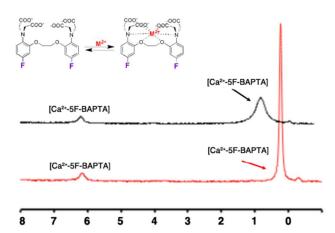
Supporting Information

Single ¹⁹F probe for simultaneous detection of multiple metal ions using miCEST MRI

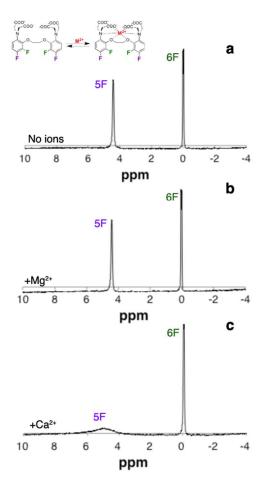
Amnon Bar-Shir^{1,2}, Nirbhay N. Yadav^{1,6}, Assaf A. Gilad^{1,2,6}, Peter C.M. van Zijl^{1,6},

Michael T. McMahon^{1,6}, and Jeff W.M. Bulte¹⁻⁶

¹Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, ²Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, ³Dept. of Chemical & Biomolecular Engineering, ⁴Dept of Biomedical Engineering, ⁵Dept of Oncology, The Johns Hopkins University School of Medicine. ⁶F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA


Experimental Section

<u>Sample preparation</u>: TF-BAPTA (AG Scientific, Inc.) was dissolved in 20 mM Hepes buffer to a final concentration of either 5 mM (NMR experiments) or 10 mM (MRI experiments). The pH was adjusted to 7.4 by titration with 1 N HCl or 1 N NaOH. Stock solutions of the salts CaCl₂, MgCl₂, ZnCl₂, FeSO₄, NaCl, and KCl were prepared in 20 mM Hepes buffer and used to prepare sample solutions containing TF-BAPTA and ions, with a molar ratio of 10:1 or 50:1 TF-BAPTA:ion for the NMR and MRI experiments, respectively. For experiments performed in the presence of physiological ions, Hank's Balanced Salt Solution (HBSS) containing 1.3 mM Ca²⁺, 0.9 mM Mg²⁺, 5.9 mM K⁺, 143 mM Na⁺, and 6 mM glucose was used instead of Hepes buffer.


 19 F NMR experiments: ¹⁹F NMR spectra were acquired using an 11.7 T NMR scanner (Bruker Biospec system) equipped with a two channel (¹H/¹⁹F, and ²H for lock, broad band) rf coil. A volume of 0.5 mL of each sample was transferred into 5 mm NMR tubes with 0.5 mM added 5-FluoroCytosine (5-FC) and 50 μ L D₂O. The 5-FC was assigned as an internal ¹⁹F reference with a fixed frequency of -47.0 ppm. D₂O was used for signal lock.

<u>MRI experiments</u>: MRI experiments were performed on a vertical 17.6 T scanner (Bruker Avance system) with the temperature controlled at 37°C. A 20 mm birdcage radiofrequency coil was used to acquire both ¹H and ¹⁹F MR images by sweeping the coil frequency from the proton (750 MHz) to the fluorine (705.5 MHz) frequency. For ¹H MRI, a rapid acquisition with relaxation enhancement (RARE) sequence was used with

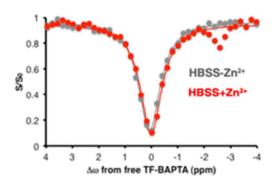

the following parameters: Repetition time (TR)/echo time (TE)=5,000/7.7 ms; RARE factor=8; 1 mm slice thickness; FOV=2.0×2.0 cm; matrix size=128×128; resolution=0.156×0.156 mm; and one average (NA=1). For ¹⁹F iCEST MRI, the center frequency (O₁) was set at the frequency of the ¹⁹F atom at the 6 position (0.0 ppm) of TF-BAPTA (**Figure 1a**), while signal from the ¹⁹F located at the 5 position of TF-BAPTA (**Figure 1a**,b, 4.5 ppm downfield) was suppressed using a spectrally selective excitation pulse and spoiler gradient. A modified RARE sequence (TR/TE=4,000/3.4 ms, RARE factor=16, 6 mm slice, FOV=2×2 cm, matrix size=32×32, resolution=0.625×0.625 mm, NA=8 and a saturation pulse B₁=1.2, 2.4 or 3.6 µT/ 2 s) was used to acquire ¹⁹F iCEST data. Mean ¹⁹F iCEST spectra were obtained after B₀ correction. The CEST contrast was calculated after Lorentzian line shape fitting of the signal from each voxel in the image.

Figure S1. Chemical structure of 5F-BAPTA and ¹⁹F-NMR spectra of 5 mM 5F-BAPTA in the presence of 0.5 mM Ca²⁺ with (black spectrum) and without (red spectrum) the addition of 1 mM Mg²⁺.

Figure S2. Chemical structure of TF-BAPTA and ¹⁹F NMR spectra of 5 mM TF-BAPTA alone (**a**), in the presence of 0.5 mM Mg²⁺ (**b**), or in the presence of 0.5 mM Ca²⁺ (**c**).

Figure S3. iCEST spectra for TF-BAPTA (10 mM) at HBSS (pH=7.2, 1.3 mM Ca²⁺, 0.9 mM Mg²⁺, 5.9 mM K⁺, 143 mM Na⁺, 5.6 mM glucose) without (gray iCEST spectrum) and with addition of 200 μ M of Zn²⁺ (red iCEST spectrum).