 0.132 | -5.325 | -0.443 |
| $\mathrm{C}(38)$ | 0.721 | -3.091 | 0.29 |
| $\mathrm{C}(39)$ | -0.292 | -3.422 | -1.87 |
| $\mathrm{C}(40)$ | -0.35 | -4.797 | -1.642 |
| $\mathrm{C}(41)$ | 0.665 | -4.467 | 0.519 |
| $\mathrm{H}(42)$ | 1.131 | -2.442 | 1.059 |
| $\mathrm{H}(43)$ | -0.667 | -3.016 | -2.807 |
| $\mathrm{H}(44)$ | -0.766 | -5.453 | -2.402 |
| $\mathrm{H}(45)$ | 1.039 | -4.866 | 1.459 |
| $\mathrm{H}(46)$ | 0.093 | -6.397 | -0.263 |
| $\mathrm{O}(47)$ | -5.756 | -2.943 | 0.547 |
| $\mathrm{C}(48)$ | -5.892 | -3.751 | 1.704 |
| $\mathrm{H}(49)$ | -6.903 | -4.161 | 1.667 |
| $\mathrm{H}(50)$ | -5.773 | -3.164 | 2.624 |
| $\mathrm{H}(51)$ | -5.166 | -4.575 | 1.71 |
| $\mathrm{C}(52)$ | 2.782 | -0.742 | -1.258 |
| $\mathrm{O}(53)$ | 3.042 | -1.599 | -2.079 |
| $\mathrm{C}(54)$ | 5.195 | -0.727 | -0.263 |
| $\mathrm{C}(55)$ | 6.095 | 0.401 | 0.277 |
| $\mathrm{C}(56)$ | 5.549 | 1.696 | -0.38 |
| $\mathrm{H}(57)$ | 5.606 | -1.29 | -1.106 |
| $\mathrm{H}(58)$ | 5.958 | 0.451 | 1.359 |
| $\mathrm{H}(59)$ | 7.151 | 0.233 | 0.054 |
| $\mathrm{H}(60)$ | 6.133 | 2.028 | -1.25 |
| $\mathrm{H}(61)$ | 5.487 | 2.55 | 0.303 |
| $\mathrm{~N}(62)$ | 2.087 | 1.358 | 1.011 |
|  |  |  |  |
| C |  |  |  |


| $\mathrm{H}(63)$ | 1.577 | 1.926 | 1.686 |
| :---: | :---: | :---: | :---: |
| $\mathrm{O}(64)$ | -0.51 | 0.383 | 1.852 |
| $\mathrm{H}(65)$ | 0.251 | -0.133 | 2.223 |
| $\mathrm{H}(66)$ | 2.859 | 0.801 | 1.481 |
| $\mathrm{H}(67)$ | 4.86 | -1.404 | 0.522 |
| $\mathrm{C}(68)$ | 4.191 | 1.281 | -0.839 |
| $\mathrm{H}(69)$ | 3.411 | 1.931 | -1.22 |
| $\mathrm{~N}(70)$ | 4.008 | 0.015 | -0.762 |
| $\mathrm{C}(71)$ | 2.911 | -1.046 | 2.946 |
| $\mathrm{H}(72)$ | 3.382 | -1.788 | 3.631 |
| $\mathrm{O}(73)$ | 3.733 | -0.309 | 2.31 |
| $\mathrm{O}(74)$ | 1.661 | -1.045 | 2.895 |

## Select NMR Spectra
















## Biological Assays

Cytotoxicity Assays. Human 293 T cancer cells ((American Type Culture Collection) were grown under $5 \% \mathrm{CO}_{2}$ in DMEM supplemented with $10 \%$ FBS. Surveillance testing for Mycoplasma contamination was performed on a monthly basis and was consistently negative. Compounds were formulated in DMSO and maintained at $-80^{\circ} \mathrm{C}$ in the dark prior to testing. Cells were seeded into 384 -well plates ( 1,000 cells $/ 40 \mu \mathrm{l} /$ well $)$ and were allowed to adhere overnight. Serial dilutions of compounds or DMSO vehicle control (not exceeding 0.1\%) were added to quadruplicate wells using an HP D300 digital dispenser (Hewlett Packard) and plates incubated for an additional 3 days prior to assay of relative viable cell number by reduction of the dye resazurin (Alamar Blue ${ }^{\circledR}$ ) as previously described. Statistical analysis of raw data to define $\mathrm{IC}_{50}$ values was performed by variable slope four parameter curve fitting using GraphPad Prism 6 software.

