Design, Synthesis, and Biological Activity of Sulfonamide Analogues of Antofine and Cryptopleurine as Potent and Orally Active Antitumor Agents

Yongseok Kwon,^{†,I} Jayoung Song,^{‡,I} Honggu Lee,[†] Eun-Yeong Kim,[§] Kiho Lee,[§] Sang Kook Lee,^{*,‡} Sanghee Kim^{*,†}

[†]Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National

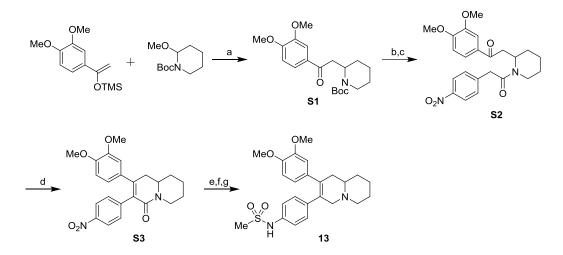
University, Seoul 151-742, Korea [‡]Natural Products Research Institute, College of Pharmacy,

Seoul National University, Seoul 151-742, Korea [§]College of Pharmacy, Korea University,

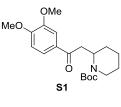
Sejong 339-700, Korea

Contents

1. General methods for chemistry S1
2. Synthesis of compounds (±)- 5b , (±)- 12b , and 13–15 S2–S9
3. HPLC analysis ······ S10–S21
4. Antitumor activity of (<i>R</i>)-cryptopleurine (2) ······S22


1. General Methods for Chemistry

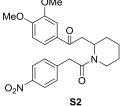
All chemicals were reagent grade and used as purchased. All reactions were performed under an inert atmosphere of dry nitrogen using distilled dry solvents. Reactions were monitored via TLC analysis using silica gel 60 F-254 thin-layer plates. Compounds were visualized on the TLC plates under UV light and by spraying with either KMnO₄ or anisaldehyde solutions. Flash column chromatography was conducted on silica gel 60 (230–400 mesh). Melting points were measured using a Buchi B-540 melting point apparatus without correction. ¹H NMR (400, 500, or 600 MHz) and ¹³C NMR (75, 100, 125, or 150 MHz) spectra were recorded in δ units using residual CHCl₃ (δ 7.24 ppm) and CDCl₃ (δ 77.0 ppm) as an internal standard. The IR spectra were measured on a Fourier Transform Infrared spectrometer. High-resolution mass spectra (HRMS) were recorded using FAB. All final target compounds were characterized and determined to be least >95% pure by analytical HPLC (Agilent 1200 Series, Agilent Technologies, Palo Alto, CA, USA) using the following method. Mobile phase A consisted of 0.1% formic acid in HPLC-grade water. HPLC analysis was performed using a reverse-phase Agilent Eclipse Plus C18 column (4.6 × 150 mm, 3.5 µm) at a flow rate of 0.7 mL/min (30–100% aqueous MeOH with 0.1% formic acid over 20 min and MeOH with 0.1% formic acid from 20 to 25 min).


2. Synthesis of compounds (±)-5b, (±)-12b, and 13–15

2.1. Synthesis of compounds 13

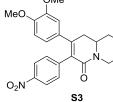
Scheme S1. Synthesis of compounds 13.^a

^{*a*}Reaction conditions: (a) InCl₃, CH₂Cl₂, 92%; (b) TFA, CH₂Cl₂; (c) 4-nitrophenylacetic acid, EDCI, DMAP, CH₂Cl₂, 83% (over two steps); (d) K₂CO₃, EtOH, reflux, 76%; (e) SnCl₂, EtOH, 75 °C; (f) Sodium bis(2-methoxyethoxy)aluminum hydride, 1,4-dioxane; (g) MeSO₂Cl, pyridine, CH₂Cl₂, 51% for **13** (over three steps).

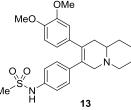

tert-Butyl 2-(2-(3,4-dimethoxyphenyl)-2-oxoethyl)piperidine-1-carboxylate (S1). To a stirred solution of *tert*-butyl 2-methoxypiperidine-1-carboxylate¹ (8.11 g, 37.7 mmol) in 30 mL of dry CH_2Cl_2 was added ((1-(3,4-dimethoxyphenyl)vinyl)oxy)trimethylsilane² (11.4 g, 45.2 mmol) and $InCl_3$ (418 mg, 1.89 mmol) and the reaction mixture was stirred

for 1 h. The reaction mixture was filtered over a Celite pad, and the filtrate was concentrated in vacuo. The crude product was separated by silica gel column chromatography (hexane/EtOAc, 2:1) to give the desired ketone **S1** (12.6 g, 92%) as a pale yellow solid. The spectral data of **S1** were identical to those of **7b**.

Su, B.; Chen, F.; Wang, L.; Wang, Q. Design, Synthesis, Antiviral Activity, and Structure–Activity Relationships (SARs) of T wo Types of Structurally Novel Phenanthroindo/quinolizidine Analogues. J. Agric. Food Chem. 2014, 62, 1233–1239.


⁽²⁾ Brown, D. S.; Charreau, P.; Hansson, T.; Ley, S. V. Substitution reactions of 2-phenylsulphonyl-piperidines and -pyrrolidines with carbon nucleophiles: Synthesis of the pyrrolidine alkaloids norruspoline and ruspolinone. *Tetrahedron* 1991, 47, 1311–132 8.

1-(3,4-Dimethoxyphenyl)-2-(1-(2-(4-nitrophenyl)acetyl)piperidin-2-yl)ethan-1-one (S2).

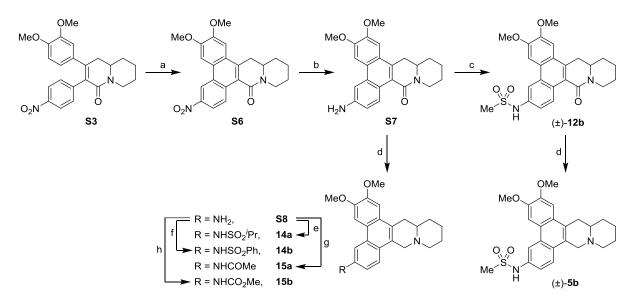

To a stirred solution of **S1** (11.3 g, 31.1 mmol) in 100 mL of CH_2Cl_2 was added TFA (25 mL) at room temperature, and the reaction mixture was stirred for 2 h. The reaction mixture was basified with 1 N NaOH and extracted with EtOAc. The solvent was

concentrated in vacuo, and the crude amine was used for the next reaction without further purification. To a stirred solution of 4-nitrophenylacetic acid (6.76 g, 37.3 mmol) in 100 mL of CH_2Cl_2 was added EDCI (6.56 g, 34.2 mmol), DMAP (4.18 g, 34.2 mmol), and the obtained crude amine at room temperature, and the reaction mixture was stirred for 15 h. The reaction was quenched with 1 N HCl at room temperature, diluted with H_2O , and extracted with CH_2Cl_2 . The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (hexane/EtOAc, 1:3) to give an amide **S2** (11.0 g, 83%) as a white waxy solid. The spectral data of **S2** were identical to those of **8b**.

