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Considerations of the Appropriateness of the Theory

The calculation of the adsorption equilibrium constant according to Eq. 4 of the main text may
become unreliable when the nanomaterials cannot be represented using models of a roughly flat
patch of surface, including materials that form aggregates, as well as those possessing surfaces of
high curvature or porosity on the size scale of the adsorbates. Such materials might still be studied
by molecular dynamics, but different models and approaches to bridging experiment and simulation
would be required.

The assumption of a roughly flat surface appears to be fulfilled for our systems. A comparison of
surface areas derived from electron microscopy and the Brunauer–Emmett–Teller method suggests
the carbon nanotubes considered here do not have extensive internal cavities relevant for small
molecule binding. The number of walls of the multi-wall nanotubes used in the experiments is
unknown; however, for the range of outer diameters seen in electron microscopy (8–15 nm) [1], the
number of walls likely ranges from 5 to 20, giving specific surface areas [2] from 120 to 340 m2/g.
This range is consistent with that obtained for these nanotubes experimentally by the Brunauer–
Emmett–Teller method, 233 m2/g. Given the uncertainty in the number of walls, however, some
binding between the walls rather than on the outer surface cannot be ruled out.

Convergence of the Free Energy Calculations

Below we show that selected free-energy calculations using the adaptive biasing force method show
typical convergence behavior as the time of the molecular dynamics simulations is increased. No-
tably, we find that the correlation between the calculations and experiment increases with simulation
time, until plateauing after about 50 ns of simulated time per system.
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Figure S1: Indicators of convergence. (A) Mean-square deviation of the mean force (−dwcalc
i (z)/dz)

between two independent free-energy calculations as a function of simulated time for the individual
calculations. The data is plotted for five exemplary adsorbates. These calculations correspond to
the surface model denoted “graph–OH(B)” in the main text. As expected from statistical argu-
ments [3], the deviation between the independent calculations deviation decays as ∼ t−1/2. (B)
Convergence of the Pearson correlation coefficient between experimental and simulated values of
log10K for the surface model graph–OH(D) as a function of the length of the free energy calcula-
tions. A stable value of 0.93 is obtained only after a few tens of nanoseconds per adsorbate. Note
that all data shown in the main text was derived from free-energy calculations comprising > 300 ns
of simulated time.

Conformational Sampling

While the figure above demonstrates apparent convergence of the free-energy calculations, to obtain
correct free energies, it is necessary to ensure that the sampling is quasi-ergodic, i.e. that all
relevant states of the system are adequately sampled in the finite time of the simulations. The
adaptive biasing force method guarantees roughly uniform sampling along z, and has the potential
to improve sampling along orthogonal coordinates [3]; however, sampling in these coordinates must
be verified. Below we show that the minimum length of our simulations (300 ns) was more than
adequate to sample a full range of adsorbate positions in the xy plane, as well as a full range of
accessible adsorbate orientations. Furthermore, we show that the flexible groups of the polymer
conjugated surfaces also sample a wide variety of conformations during the simulations.

