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In the first two sections (I and II) of this SI, we present the step-by-step derivations of the partial partition 

functions in the associated and the dissociated states that are factors in the formula of the protein-protein 

association affinity.  

In the next two sections (III and IV) of this SI, we present the fluctuations of the pulling centers in the 

associated and the dissociated states along with the work curves along the pulling paths that were used to 

compute the Ras-RalGDS affinity. 

In the last section (V) of this SI, we present the study of the Barnase-Barstar complex. 

 

I. Computation of the partial partitions in the dissociated state.  

In the dissociated state, the stochastic dynamics of the two protomers are independent of one another. The 

computation of ( 1)
1

P
mZ   will be no different from that of ( 2)

1
P

nZ   . Therefore, in this subsection, we drop the 

superscript (P1) or (P2) until when we give the final results of  ( 1)
1

P
mZ   and ( 2)

1
P

nZ   . Note that we consider 

m,n≥3. We need to evaluate the integral of Eq. (11) around the position 1 2 3 4, , , ,... )( , m    r r r r r when 

P1 and P2 are far away from one another. Inserting an intermediate step, one can factor the 3(m-1)-D 

partial partition in Eq. (11) into two partial partitions of lower dimensions, 
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The 3(m-3)-D partial partition  
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can be well approximated as Gaussian because, when three centers of a protomer are fixed in the 

dissociated state, the location and orientation of the promoter will not change much but fluctuate 

according to the stochastic dynamics. The fluctuations of the other (m-3) centers in Eq. (S2) can be 

readily sampled to give 

  3( 3)/2 1/2
3 3 3Z (2 ) ( exp) / .m m

m
m BDet k T 
        (S3) 

Here the dimensionless quantity 3 Bm k T   gives a measure of how far the final state of SMD, 

4 5, ,( , )m  r r r ,  is from the PMF minimum 4 5, , )( , mr r r , 

    1
3 4 5 3 4 52

1
4 5 4 5, , , , , ,

T

B mm m mm mk T   


            r r r r r r r r r r r r  .  (S4) 

Det represents the determinant. 3m   is the 3(m-3)×3(m-3) matrix of the fluctuations/deviations of the 

pulling center coordinates 4 4 4x x x   etc. in the bound state ensemble, 
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1
3m 

 is the inverse matrix of 3m  which can be accurately evaluated by running equilibrium MD in 

the dissociated state of a protomer while three of m centers are fixed at 3,( , )  1 2r r r . Putting the 

protomer label P1 and P2 back explicitly, the 3(m-3)-D partial partition of P1 and the 3(n-3)-D partial 

partition of P2 are 

 

(P1) 3( 3)/ 2 1/ 2 (P1) (P1)
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The 6-D partial partition 
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contains the fluctuations of the second and the third centers of a protomer in the dissociated state.  Over 

there, the protomer’s environment is spherically symmetrical around the position of the first pulling 

center 1r that is fixed while the second and the third pulling centers 2 3andr r are free to sample all space 

available. The PMF 1 32[ , , ]W r r r  is only dependent upon three of the six degrees of freedom contained 

in ( 32,r r ). Therefore, the computation of a protomer’s partial partition in the dissociated state is a 3D 
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sampling problem. If the equilibrium sampling in 3D cannot be achieved with sufficient accuracy, one 

can insert an intermediate step of sampling fluctuations of the third center 3r  while fixing the first and the 

second centers at 1 2, )(  r r . Namely, 
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where the 6D partial partition of a protomer in the dissociated state factors into two 3D partial partitions, 

2 1Z   that can be computed as a 1D sampling problem and 3 2Z   that can be reduced to two 1D sampling 

problems. 

The 3D partial partition 2 1Z    contains the fluctuations of a protomer when its first center is fixed, 

  3
1 1b2 1 l 2 2 2u k

ex ,p [ [ ], ] BWZ W kd x T  
    r r r r , (S9) 

that is, an integration over the second steering center when the first steering center is fixed in a position 

1r . All one needs to do now is to evaluate the integral of Eq. (S9) around the position 1 2, )(  r r .  Over 

there, far away from the other protomer, the environment is spherically symmetrical around the position 

of the first pulling center 1r that is fixed while the second pulling center 2r is free to sample all space 

available. Therefore, the 3D integral becomes the following 1D integral, 
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where 21 2 1r  r r is the distance between the two pulling centers.  

       2 2
21 21 221 21 211exp [ ] / exp [ ] /B Br W r k T W r k Tr dr r         (S11) 

is the 1-D probability distribution density. 21[ ]W r  here, as a function of 21r , is the PMF for stretching 

the protomer between the two pulling centers.  It can be evaluated by conducting SMD runs of steering 

the second pulling center 2r  to and from the first pulling center that is fixed at 1r  along the axis passing 

through 1 2, )(  r r . This constitutes a 1D sampling problem that can be implemented efficiently to 

produce accurate results. 