2-(3,4-Dimethoxyphenyl)-3-(4-nitrophenyl)-1,6,7,8,9,9a-hexahydro-4H-quinolizin-4one (S3). To a stirred solution of amide S2 (6.31 g, 14.8 mmol) in 100 mL of EtOH wasadded K₂CO₃ (900 mg) at room temperature, and the reaction mixture was refluxed for1.5 h. The reaction mixture was cooled to room temperature and concentrated in vacuo.

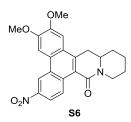
The reaction mixture was diluted with H_2O and extracted with CH_2Cl_2 . The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (hexane/EtOAc, 1:1) to give an unsaturated amide **S3** (4.59 g, 76%) as a yellow solid. The spectral data of **S3** were identical to those of **9b**.

yl)phenyl)methanesulfonamide (13). To a stirred solution of S3 (75 mg, 0.18 mmol) in 4 mL of EtOH was added $SnCl_2$ (171 mg, 0.902 mmol) at room temperature, and

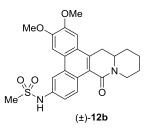

the reaction mixture was stirred for 3 h at 75 °C. The reaction mixture was quenched

N-(4-(8-(3,4-Dimethoxyphenyl)-1,3,4,6,9,9a-hexahydro-2H-quinolizin-7-

with sat. NaHCO₃ solution, diluted with H₂O, and extracted with EtOAc. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford crude aniline **S4** as a yellow waxy solid. To a stirred solution of crude aniline **S4** in 10 mL of 1,4-dioxane was carefully added Red-Al (170 μ L, 0.54 mmol, > 60 wt. % in toluene) at 0 °C, and

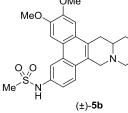

the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was quenched by successive addition of H₂O, a 15% NaOH aq. soln., and H₂O. The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine **S5** as a brown solid. To a stirred solution of crude quinolizidine **S5** in 3 mL of CH₂Cl₂ was added pyridine (22 µL, 0.27 mmol) and methanesulfonyl chloride (21 µL, 0.27 mmol) at 0 °C, and the reaction mixture was stirred for 2 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give an sulfonamide **13** (41 mg, 51%) as a yellow waxy solid. ¹H NMR (500 MHz, CDCl₃) δ 6.99 (dd, *J* = 8.8 Hz, 11.7 Hz, 4H), 6.61 (q, *J* = 8.4 Hz, 2H), 6.40 (d, *J* = 1.2 Hz, 1H), 3.76 (s, 3H), 3.60 (d, *J* = 16.6 Hz, 1H), 3.51 (s, 3H), 3.09 (d, *J* = 11.2 Hz, 1H), 3.04 (d, *J* = 16.6 Hz, 1H), 2.90 (s, 3H), 2.50 (d, *J* = 8.5 Hz, 2H), 1.70 (brs, 2H), 1.38–1.31 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 147.9, 147.4, 138.0, 134.9, 133.9, 132.5, 130.7, 130.3 (2C), 120.6, 120.4 (2C), 112.8, 110.5, 59.7, 57.8, 55.7, 55.5, 55.4, 39.3, 39.2, 33.0, 25.6, 24.1; IR (CHCl₃) ν_{max} 3256, 2933, 2255, 1510, 1325, 1253, 1151, 1025, 910, 728 (cm⁻¹); HRMS (FAB): calcd. for C₂₄H₃₁N₂O₄S [M+H]⁺ 443.2005, found 443.2006.

2.2. Synthesis of compounds (±)-5b, (±)-12b, 14, and 15

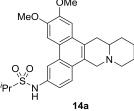

Scheme S2. Synthesis of compounds (±)-5b, (±)-12b, 14, and 15.^a

^{*a*}Reaction conditions: (a) PIFA, BF₃·OEt₂, CH₂Cl₂, -10 °C, 95%; (b) SnCl₂, EtOH, 75 °C; (c) MeSO₂Cl, pyridine, CH₂Cl₂, 62% (d) LiAlH₄, THF, reflux, 77% for (±)-**5b**; (e) ^{*i*}PrSO₂Cl, pyridine, CH₂Cl₂, 57% for **14a** (over three steps); (f) PhSO₂Cl, pyridine, CH₂Cl₂, 62% for **14b** (over three steps) (g) AcCl, CH₂Cl₂, 55% for **15a** (over three steps); (h) MeCO₂Cl, pyridine, CH₂Cl₂, 49% for **15b** (over three steps).

2,3-Dimethoxy-6-nitro-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2b]isoquinolin-9-one (**S6**). To a stirred solution of **S3** (2.10 g, 5.14 mmol) in 40 mL of CH₂Cl₂ was added phenyliodine(III) bis(trifluoroacetate) (PIFA) (2.66 g, 6.17 mmol) and BF₃·OEt₂ (950 μ L, 7.70 mmol) at -10 °C, and the reaction mixture was stirred for

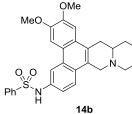

30 min at -10 °C. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/EtOAc, 10:1) to give an amide **S6** (1.98 g, 95%) as a yellow solid. The spectral data of **S6** were identical to those of **10b**.

dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)methanesulfonamide $((\pm)-12b)$. To a stirred solution of **S6** (95 mg, 0.23 mmol) in 8 mL of EtOH was added SnCl₂ (218 mg, 1.15 mmol) at room temperature, and the reaction mixture was stirred for 6 h at


N-(2,3-Dimethoxy-9-oxo-11,12,13,14,14a,15-hexahydro-9H-

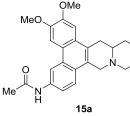
75 °C. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford crude aniline **S7** as a yellow solid. To a stirred solution of crude aniline **S7** in 3 mL of CH₂Cl₂ was added pyridine (28 μ L, 0.35 mmol) and methanesulfonyl chloride (27 μ L, 0.35 mmol) at 0 °C, and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 40:1) to give **14** (65 mg, 62%) as a pale yellow solid. The spectral data of (±)-**12b** were identical to those of **12b**.