The figure below shows biphenyl sampling on three hydroxylated nanotube surfaces with dif-
ferent arrangement. For model graph–OH(B), the hydroxyl groups sterically forbid biphenyl ad-
sorption at some surface positions, permitting adsorption only within nine distinct but identical
regions of the model in a range of orientations. On the other hand, biphenyl accesses nearly all
parts of the surface not occupied by the hydroxyl groups for graph–OH(C). In contrast to the other
models, biphenyl appears to adopt a preferred orientation on model graph–OH(D), i.e. the long
axis of the biphenyl molecule tends to align with the hydroxyl pair.
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Figure S2: Conformational sampling of biphenyl with hydroxylated nanotube models. (A) Super-
imposed conformations of a single biphenyl molecule over a 300 ns adaptive biasing force simulation.
The 7500 conformations shown were captured at 40 ps intervals, revealing sampling of many dif-
ferent positions and orientations in the window of the free energy calculation (0.3 ≤ z ≤ 1.5 nm).
The simulation includes the surface model denoted “graph–OH(D)” in the main text. The biphenyl
molecule is represented by yellow sticks, with its hydrogen atoms not shown. The atoms of the
hydroxylated nanotube model are shown as spheres with carbon in green, hydrogen in white, and
oxygen in red. The conformations of the hydroxyl group over the simulation have also been super-
imposed. Water is not shown. (B–D) Superimposed conformations biphenyl in contact with the
surface for different hydroxylated nanotube models (graph–OH(B), graph–OH(C), graph–OH(D)).
Note that periodic boundary conditions and that the system forms a hexagonal tiling of the xy
plane. In contrast with panel A, only conformations near the minimum of the free-energy profile
are shown, i.e. those for which 0.33 ≤ z ≤ 4.1 nm. The hydroxyl groups on the surface populate
three favorable ranges of orientation, which is visible in the three-fold arrangement of superimposed
hydroxyl hydrogens.

A B C

Figure S3: Conformational sampling of m-cresol with hydroxylated nanotube models, focusing on
the position and orientation of m-cresol’s hydroxyl group. (A–C) Superimposed conformations of
the hydroxyl group of m-cresol over a 300 ns adaptive biasing force. The arrangement of hydroxyl
groups on the model nanotube surface corresponds to models graph–OH(B), graph–OH(C), and
graph–OH(D). Only conformations near the minimum of the free-energy profile are shown, i.e. those
for which 0.33 ≤ z ≤ 4.1 nm.
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Figure S4: Conformational sampling in adaptive biasing force simulations of atrazine with models
of a PEGylated nanotube. (A) Superimposed conformations of atrazine taken at 1 ns intervals
over trajectories from multiple walkers and windows (totaling 1.2 µs). Atrazine is represented
as sticks, with carbon in yellow, nitrogen in blue, and hydrogen not shown. (B) Superimposed
conformations of PEG taken from the same trajectories as in panel A. PEG is shown by gray
sticks. (C) Superimposed conformations of the NH groups of atrazine (N in blue, H in white).
Only conformations near the minimum of the free-energy profile are shown, i.e. those for which
0.37 ≤ z ≤ 4.2 nm. The conformations of the ester linker have also been superimposed (O in red,
C in green). For clarity the rest of the PEG molecules are not shown. Hydrogen bonding between
the NH group of atrazine and the carbonyl of the ester is apparent.

Robustness of Calculated Free Energy to Different Methodologies

In designing models and simulations to perform free-energy calculations, some seemingly arbitrary
decisions must be made. It is important to ensure that these decisions do not have a dramatic
effect on the results of the calculations and that the conclusions of the present work are robust
to minor changes in methodology. Below we consider the effects of different molecular dynamics
simulation parameters and protocols, as well as different choices that might be made in the design
of the model and calculation of equilibrium constant. In general, all these effects are small.
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Figure S5: Effect of different force truncation schemes in the molecular dynamics simulations
on calculated free energy. In molecular dynamics simulations, van der Waals forces are often
smoothly reduced to zero at a particular distance to avoid the computational cost associated with
computing forces between all pairs of atoms, which rises quadratically with the number of atoms.
Using a relatively low value of this truncation distance (0.9 nm) improves performance, which
increases amount of sampling that can be feasibly done for each system. However, unphysical
truncation of the van der Waals force can lead to systematic errors [4]; Thus, there is a trade-off
between using the most physically accurate model, which reduces systematic error, and obtaining
better sampling, which reduces statistical error. Therefore, we sought to determine whether our
choice of the truncation distance led to any clear systematic change in the free energy. Plotted
are the potentials of mean force as a function of the distance between a biphenyl molecule and a
multi-wall carbon nanotube surface model, similar to that shown in Fig. 1 of the main text. The
black curve shows the result of the free energy calculation with van der Waals forces smoothly
truncated from 1.0 to 1.2 nm (switchDist 10 and cutoff 12 in the NAMD 2.10 configuration
file), while the red curve shows the result with a 0.8 to 0.9 nm cutoff (switchDist 8 and cutoff