Reporter Assays. Luciferase reporter cell lines were generated by infecting 293 T cells with either a lentiviral vector expressing firefly luciferase from a strong constitutive CMV promoter ("constitutive reporter") or a previously reported lentiviral vector encoding a fusion protein consisting of enhanced GFP fused to firefly luciferase under control of $H S P 70 B$ ' promoter elements ("heat-shock reporter", Santagata et al, ACS Chemical Biology, 2011).T o evaluate concentration-dependent inhibition of reporter activity, cells were seeded in white 384 -well plates $(20,000 \mathrm{cells} / 40 \mu \mathrm{l} / \mathrm{well})$. The following day, serial compound dilutions were added to quadruplicate wells and plates subjected to heat-shock at $42^{\circ} \mathrm{C}$ for 90 min . After overnight incubation at $37^{\circ} \mathrm{C}$, measurement of relative luciferase activity was achieved using Steady-Glo luciferase assay reagent (Promega) per manufacturer's recommendations and an Envision plate luminometer (Perkin-Elmer). Statistical analysis of raw data to define $\mathrm{IC}_{50}$ (heat-shock reporter) and $\mathrm{EC}_{50}$ (constitutive reporter) values was performed by variable slope four parameter curve fitting using GraphPad Prism 6 software.

## (a) Cytotoxicity


(b) Heat-shock reporter

(c) Constitutive reporter inhibition



## Figure Legend

Concentration-dependent biological activity of aglaiastatins: (a) Cytotoxicity: Inhibition of cell proliferation and survival. After addition of the indicated compounds in 384 -well format, cells were cultured for 3 days. Relative viable cell number was determined by reduction of the dye resazurin (Alamar Blue ${ }^{\circledR}$ ) using a microplate fluorometer (Tecan). (b) Heat-shock reporter and (c) Constitutive reporter inhibition: After addition of the indicated compounds in 384-well format, reporter cells were subjected to moderate heat-shock, cultured overnight and luciferase activity measured on a microplate luminometer. All data are plotted as the mean ratio of treated to control with each determinations performed in quadruplicate. Error bars: SD


[^0]:    ${ }^{\text {S1 }}$ Lajkiewicz, N. J.; Roche, S. P.; Gerard, B.; Porco, J. A., Jr. J. Am. Chem. Soc. 2012, 134, 13108-13113.
    ${ }^{\text {S2 }}$ Gerard, B.; Sangji, S.; O’Leary, D. J.; Porco, J. A., Jr. J. Am. Chem. Soc. 2006, 128, 7754-7755.

[^1]:    ${ }^{\text {S3 }}$ Thuaud, F.; Ribeiro, N.; Gaiddon, C.; Cresteil, T.; Désaubry, L. J. Med. Chem. 2011, 54, 411-415.

[^2]:    ${ }^{\text {S4 }}$ Britton, R. G.; Horner-Glister, E.; Pomenya, O. A.; Smith, E. E.; Denton, R.; Jenkins, P. R.; Steward, W. P.; Brown, K.; Gescher, A.; Sale, S. Eur. J. Med. Chem. 2012, 54, 952-958.

[^3]:    ${ }^{\text {S2 Gerard, B.; Sangji, S.; O’Leary, D. J.; Porco, J. A., Jr. J. Am. Chem. Soc. 2006, 128, 7754-7755. }}$
    ${ }^{\text {S3 }}$ Thuaud, F.; Ribeiro, N.; Gaiddon, C.; Cresteil, T.; Désaubry, L. J. Med. Chem. 2011, 54, 411-415.

[^4]:    ${ }^{\text {S5 }}$ Ohse, T.; Ohba, S.; Yamamoto, T.; Koyano, T.; Umezawa, K. J. Nat. Prod. 1996, 59, 650-652.

[^5]:    