N-(2,3-*Dimethoxy*-11,12,13,14,14a,15-*hexahydro*-9*H*-*dibenzo*[*f*,*h*]*pyrido*[1,2*b*]*isoquinolin*-6-*yl*)*methanesulfonamide* ((\pm)-5*b*). To a stirred solution of (\pm)-12b (60 mg, 0.13 mmol) in 6 mL of THF was added LiAlH₄ (200 µL, 0.20 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 2 h. The reaction mixture


was quenched by successive addition of H_2O , a 15% NaOH aq. soln., and H_2O . The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give the desired product **5b** (44 mg, 77%) as a pale yellow solid. The spectral data of (±)-**5b** were identical to those of **5b**.

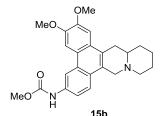
N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)propane-2-sulfonamide (**14a**). To a stirred solution of **S6** (81 mg, 0.20 mmol) in 4 mL of EtOH was added SnCl₂ (190 mg, 1.00 mmol) at room temperature, and the reaction mixture was stirred for 6 h at 75 °C. The reaction

mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with EtOAc. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford crude aniline **S7** as a yellow waxy solid. To a stirred solution of crude aniline **S7** in 10 mL of THF was carefully added LiAlH₄ (400 μ L, 0.40 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 1 h. The reaction mixture was quenched by successive addition of H₂O, a 15% NaOH aq. soln., and H₂O. The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine **S8** as a brown solid. To a stirred solution of crude


quinolizidine **S8** in 3 mL of CH₂Cl₂ was added pyridine (32 µL, 0.40 mmol) and 2-propanesulfonyl chloride (45 µL, 0.40 mmol) at 0 °C, and the reaction mixture was stirred for 8 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give a sulfonamide **14a** (53 mg, 57%) as a pale yellow solid. mp 255.1–257.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 7.67 (s, 1H), 7.63 (d, *J* = 8.7 Hz, 1H), 7.27–7.22 (m, 2H), 4.32 (d, *J* = 15.3 Hz, 1H), 4.05 (s, 3H), 4.02 (s, 3H), 3.55 (d, *J* = 15.3 Hz, 1H), 3.36–3.25 (m, 2H), 3.10 (dd, *J* = 2.9 Hz, 16.4 Hz, 1H), 2.98–2.91 (m, 1H), 2.42–2.37 (m, 1H), 2.34–2.28 (m, 1H), 2.04 (d, *J* = 10.0 Hz, 1H), 1.90 (d, *J* = 12.7 Hz, 1H), 1.88–1.81 (m, 2H), 1.67–1.58 (m, 2H), 1.40 (dd, *J* = 4.1 Hz, 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 149.4, 148.5, 134.3, 129.2, 128.7, 127.2, 126.2, 125.9, 125.7, 123.4, 120.0, 115.2, 103.5 (2C), 57.8, 56.2, 55.9, 55.7, 55.6, 52.4, 34.3, 33.1, 25.5, 24.1, 16.7, 16.5; IR (CHCl₃) ν_{max} 2932, 2864, 2087, 1736, 1609, 1513, 1416, 1304, 1256, 1134, 1036, 967, 785, 688 (cm⁻¹); HRMS (FAB): calcd. for C₂₆H₃₃N₂O₄S [M+H]⁺ 469.2161, found 469.2157.

N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2b]isoquinolin-6-yl)benzenesulfonamide (**14b**). To a stirred solution of **S6** (81 mg, 0.20 mmol) in 4 mL of EtOH was added $SnCl_2$ (190 mg, 1.00 mmol) at room temperature, and the reaction mixture was stirred for 6 h at 75 °C. The reaction

mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with EtOAc. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford crude aniline **S7** as a yellow waxy solid. To a stirred solution of crude aniline **S7** in 10 mL of THF was carefully added LiAlH₄ (400 µL, 0.40 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 1 h. The reaction mixture was quenched by successive addition of H₂O, a 15% NaOH aq. soln., and H₂O. The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine **S8** as a brown solid. To a stirred solution of crude quinolizidine **S8** in 3 mL of CH₂Cl₂ was added pyridine (32 µL, 0.40 mmol) and benzenesulfonyl chloride (51 µL, 0.40 mmol) at 0 °C, and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give a sulfonamide **14b** (62 mg, 62%) as a white solid. mp 272.8–273.9 °C; ¹H NMR


(500 MHz, (CD₃)₂SO) δ 8.20 (s, 1H), 7.85 (d, *J* = 7.7 Hz, 2H), 7.72 (d, *J* = 9.1 Hz, 1H), 7.70 (s, 1H), 7.59–7.52 (m, 3H), 7.33 (d, *J* = 8.8 Hz, 1H), 7.23 (s, 1H), 4.25 (d, *J* = 15.9 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 3.36 (d, *J* = 15.8 Hz, 1H), 3.11 (d, *J* = 10.7 Hz, 1H), 3.04 (d, *J* = 15.4 Hz, 1H), 2.67 (dd, *J* = 10.7 Hz, 16.2 Hz, 1H), 2.22–2.16 (m, 1H), 2.12 (t, *J* = 11.1 Hz, 1H), 1.91 (d, *J* = 10.1 Hz, 1H), 1.76 (d, *J* = 9.9 Hz, 1H), 1.68 (d, *J* = 12.2 Hz, 1H), 1.57 (q, *J* = 11.1 Hz, 1H), 1.38–1.29 (m, 2H); ¹³C NMR (125 MHz, (CD₃)₂SO) δ 149.4, 148.4, 139.7, 135.2, 132.9, 129.3 (2C), 128.5, 126.7 (2C), 126.0, 125.7, 125.2, 124.9, 123.8, 122.4, 119.0, 112.8, 104.2, 103.2, 57.0, 55.5 (2C), 55.3, 55.2, 33.9, 33.0, 25.4, 23.9; IR (CHCl₃) ν_{max} 2930, 1738, 1611, 1513, 1256, 1154, 1090, 1041, 970, 869, 690 (cm⁻¹); HRMS (FAB): calcd. for C₂₉H₃₁N₂O₄S [M+H]⁺ 503.2005, found 503.2018.