9). Each simulation comprised 420 ns of simulated time. The potentials of mean force were
essentially identical (indistinguishable considering statistical error). The shorter cutoff distance
leads to substantially improved performance (50–100%) and was therefore used in all production
simulations.
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Figure S6: Effect of different CHARMM general force field (CGenFF) models on calculated free
energy. In some cases, the partial atomic charges automatically generated by the CGenFF program
differed from a model compound defined by hand in the CGenFF force field. In most cases, these
differences were only a few thousandths of the elementary charge. The largest differences (0.016e)
were seen for chlorobenzene. For this reason, here we compare the “official” chlorobenzene model
to the automatically generated version. Plotted are the potentials of mean force as a function of the
distance between a chlorobenzene molecule and a multi-wall carbon nanotube surface model, similar
to that shown in Fig. 1 of the main text. The black and red lines show the results for the “official”
model of chlorobenzene included with the CGenFF force field distribution [5] and that produced
automatically by the CGenFF program [6, 7]. The difference between the two potentials of mean
force is quite small, leading to log10K

calc
ClBn values, 1.97 and 1.93, that are essentially identical for

the purposes of the present work. All data shown in the main text uses the chlorobenzene model
produced automatically by the CGenFF program. For each model, the free-energy calculation
comprised 480 ns of simulated time. The difference in the free energies between the two models
(∼0.1 kcal/mol) was irrelevant to the present work, having a negligible effect on the comparisons
between experiment and calculation. All values presented in the main text were performed with
the automatically generated atomic partial charges.

S6



0.4 0.8 1.2
distance from surface [nm]

-8

-6

-4

-2

0

fr
e
e
 e

n
e
rg

y
 [

kc
a
l/
m

o
l]

surface C restrained
surface C free

0.4 0.8 1.2
distance from surface [nm]

surface C restrained
surface C free

graph graph–OH(D)

Figure S7: Effect of applying harmonic restraints to surface carbon atoms on calculated free
energy. For all data described in the main text, the sp2 carbon atoms of the graphene sheet were
restrained to their ideal positions using weak harmonic restraints. The restraint potential for atom
i was given by

Ei = Krest|ri −Ri|2 (1)

where Krest = 1.0 kcal/(mol Å2) and ri and Ri were the current and ideal positions for atom i. To
determine what effect these restraints might have, we performed additional free-energy calculations
for biphenyl on two different surfaces with restraints on the upper layer of graphene removed. In
these calculations, the upper layer of graphene slid freely over the lower layers as it underwent
lateral diffusion. Plotted are the potentials of mean force as a function of the distance between
a biphenyl molecule and the nanotube surface for the naked carbon nanotube model (A) and the
hydroxylated carbon nanotube model denoted “graph–OH(D)” in the main text (B). The restraints
may reduce the deformability of the graphene layer leading to the slight differences seen in the plot.
Notably, the free energy minima are less favorable by 0.1–0.15 kcal/mol, which should not effect the
conclusions of the present work, but may be statistically significant. Given that the restraints used
in the majority of simulations were unnecessary and may perhaps yield small unphysical effects, we
do not recommend their use. If restraints are desired for convenience of analysis, a better solution
would to apply restraints only to the lower layers of the graphene (as we have done here), or restrain
the center of mass of the graphene layer rather than individual atoms.
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Figure S8: Comparison of adsorption for single- and multiple-layer graphene. Plotted are the
potentials of mean force as the function of the distance between the center of mass of atrazine
and a graphene surface. The black curve is derived from a model containing only a single layer of
graphene solvated above and below, while model from which the red curve is derived contains four
layers of graphene in a graphite arrangement. The latter model is similar to that in Fig. 1 of the
main text. Although the difference between the two systems is statistically significant, it is quite
small. Thus, the internal structure of the nanotubes may be of little relevance in studies of small
molecule adsorption to their surfaces.
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Figure S9: Effect of the choice of the upper limit of the integral in Eq. 4 of the main text. Plotted
are the log10K

