New Insights into Re₃(μ -Cl)₃Cl₆ Aromaticity. Evidence of σ - and π -Diatropicity

Alejandro Vásquez-Espinal,^a Ricardo Pino-Rios,^a Luis Alvarez-Thon,^b Walter A. Rabanal-León,^{a,c} Juan J. Torres-Vega,^{d,*} Ramiro Arratia-Perez,^{a,c} and William Tiznado^{e,*}

a Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile.

^{b.} Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 220, Santiago, Chile.

^c Relativistic Molecular Physics (ReMoPhys) Group, Facultad de Ciencias Exactas, Universidad Andres Bello, Republica 275, Santiago, Chile.

- ^{d.} Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, P.O.Box: 14-0149, Lima, Perú.
- e Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile.

Figure SI-1. Structure and Cartesian coordinates of the $Re_3(\mu$ -Cl)₃Cl₆ cluster optimized at the PW91/TZVP level of theory. Spin-orbit relativistic corrections were incorporated via the Zeroth Order Regular Approximation using the ADF2012.01 package.

Figure SI-2. MICD plots for $Re_3(\mu$ -Cl)₃Cl₆ at the molecular plane, at 0.5 Å and at 1.0 Å above the molecular plane. The intensity of the color of the vector arrow is proportional to the current strength. Clockwise vectors represent diatropic currents and the anticlockwise vectors paratropic currents

Table SI-1: NICS and B^{ind}_{z} values of $Re_3(\mu-Cl)_3Cl_6$ obtained with the ADF package (2-component spin-orbit relativistic corrections) and with Gaussian 09 program (using the effective core potential included in the Def2-TZVP basis set)

	ADF calculations (using TZ2P basis set)	Gaussian 09 calculations (using Def2-TZVP basis set)
	PW91/TZVP	PW91/Def2-TZVP
NICS(0)	-54.77	-51.46
NICS(1)	-27.24	-27.27
$B^{ind}_{z}(0)$	-121.13	-117.69
$B^{ind}_{z}(1)$	-40.68	-38.32

Figure SI-3. Plots of B^{ind}_{z} isolines for the $Re_3(\mu$ -Cl)₃Cl₆ cluster, the I row shows B^{ind}_{z} isolines calculated with 2-component spin-orbit relativistic corrections using ADF package, II row shows B^{ind}_{z} isolines calculated using the effective core potential included in the Def2-TZVP basis set with the Gaussian 09 program.

Figure SI-4. Occupied valence molecular orbitals, their symmetries and their contributions to $B^{ind}_{z}(1)$. The π molecular orbitals are enclosed in dashed squares. Total σ and π valence molecular orbitals contributions to $B^{ind}_{z}(1)$ are -6.59 and -16.47 respectively.

Figure SI-4 (continuation). Occupied valence molecular orbitals, their symmetries and their contributions to B^{ind}_{z} (1). The π molecular orbitals are enclosed in dashed squares. Total σ and π valence molecular orbitals contributions to $B^{ind}_{z}(1)$ are -6.59 and -16.47 respectively.