N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2b]isoquinolin-6-yl)acetamide (15a). To a stirred solution of S6 (74 mg, 0.18 mmol) in 4 mL of EtOH was added SnCl₂ (171 mg, 1.90 mmol) at room temperature, and the reaction mixture was stirred for 6 h at 75 °C. The reaction mixture was quenched

with sat. NaHCO3 solution, diluted with H2O, and extracted with EtOAc. The organic layer was dried over MgSO4 and concentrated in vacuo to afford crude aniline S7 as a yellow waxy solid. To a stirred solution of crude aniline S7 in 10 mL of THF was carefully added LiAlH₄ (360 μL, 0.36 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 1 h. The reaction mixture was quenched by successive addition of H₂O, a 15% NaOH aq. soln., and H₂O. The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine S8 as a brown solid. To a stirred solution of crude quinolizidine S8 in 3 mL of CH₂Cl₂ was added acetyl chloride (26 µL, 0.36 mmol) at 0 °C, and the reaction mixture was stirred for 5 h at room temperature. The reaction mixture was quenched with sat. NaHCO3 solution, diluted with H2O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give an amide 15a (40 mg, 55%) as a pale yellow solid. mp 208.7–209.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.81 (s, 1H), 7.89 (s, 1H), 7.72 (d, J = 8.7Hz, 1H), 7.56 (brs, 1H), 7.47 (d, J = 9.2 Hz, 1H), 7.22 (s, 1H), 4.45 (d, J = 15.5 Hz, 1H), 4.07 (s, 3H), 4.04 (s, 3H), 3.62 (d, J = 15.5 Hz, 1H), 3.31 (d, J = 11.0 Hz, 1H), 3.10 (d, J = 13.3 Hz, 1H), 2.92 (dd, J = 10.6 Hz, 16.0 Hz, 1H), 2.45 (t, J = 10.1 Hz, 1H), 2.31 (td, J = 4.1 Hz, 11.0 Hz, 1H), 2.25 (s, 3H), 2.04 (d, J = 14.2 Hz, 1H), 1.88 $(d, J = 12.8 \text{ Hz}, 1\text{H}), 1.81-1.75 \text{ (m, 2H)}, 1.61-1.41 \text{ (m, 2H)}; {}^{13}\text{C} \text{ NMR} (75 \text{ MHz}, \text{CDCl}_3 + \text{CD}_3 \text{COOD}) \delta 170.3,$ 149.2, 148.9, 136.3, 128.9, 124.4, 124.0, 123.6, 123.4, 122.3, 118.7, 117.4, 111.9, 103.5, 103.4, 66.4, 65.2, 58.1,

55.8 (2C), 35.9, 30.9, 29.3, 27.0, 23.9; IR (CHCl₃) υ_{max} 2983, 2234, 1733, 1301, 1031, 985, 911, 731 (cm⁻¹); HRMS (FAB): calcd. for C₂₅H₂₉N₂O₃ [M+H]⁺ 405.2178, found 405.2183.

Methyl(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl)carbamate (15b). To a stirred solution ofS6 (74 mg, 0.18 mmol) in 4 mL of EtOH was added SnCl2 (171 mg, 1.90 mmol) atroom temperature, and the reaction mixture was stirred for 6 h at 75 °C. The reaction

mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with EtOAc. The organic layer was dried over $MgSO_4$ and concentrated in vacuo to afford crude aniline S7 as a yellow waxy solid. To a stirred solution of crude aniline S7 in 10 mL of THF was carefully added LiAlH₄ (360 µL, 0.36 mmol, 1 M solution in THF) at 0 °C, and the reaction mixture was refluxed for 1 h. The reaction mixture was quenched by successive addition of H₂O, a 15% NaOH aq. soln., and H₂O. The suspension was then filtered over a Celite Pad, and the filtrate was concentrated in vacuo to afford crude quinolizidine S8 as a brown solid. To a stirred solution of crude quinolizidine **S8** in 3 mL of CH₂Cl₂ was added pyridine (29 μ L, 0.36 mmol) and methyl chloroformate (28 μ L, 0.36 mmol) at 0 °C, and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was quenched with sat. NaHCO₃ solution, diluted with H₂O, and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude product was separated by silica gel column chromatography (CH₂Cl₂/MeOH, 15:1) to give a carbamate **15b** (37 mg, 49%) as a pale yellow solid. mp 215.2–216.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (brs, 1H), 7.84 (s, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.41 (dd, *J* = 1.7 Hz, 8.8 Hz, 1H), 7.18 (s, 1H), 7.07 (brs, 1H), 4.37 (d, J = 15.5 Hz, 1H), 4.05 (s, 3H), 4.02 (s, 3H), 3.81 (s, 3H), 3.55 (d, J = 15.6 Hz, 1H), 3.26 (d, *J* = 11.0 Hz, 1H), 3.04 (dd, *J* = 3.2 Hz, 16.4 Hz, 1H), 2.85 (dd, *J* = 10.5 Hz, 16.1 Hz, 1H), 2.38–2.30 (m, 1H), 2.30–2.23 (m, 1H), 2.01 (d, *J* = 13.3 Hz, 1H), 1.87 (d, *J* = 15.2 Hz, 1H), 1.80–1.71 (m, 2H), 1.59–1.37 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 149.4, 148.4, 135.3, 129.4, 126.2, 125.5, 125.2 (2C), 123.6, 123.3, 117.8, 111.2, 103.9, 103.7, 57.5, 56.2, 55.94, 55.89, 55.8, 52.4, 34.6, 33.6, 25.8, 24.3; IR (CHCl₃) v_{max} 2985, 2936, 1732, 1373, 1238, 1044, 910, 727 (cm⁻¹); HRMS (FAB): calcd. for C₂₅H₂₉N₂O₄ [M+H]⁺ 421.2127, found 421.2133.

3. HPLC analysis

HPLC analysis used an Agilent 1200 Series HPLC (Agilent Technologies, Palo Alto, CA, USA). Mobile phase A consisted of 0.1% formic acid in HPLC grade water. The HPLC analysis was performed using a reversed-phase Agilent Eclipse Plus C18 column (4.6×150 mm, 3.5μ m) at a flow rate of 0.7 mL/min (30-100% aqueous MeOH with 0.1\% formic acid over 20 min and MeOH with 0.1\% formic acid from 20 to 25 min).