calc values for adsorption of exemplary small aromatics onto a model of naked carbon
nanotubes similar to those shown in Fig. 1. Due the the exponential contribution of wcalc

i (z) to the
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integral, the value of log10K
calc is determined almost exclusively by the wcalc

i (z) values near the
global minimum of the wcalc

i (z) (0.35 < z < 0.37 nm). Thus, the results are effectively identical for
any reasonable choice of c.

Free Energy Perturbation. To further verify the results of adaptive biasing force, we performed
free energy perturbation calculations for three exemplary systems. The equilibrated systems, in-
cluding biphenyl (bPh), m-cresol (mCr) and toluene (T) complexed with a surface of multi-wall
carbon nanotubes, were used as a starting point to determine the binding free energy of each com-
plex. The free energy differences were estimated employing the free energy perturbation (FEP)
method [8], wherein each molecule was gradually annihilated from bulk solution as it gradually
appeared on the graphenic surface. For each FEP calculation, 160 intermediate states (∆λ =
0.00625) were considered in the forward and backward directions [9], involving for each state 0.5 ns
of equilibration followed by 0.5 ns of data collection. For each of the three molecules, a simula-
tion time of 320 ns was invested. Weak harmonic restraints (force constant 1 kcal/(mol Å2)) were
used to keep the molecule near the free energy minimum on the surface (z=0.35 nm), whereas the
molecule in bulk solution was kept at a distance from the surface, 1.45 < z < 1.55 nm, using a flat
bottom harmonic potential. All restraints were applied utilizing the collective variable module [10]
available in the NAMD 2.9 [11]. The ParseFEP plugin [12] of VMD 1.9.2 [13] was employed to
determine the SOS[12] and BAR[14] estimators alongside with its statistical error by combining
forward and backward transformations. The table below provides a comparison of the FEP results
with those of adaptive biasing force. The FEP and adaptive biasing force values agree to within
the statistical error or nearly so.

Compound Forward Backward BAR SOS ABF

toluene −5.06 4.97 −4.89± 0.04 −5.03± 0.04 −5.05
m-cresol −6.40 6.54 −6.32± 0.04 −6.49± 0.04 −6.38
biphenyl −7.85 8.14 −7.82± 0.05 −8.06± 0.06 −8.20

Table S1: A comparison of change in free energy upon adsorption calculated by free energy
perturbation and the minimum of the potential of mean force calculated by adaptive biasing force
(ABF). The result of the forward and backward calculations are shown, along with the BAR and
SOS estimators. All energies are in kcal/mol.

Adsorption Kinetics

The procedure to calculate the diffusivity has been detailed elsewhere [3, 15]. Briefly, the dynamics
of the adsorbates is assumed to obey overdamped Brownian dynamics with the following discretized
form

zt+∆t − zt = βD(zt)[f
sys(zt) + fbias(t)]∆t+∇D(zt)∆t+ (2D(zt)∆t)

1/2gt, (2)

where zt is the distance of the adsorbate from the surface at time t, D(z) and f sys(zt) = −∇w(z)
are the diffusivity and system force along coordinate z, fbias is the adaptive biasing force, and gt is
a random variable with a standard normal distribution. The likelihood of the simulated trajectory,
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given trial forms of D(z) and f sys(z), is calculated as

P [z(t) | f sys(z), D(z)] =∏
α

1√
4πD(ztα)∆t

exp

(
−
{
ztα+∆t − ztα − βD(ztα)[f sys(ztα) + fbias(tα)]∆t−∇D(ztα)∆t

}2

4D(ztα)∆t

)
.

