Supporting Information

Journal: Energy & Fuels

Manuscript ID: ef-2015-00871b.R1

Title: Removal of gaseous elemental mercury by cylindrical activated coke loaded with CoO_x -CeO₂ from simulated coal combustion flue gas

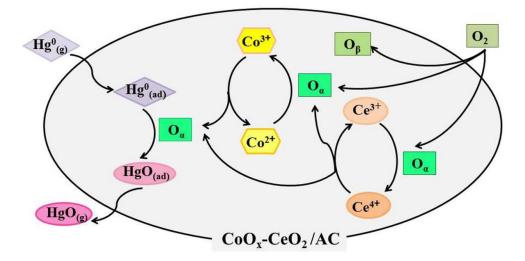
Authors: Wu, Huiyu; Caiting Li; Lingkui Zhao; Jie Zhang; Zeng, Guangming; Xie, Yin'e; Xunan Zhang; Wang, Yan

The supporting information includes 3 pages, and 1 table.

Mercury Speciation Conversion System

To further identify the mercury speciation in the outlet flue gas, a mercury speciation conversion system coupled with RA-915M mercury analyzer was employed to measure Hg^0 and Hg^{2+} concentrations in the outlet flue gas when it necessary (conditional unit). As shown in the Fig. 1, in the mercury conversion system, gas stream released from the reactor was divided into two streams, one for measuring total mercury (Hg^T) and the other for elemental mercury (Hg⁰). On one stream, an impinger with 10 wt% acidic stannous chloride (SnCl₂) solution was used to measure Hg^{T} , since acidic SnCl₂ solution can reduce Hg^{2+} to Hg^{0} which can then be detected by the mercury analyzer. On the other stream, an impinger containing 10 wt% potassium chloride (KCl) solution was used to measure Hg⁰, because KCl solution can capture Hg²⁺ and allow only Hg⁰ to pass through. Before the sampling gas entered the SnCl₂ solution, a 10% sodium hydroxide (NaOH) solution was used to remove SO_2 . The concentration of Hg^{2+} in outlet flue gas could then be calculated by the difference between Hg^T and Hg⁰. At the end of the conversion system, the two streams converged to a 10% NaOH solution in which acid gases such as HCl and SO₂ were captured to avoid corrosion of the detection cell in the mercury analyzer.

The Hg^0 capture efficiency (E_{cap}) can be defined as:


$$E_{cap}(\%) = \frac{Hg_{in}^{0} - Hg_{out}^{1}}{Hg_{in}^{0}}$$
(S1)

where Hg_{in}^0 represent Hg^0 concentration in inlet of the reactor, and Hg_{out}^T represent Hg^T concentration in outlet of the reactor.

time (h)	inlet Hg ⁰ (μg/m ³)	outlet Hg^{T} ($\mu g/m^{3}$)	outlet Hg ⁰ (µg/m ³)	$E_{rem}(\%)$	$E_{cap}(\%)$
2	105.58	13.96	7.81	92.6	86.8
3	104.97	13.32	7.53	92.8	87.3

Table S1. The Hg^0 removal/ capture efficiency of $Co_{4.5}Ce_6/AC$.

Mechanism of Hg⁰ removal by cylindrical activated coke loaded with CoO_x-CeO₂.