Compound	Retention Time, $t_{\rm R}$ (min)	Purity (%)
(<i>R</i>)-antofine (1)	9.363	98.6
(<i>R</i>)-cryptopleurine (2)	9.606	99.6
5a	6.708	97.7
5b	7.166	98.0
(±)- 5 b	7.205	97.8
(±)- 12b	16.926	99.9
13	7.392	98.8
14a	7.426	96.0
14b	9.300	98.2
15 a	9.340	96.1
15b	9.599	97.1

Table S1. Purity of all biologically evaluated compounds.

(R)-Antofine (1)

Acq. Operator :	SYSTEM	Seq. Line: 9
Acq. Instrument :		Location : Vial 45
	7/25/2013 4:30:17 A	
-		Inj Volume : 10.000 μl
Acq. Method :	C:\CHEM32\1\DATA\DE	EF_LC 2013-07-24 16-01-04\DEFAULT.M
Last changed :	7/24/2013 4:01:04 P	PM by SYSTEM
Analysis Method :	C:\CHEM32\1\METHODS	5\DEF_LC.M
Last changed :	3/26/2015 5:10:56 P	PM
	(modified after loa	
	<pre>Peak(s) manually in</pre>	
_		AVYS/20130722_LC\DEF_LC 2013-07-24 16-01-04\ANTOFINE_2001.D)
mAU _		ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ
1200		
-		
1000 -		
-		
800 -		
-		
600 -		
-		
400		
200	+	8 4 2 4 8 6 7 4 9 4 3 7 4 9 4 3 7 4 9 4 3 7 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4
	8.744	0.486
0	8	
	5	10 15 20 25 min
	5	10 15 20 25 min
	5	10 15 20 25 min
	Area Percent	
	Area Percent	t Report
	Area Percent	t Report
Sorted By	Area Percent : Signal	t Report
	Area Percent	t Report
Sorted By Multiplier Dilution	Area Percent : Signal : 1.0000	t Report
Sorted By Multiplier Dilution	Area Percent : Signal : 1.0000 : 1.0000	t Report
Sorted By Multiplier Dilution	Area Percent : Signal : 1.0000 : 1.0000	t Report
Sorted By Multiplier Dilution Use Multiplier &	Area Percent : Signal : 1.0000 : 1.0000	t Report
Sorted By Multiplier Dilution Use Multiplier &	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with	t Report
Sorted By Multiplier Dilution Use Multiplier &	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area	t Report
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min]	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s]	t Report n ISTDs Height Area [mAU] %
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min]	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s] 	t Report n ISTDs Height Area [mAU] %
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min] 1 8.744 BB	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s] 	Height Area [mAU] %
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min] 1 8.744 BB 2 9.363 BB	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s] 	Height Area [mAU] %
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min] 1 8.744 BB 2 9.363 BB 3 10.486 BB	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s] 	Height Area [mAU] % 3.96080 0.1613 1333.47498 98.5748 3.06459 0.1463
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min] 1 8.744 BB 2 9.363 BB 3 10.486 BB 4 11.243 BB	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s] 0.1308 35.57224 0.2582 2.17394e4 0.1548 32.25402 0.1527 58.20122	Height Area [mAU] %
<pre>Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min] 1 8.744 BB 2 9.363 BB 3 10.486 BB 4 11.243 BB 5 11.797 BB</pre>	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s] 	Height Area [mAU] %
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min] 1 8.744 BB 2 9.363 BB 3 10.486 BB 4 11.243 BB	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s] 0.1308 35.57224 0.2582 2.17394e4 0.1548 32.25402 0.1527 58.20122	Height Area [mAU] %
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min] 1 8.744 BB 2 9.363 BB 3 10.486 BB 4 11.243 BB 5 11.797 BB 6 12.143 BB	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s] 0.1308 35.57224 0.2582 2.17394e4 0.1548 32.25402 0.1527 58.20122 0.1620 104.48985 0.1434 83.78770	Height Area [mAU] %
<pre>Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 B, Peak RetTime Type # [min] 1 8.744 BB 2 9.363 BB 3 10.486 BB 4 11.243 BB 5 11.797 BB</pre>	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=254,4 Ref=off Width Area [min] [mAU*s] 	Height Area [mAU] %

*** End of Report ***

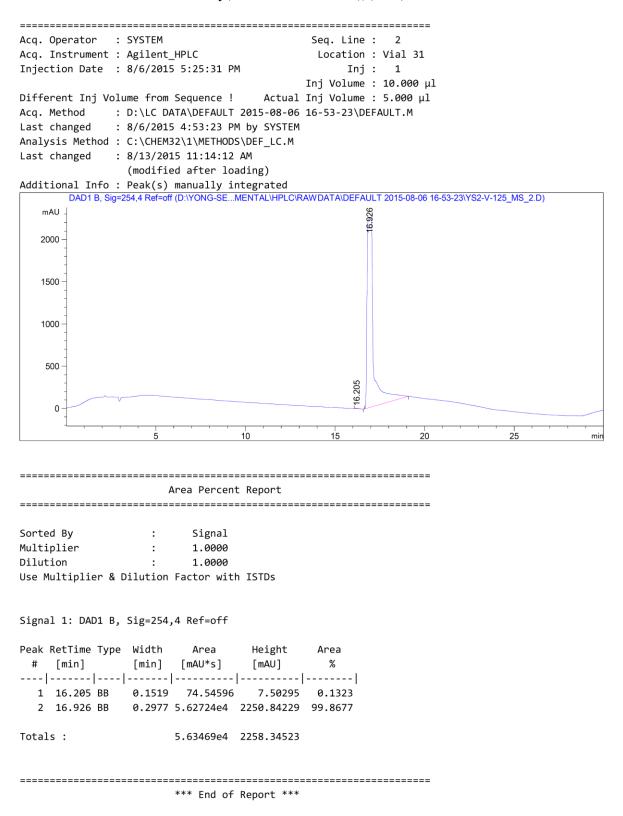
(R)-Cryptopleurine (2)