(3)

Using Bayes’ theorem, we calculate the probability of the parameters given the trajectory from the
likelihood above

P [f sys(z), D(z) | z(t)] = pprior(f
sys(z), D(z))× P [z(t) | f sys(z), D(z)]. (4)

The best estimate of the diffusivity is found by maximizing this probability by a Monte Carlo search
of f sys(z) and D(z) functions. For the figure below, we chose ∆t = 8 ps and pprior = pscalepsmooth,
where pscale =

∏
j 1/D(zj) is the scale-invariance prior [16] and

psmooth =
∏
j exp

{
− [D(zj+1)−D(zj)]

2 /(2ε2)
}

is a prior that assumes smoothness. The latter

used the value ε = 20 nm2/ns, which, at a grid spacing of 0.01 nm, only weakly imposes smoothness.
After obtaining converged D(z) and f sys(z) functions, we calculated the mean first-passage time [17]
by

τa→b =

∫ b

a
dζ exp[βw(z)]/D(z)×

∫ z

a
dz′ exp[−βw(z′)] (5)

where a is the position of the free energy minimum (z = 0.35 nm) and b is the point to which the
travel time is desired. The results of these calculations are shown in the figure below.
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Figure S10: Kinetics of surface desorption for three exemplary adsorbates. Plotted is the mean
first passage time from the free-energy minimum (near z = 0.35 nm) to the distance on the hori-
zontal axis.
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Grand-Canonical Monte Carlo/Brownian Dynamics

Similar to previous work [18], in the grand-canonical Monte Carlo/Brownian dynamics simulations
(GCMC/BD), each molecule was represented as a spherically symmetric particle. Brownian dy-
namics [19] were performed in 3 dimensions by updating molecule positions according to the rule

ri(t+ ∆t) = ri(t)− βD∆t∇iW (r1 . . . rN ) +
√

2D∆tRt, (6)

where D = 1.3 nm2/ns was the diffusion constant, ∆t = 10 fs was the timestep, and Rt were
3-vectors of Gaussian random numbers (of zero mean and unity variance). The value of the dif-
fusion constant was mostly irrelevant because we did not consider kinetics. The multi-particle
potential of mean force consisted of an external term due to the surface (derived from the free-
energy calculations described above) and an effective interaction energy between pairs of molecules:
W (r1 . . . rN ) =

∑
iwi(zi) +

∑
i,j Vij(ri, rj). The intermolecular interaction had the Lennard-Jones

form:

Vij(ri, rj) = 4ε

(
σ12
ij

|ri − rj |12
−

σ6
ij

|ri − rj |6

)
. (7)

This interaction was smoothly truncated from 0.13 to 0.15 nm using a standard switching func-
tion [20]. The interaction distance, σij , was chosen to reproduce the area of the graphene surface
occluded by the molecule in explicit-solvent simulation, as follows. We selected frames from the
trajectories where molecule i was adsorbed (0.335 < z < 0.390 nm) and computed the average
number of water molecules in the adsorbed layer (0.3 < z < 0.5 nm) over these frames, 〈Nw

i 〉. The
existence of this adsorbed water layer is evident from the black curve in Fig. 4B of the main text.
The area of the surface occupied by the molecule i was estimated by

ai =

(
1− 〈N

w
i 〉

〈Nw
0 〉

)
A, (8)

where 〈Nw
0 〉 = 76.54 was the average number of adsorbed water molecules in the absence of solutes

and A = 7.522 nm2 was area of the graphene–water interface. The interaction distance was then
calculated as σi = 2

√
ai/π and interactions between unlike molecules by σij = (σi + σj)/2. In all

cases, εij = 1.6 kcal/mol based on Fig. S11. At intervals of 100 steps, grand canonical Monte Carlo
moves to create and delete molecules (chosen with equal probability) were attempted 10 times for
each type of molecule. Creation and deletion moves were accepted with the probabilities