-----Acq. Operator : SYSTEM Seq. Line : 9 Acq. Instrument : Agilent_HPLC Location : Vial 66 Inj: 1 Injection Date : 7/26/2013 5:45:06 AM Inj Volume : 10.000 μl : C:\CHEM32\1\DATA\DEF_LC 2013-07-25 17-15-24\DEFAULT.M Acq. Method Last changed : 7/25/2013 5:15:24 PM by SYSTEM Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M : 3/26/2015 5:10:56 PM Last changed (modified after loading) Additional Info : Peak(s) manually integrated DAD1 B, Sig=254,4 Ref=off (D:\LCMS_DATA\YS\20130722_LC\DEF_LC 2013-07-25 17-15-24\CRYPTO_2001.D) mAU 9.606 600 500 400 300 200 100 10.434 3.230 0 10 25 20 15 min _____ Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 8.230 BB 0.1140 23.16213 2.75635 0.2767
 2
 9.606
 BB
 0.2004
 8341.59766
 664.58508
 99.6360

 3
 10.434
 BB
 0.1127
 7.31297
 1.03186
 0.0873
 8372.07275 668.37330 Totals : _____ *** End of Report ***

(*R*)-*N*-(2,3-Dimethoxy-9,11,12,13,13a,14-hexahydrodibenzo[*f*,*h*]pyrrolo[1,2-*b*]isoquinolin-6-yl)methanesulfonamide (5a)

Acq. Operator : SYSTEM		Seq. Line : 1	
Acq. Instrument : Agilen	t_HPLC	Location : Vial 56	
Injection Date : 7/25/2	013 6:18:48 PM	Inj: 3	
		Inj Volume : 10.000 μl	
		07-25 17-15-24\DEFAULT.M	
-	013 5:15:24 PM by SYSTE	M	
Analysis Method : C:\CHE			
-	015 5:10:56 PM ied after loading)		
Additional Info : Peak(s	=		
		LC\DEF_LC 2013-07-25 17-15-24\MSPI_503.I	0)
mAU [6 .708		
600	φ		
500			
500 -			
400			
400			
200			
300 -			
200 -			
200			
100 -			
	g		21.969
0	88.38		5
5	10	15 20	25 min
	Area Percent Report		
Sorted By :	Signal		
Multiplier :	1.0000		
Dilution :	1.0000		
Use Multiplier & Dilutio	n Factor with ISTDs		
Circal 1. DAD1 D. Cir 25	4 4 8-6 -66		
Signal 1: DAD1 B, Sig=25	4,4 Ret=0tt		
Peak RetTime Type Width	Area Height	Area	
# [min] [min]	•	%	
	4 6090.07227 615.60669		
	5 38.06167 3.07385		
3 21.969 BB 0.284	1 44.42401 2.10574	0.7128	
4 22.816 BB 0.244	7 60.10852 3.63843	0.9644	
Tatala			
Totals :	6232.66646 624.42471		
	*** End of Report ***		

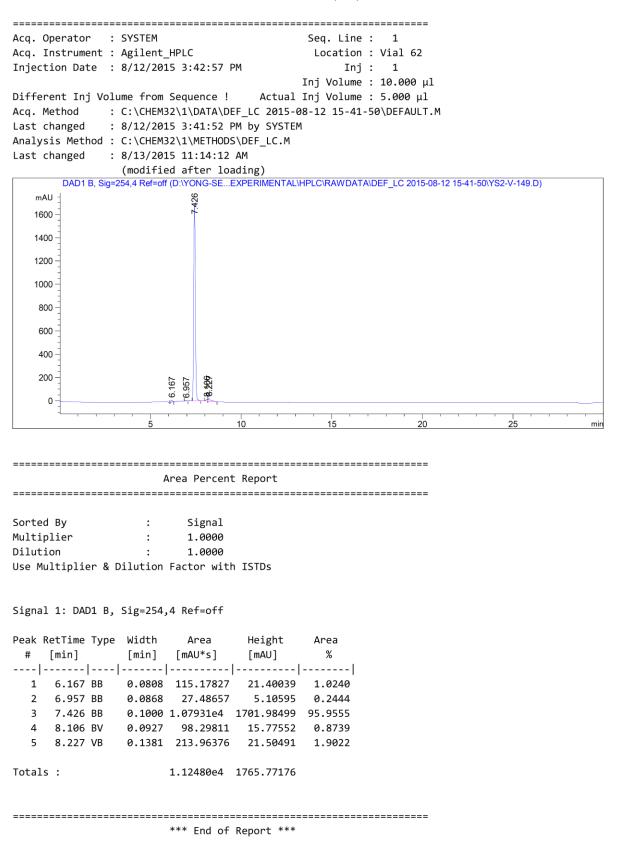

(*R*)-*N*-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[*f*,*h*]pyrido[1,2-*b*]isoquinolin-6-yl)methanesulfonamide (5b)

Acq. O	perator	: SYSTEM			Seq. Line :	8		
Acq. I	nstrument	: Agilent_	HPLC		Location :	Vial 78		
Inject	ion Date	: 7/27/201	.3 5:26:43 A	M	Inj :	2		
					Inj Volume :	10.000 µl		
Acq. M				—	7-26 17-59-27	/\DEFAULT.M		
Last c	-			M by SYSTEM	1			
			2\1\METHODS					
Last c	hanged		.5 5:10:56 P					
Additi	onal Info		d after loa manually in					
Auditi					C\DEF LC 2013-07-	26 17-59-27\MSPQ_2002	2.D)	
mAl			7.166					
600			<u>7</u>					
000								
500								
500	'							
400	1							
400	-							
300)							
200) —							
	-							
100) –							
	-	.995	6.339 6.680 8.213	9.781				
0)	4		6				
	L	5		10	15	20	25	min
		Δ	rea Percent	Report				
	_							
Sorted	-	:	Signal					
Multip Diluti		:	1.0000 1.0000					
		& Dilution	Factor with	TSTDs				
ose na	reipiie	d Dilución	Tactor with	15103				
Signal	1: DAD1	B, Sig=254,	4 Ref=off					
Peak R	etTime Ty	pe Width	Area	Height	Area			
	[min]	[min]	[mAU*s]	[mAU]	%			
	4.995 BB			5.21959				
	6.339 BB			4.10218				
				1.78007				
				654.23041				
	8.213 BB			2.94296				
0	9.781 BB	0.1008	22.09010	3.33533	0.4281			
Totals	:		8337.56348	671,61054				
			0-007	571.01054				

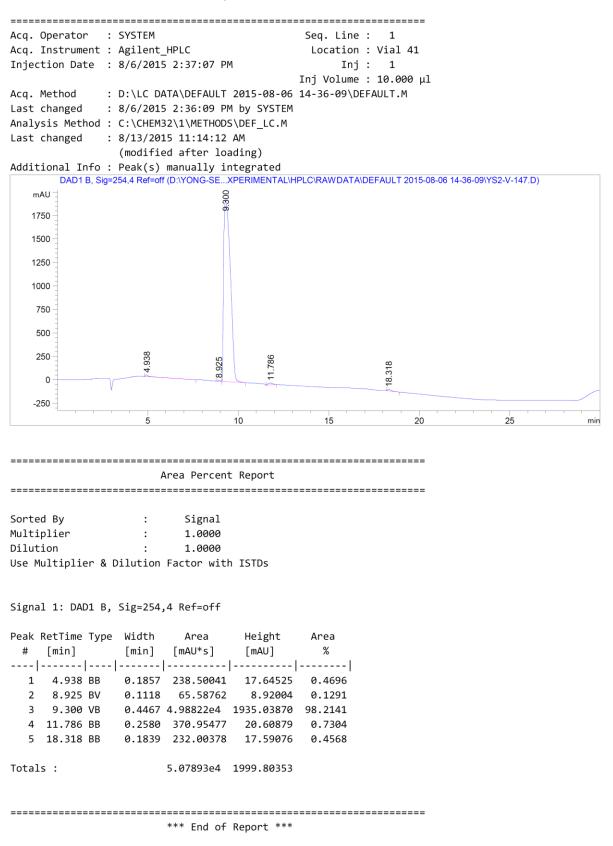
$\label{eq:linear} N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinolin-6-yl) methanesulfonamide ((\pm)-5b)$

Acq. Operator : SYSTEM		Seq. Line : 7		
Acq. Instrument : Agilent_HPL	с	Location : Vial 7	77	
Injection Date : 7/27/2013 4		Inj: 3		
		Inj Volume : 10.000		
Acq. Method : C:\CHEM32\1	\DATA\DEF_LC 2013-07	7-26 17-59-27\DEFAL	JLT.M	
9	:59:27 PM by SYSTEM			
Analysis Method : C:\CHEM32\1				
Last changed : 8/8/2015 3:				
(modified a) Additional Info : Peak(s) man	fter loading)			
DAD1 B, Sig=254,4 Ref=off (D:\L		DEF LC 2013-07-26 17-59-2	27\RACMSPQ.D)	
mAU –			,	
	7.205			
350 -				
300 -				
250 -				
200				
200 -				
150				
100 -				
50 - ~ ~ ~	0 00			
6.378	9.788			
5	10	15	20	25 min
Area	Percent Report			
-	Signal			
	1.0000			
Dilution : Use Multiplier & Dilution Fac	1.0000			
ose Multiplier & Dilución Pac	LOI WILL ISIDS			
Signal 1: DAD1 B, Sig=254,4 R	ef=off			
Peak RetTime Type Width		Area		
# [min] [min] [m		%		
	6.86090 2.37301			
	7.20870 2.13966	0.4081		
3 7.205 BB 0.1635 412 4 8.260 BB 0.1094 3				
5 9.788 BB 0.1615 1				
	1.04400			
Totals : 421	6.52374 399.72059			
***	End of Report ***			

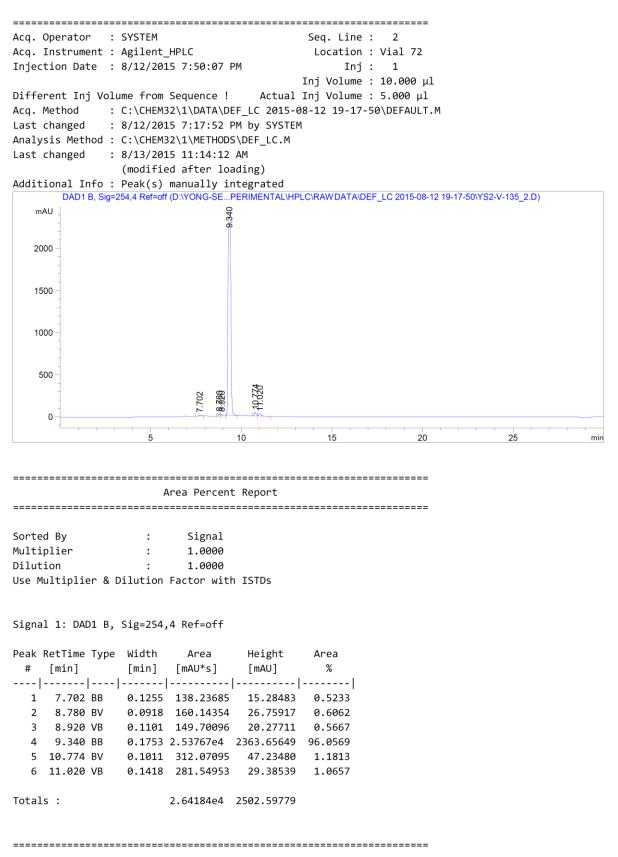
N-(2,3-Dimethoxy-9-oxo-11,12,13,14,14a,15-hexahydro-9*H*-dibenzo[*f*,*h*]pyrido[1,2-*b*]isoquinolin-6-yl)methanesulfonamide ((±)-12b)



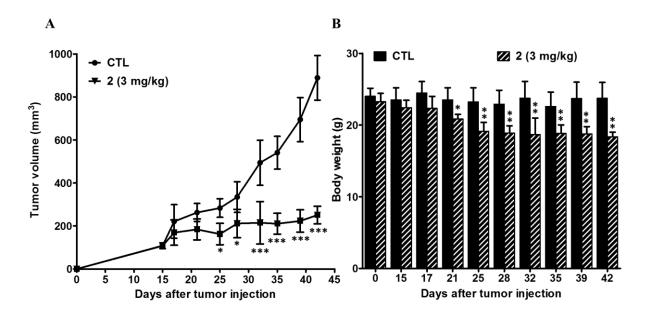
N-(4-(8-(3,4-Dimethoxyphenyl)-6-oxo-1,3,4,6,9,9a-hexahydro-2*H*-quinolizin-7-yl)phenyl)methanesulfonamide (13)