Pcre =
nαV0/(Nα + 1)e−β∆W

1 + nαV0/(Nα + 1)e−β∆W
, (9)

Pdel =
1

1 + nαV0/Nαe+β∆W
, (10)

where nα = ceq
i /Mi was desired number of density of molecules in bulk solution, V0 was the volume

of the simulation system and ∆W was the change in multi-particle potential of mean force due to
the trial move. The excess chemical potential was not included since the bulk densities were so
low that the solution was essentially ideal (typically only one or two molecules were present in the
bulk region of the simulation box). The simulation system was a cube with a 80 nm side length,
periodic in the x and y directions and with reflecting boundaries on the z-faces. At the bottom face
of the cube, the function wi(z) represented the interaction with the surface and was zero elsewhere.
Molecule creation occurred with uniform probability over the entire box, including at the surface,
while molecules to be deleted were selected at random from the entire box. The simulation began
with no molecules in the box and was run for 5 µs to obtain steady equilibrium populations of
molecules on the surface.
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GCMC/BD Results. We represent each molecule by a single particle, which moves randomly
according to the Brownian dynamics equation of motion and interacts with the surface according
to the wcalc

i (z) for that type of molecule. Through grand-canonical Monte Carlo, we attempt to
create and delete molecules randomly throughout the entire system, which allows an equilibrium
to be relatively rapidly established between the surface where the adsorbate density is high and the
fixed concentration in bulk solution. With no interactions between the molecules, the (GCMC/BD)
procedure yields the expected mean number density, ni(z) = nbulk

i exp
[
−βwcalc

i (z)
]
, where nbulk

i is
the fixed number density of molecules in bulk solution. However, the effect of surface loading can
be estimated by including appropriate intermolecular interactions. We use a Lennard-Jones form
for these interactions as described above. The bulk number density of each molecule is set to the
equilibrium value in the experiment, nbulk

i = ceq
i /Mi. The adsorption equilibrium constant is then

calculated by

Kcalc
i =

ANP

MNP

∫ c

0
dz ni(z)/n

bulk
i , (11)

where ni(z) is the number density of adsorbate i. Applying this equation to the GCMC/BD trajec-
tories yields only changes in the log10K

calc
i values (averaging ∼ −0.009) relative to those calculated

by Eq. 3 in the main text, which are negligible for this work. Thus, intermolecular interactions are
probably not sufficient to explain the discrepancies between simulation and experiment, and are
neglected for the rest of this paper.

Additional Free-Energy Calculations

A B C

w2D(s,z) w2D(s,z)–w(z)

Figure S11: Adsorption to a surface already occupied by another molecule. (A) Snapshot from
a free-energy calculation of m-cresol (mCr) adsorption to a model naked carbon nanotube surface
occupied by a molecule of 3-chlorophenol (ClPl). (B) The two-dimensional free-energy landscape,
w2D(z, s). As in the other calculations in this work, the first variable, z, was the projection along
the z axis of the vector from the center of mass of the first layer of graphene to the center of
mass of the mCr molecule. The second variable, s =

√
(x− x0)2 + (y − y0)2 was the distance

between the mCr and ClPl molecules projected into the xy plane. The geometric term in the
potential of mean force, −kBT ln(2πs), was been subtracted (using the hideJacobian option of
the Colvars module [10]). (C) The free-energy landscape in panel B after subtracting the surface
interaction wcalc

mCr(z), determined from a previous one-dimensional free-energy calculation. A region
of attraction surrounding the adsorbed molecule (≈ −1.6 kcal/mol) is evident.
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Figure S12: Model hydroxylated carbon nanotube with an alternate arrangement of OH groups.
(A) Arrangement of 36 OH groups on a graphene surface at a density of 4.8 groups/nm2. (B) Com-
parison between the logarithm of the adsorption equilibrium constant determined from experiment
and that calculated from simulations for the arrangement shown in panel A.
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