Acq. Operator : SYSTEM	Seg. Line : 6
Acq. Instrument : Agilent_HPLC	Location : Vial 32
Injection Date : 8/8/2015 12:46:51 PM	Inj: 1
	Inj Volume : 10.000 μl
Acq. Method : D:\LC DATA\DEFAULT 2015-08-08	10-10-06\DEFAULT.M
Last changed : 8/8/2015 10:10:06 AM by SYSTE	М
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M	
Last changed : 8/13/2015 10:44:50 AM	
(modified after loading)	
Additional Info : Peak(s) manually integrated	VDATA\DEFAULT 2015-08-08 10-10-06\YS2-V-143_MS_3_1.D)
	VDATA/DEFAULT 2013-06-06 10-10-06(132-V-143_WIS_3_1.D)
<u>Ţ</u> ?	
1000 -	
800 -	
600 -	
400 -	
32 135 135 135 135 135 135 135 100 100 100 100 100 100 100 100 100 10	
200 	
N N	
0 -	
-	
5 10	15 20 25 min
Anon Doncont Ponont	
Area Percent Report	
Sorted By : Signal	
Multiplier : 1.0000	
Dilution : 1.0000	
Use Multiplier & Dilution Factor with ISTDs	
Signal 1: DAD1 B, Sig=254,4 Ref=off	
Peak RetTime Type Width Area Height	Area
# [min] [min] [mAU*s] [mAU]	%
1 5.249 BB 0.1108 11.41037 1.60812	
2 6.903 BB 0.1324 36.80860 4.11376	
3 7.392 BB 0.2809 1.91495e4 967.74664	
4 8.669 BB 0.1266 37.98580 3.93621	
5 9.135 BB 0.1060 118.81143 17.31701	
6 12.832 BB 0.1373 20.81833 2.35164	0.1074
Totals : 1.93754e4 997.07338	
Totals : 1.93754e4 997.07338	

*** End of Report ***


N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9*H*-dibenzo[*f*,*h*]pyrido[1,2-*b*]isoquinolin-6-yl)propane-2-sulfonamide (14a)

N-(2,3-dimethoxy-11,12,13,14,14a,15-hexahydro-9*H*-dibenzo[*f*,*h*]pyrido[1,2-*b*]isoquinolin-6-yl)benzenesulfonamide (14b)



N-(2,3-Dimethoxy-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h] pyrido [1,2-b] isoquinolin-6-yl) acetamide (15a)

Acq. Operator : SYSTEM Seq. Line : 1
Acq. Instrument : Agilent_HPLC Location : Vial 52
Injection Date : 8/12/2015 6:07:44 PM Inj : 1
Inj Volume : 10.000 μl
Different Inj Volume from Sequence ! Actual Inj Volume : 3.000 µl
Acq. Method : C:\CHEM32\1\DATA\DEF_LC 2015-08-12 18-06-40\DEFAULT.M
Last changed : 8/12/2015 6:06:42 PM by SYSTEM
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 8/13/2015 11:14:12 AM
(modified after loading)
DAD1 B, Sig=254,4 Ref=off (D:\YONG-SEPERIMENTAL\HPLC\RAWDATA\DEF_LC 2015-08-12 18-06-40\YS2-V-137_2.D)
mAU
- -
2000 -
1500 -
1000 -
500 -
5 10 15 20 25 min
<u>5 10 15 20 25 min</u>
5 10 15 20 25 min
Area Percent Report
Area Percent Report Sorted By : Signal
Area Percent Report Sorted By : Signal Multiplier : 1.0000
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000
Area Percent Report Sorted By : Signal Multiplier : 1.0000
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off
Area Percent Report
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [mAU*s] [mAU]
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [mAU] · 1 6.786 BB 0.0973 2 9.599 BV 0.1591 2.73616e4
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [mAU's] 1 6.786 BB 0.0973 2 9.599 BV 0.1591 3 9.879 VV 0.1277 3 9.879 VV 0.1277
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [mAU]
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [mAU*s] [mAU*s] [mAU] *
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [mAU*s] [mAU*s] [mAU] *
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [mAU*s] [mAU*s] [mAU] *
Area Percent Report Multiplier : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [min] [mAU*s] [mAU] ' 1 6.786 BB 0.0973 44.09681 7.01427 0.1565 2 9.599 BV 0.1591 2.73616e4 2362.70752 97.0841 3 9.879 VV 0.1277 397.97348 43.12104 1.4121 4 10.187 VB 0.1184 243.24095 30.71501 0.8631 5 10.582 BB 0.0973 46.58497 7.40675 0.1650 6 11.163 BB 0.1089 89.99634 12.08225 0.3193
Area Percent Report Multiplier : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [min] [mAU*s] [mAU] ' 1 6.786 BB 0.0973 44.09681 7.01427 0.1565 2 9.599 BV 0.1591 2.73616e4 2362.70752 97.0841 3 9.879 VV 0.1277 397.97348 43.12104 1.4121 4 10.187 VB 0.1184 243.24095 30.71501 0.8631 5 10.582 BB 0.0973 46.58497 7.40675 0.1650 6 11.163 BB 0.1089 89.99634 12.08225 0.3193
Area Percent Report Multiplier : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [min] [mAU*s] [mAU] ' 1 6.786 BB 0.0973 44.09681 7.01427 0.1565 2 9.599 BV 0.1591 2.73616e4 2362.70752 97.0841 3 9.879 VV 0.1277 397.97348 43.12104 1.4121 4 10.187 VB 0.1184 243.24095 30.71501 0.8631 5 10.582 BB 0.0973 46.58497 7.40675 0.1650 6 11.163 BB 0.1089 89.99634 12.08225 0.3193
Area Percent Report Multiplier : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=off Peak RetTime Type Width Area # [min] [min]] [mAU] %

4. Antitumor activity of (*R*)-cryptopleurine (2)

Figure S1. Antitumor activity of **2**. **A**) The antitumor activity of **2**. Caki-1 cells $(1 \times 10^7 \text{ cells/mouse})$ were subcutaneously injected into the flanks of nude mice. Treatment with the test compounds was initiated when tumor volumes reached ~100 mm³. **2** (3 mg/kg body weight) was orally administered five times per week in a volume of 200 µL. The control group was treated with an equal volume of vehicle. Tumor volumes were measured with a caliper every 2-3 days. **B**) The body weight change in the tumor xenograft model. Body weights were monitored every 2-3 days. *p < 0.05, **p < 0.01, ***p < 0.001 by *t*-test.