The other 3D partial partition function 3 2Z   of a protomer takes account of the fluctuations of the third 

center when the first and the second centers are fixed, 
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Here the angular integration around the axis connecting the first and the second centers 1 2, )(  r r  was 

carried out explicitly, reducing the 3D partial partition into a 2D sampling problem. 331 1r  r r  is the 

distance between the third pulling center and the first pulling center that is fixed at 1r .   is the angle 

between  13 r r  and  2 1 r r .   is the angle between  2 1 r r  and  13 r r , of course. And 

this 2D sampling problem, if necessary, can be reduced to two 1D sampling problems as follows: 
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where     is the angular distribution probability density for the third center when the first and the 

second centers are fixed at ,( ) 1 2r r .  31r  is the radial distribution probability density.  
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31[ ]W r  is a function of 31r when, again, the first and the second centers are fixed at 1 2, )(  r r .  It can be 

evaluated by conducting SMD runs of steering the third pulling center 3r  to and from the first pulling 

center that is fixed at 1r  along the axis passing through 1 3, )(  r r  when the second pulling center is 

fixed as well. [ ]W   is the angular PMF. These two 1-D PMFs can also be sampled in equilibrium MD 

runs. 

Putting the protomer labels P1 or P2 back explicitly, one has the 6D partial partition of the two protomers 

P1 and P2, 
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To sum up this subsection, now we have the partial partitions in the dissociated state of the 

protomers,  

 P1) P1( ( ( ( ( (
1 3 1 3 1 3 1

) P1) P2) P2) P
3
2), ,m m n nZ Z Z Z Z Z              (S16) 

with the factors given in Eq. (S6) (m>3 and/or n>3) and Eq. (S15) that can be computed by 

equilibrium MD sampling or 1D PMFs. Naturally, when m=3, (P
3 3

1) 1Z     and, when n=3, (P
3 3

2) 1Z    . 

 

II. Computation of the partial partition in the associated state.  

In this state, the stochastic dynamics of protomer P1 are tightly coupled to that of P2. It is not 

necessary to distinguish their coordinates into two separate groups. Instead, one can pick any 
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(P1) (P1) (P1) (P2) (P2) (P2), ,..., ; , ,...,m nr r r r r r that are denoted as 1 2 3, )( ,r r r . 

The rest k=m+n-3 centers are denoted as 4 5( ,...,, )m nr r r . With these notations, and inserting an 

intermediate partial partition into Eq. (9), one obtains the following factorization: 
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Here 3 1,0Z  represents fluctuations of two centers 2 3( , )r r  when one center is fixed at 11 0r r   
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This 6D partial partition can be factored into three 1D sampling problems in the same manner as Eq. (S8). 

The resultant form is 
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Noting that the probability distributions here in the associated state take forms similar to those of 

the dissociated state in Eq. (S11) and Eq. (S14).  
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0 31[ ]W r  as a function of 331 1r  r r , the distance between the first and the third center, is the 1D 

PMF along the 10 30, )(r r  direction when two centers are fixed at 10 20, )(r r . 0 21[ ]W r  as a function of 

21 1 2r  r r , the distance between the first and the second center, is the 1D PMF along the 

10 20, )(r r  direction when only one center is fixed 10( )r . 310 1 300r  r r and 210 10 20r  r r , of 

course. 

0kZ  represents fluctuations of k centers 4 5( ,...,, )m nr r r  when three center are fixed at 10 20 30( ,, )r r r ,  
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When the protein association is tight, one can approximate the integral of Eq. (S21) as Gaussian in the 

neighborhood of the PMF minimum. The coordinates of the minimum of a Gaussian distribution are 

equal to the average coordinates, of course, 4 5, ,( , )m nr r r . Carrying out the Gaussian integral, 

one has 

  3 /2 1/2
0Z (2 ) ( exp) / .k Bo ok k

k Det k T     (S22) 

Here the dimensionless quantity Bko k T  gives a measure of how far 40 50 0, ,( , )m nr r r , the initial state 

chosen for SMD, is from the PMF minimum 4 5, ,( , )m nr r r , 
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Det represents the determinant. ko  is the 3k×3k matrix of the fluctuations/deviations of the pulling 

center coordinates 4 4 4x x x   etc.  
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1
ko
 is the inverse matrix of ko which can be accurately evaluated by running equilibrium MD in the 

associated state of the protein-protein complex while three of m+n centers are fixed at 10 20 30( ,, )r r r .  

 

 

 

 

III. Fluctuations of the pulling centers.  

Shown in Figs. S1 to S3 are the fluctuations of the three pulling centers on Ras and the three pulling 

centers on RalGDS. These data were used to compute the partial partitions. 
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Fig. S1. The fluctuations of the three pulling centers on Ras in the dissociated state vs the same in the 
associated state. 
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Fig. S2. The fluctuations of the three pulling centers on RalGDS in the dissociated state.  
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Fig. S3. The fluctuations of the three pulling centers on RalGDS in the associated state. 
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IV. Work along the pulling paths. 

 

Fig. S4. Work curves along the pulling paths that were used to extract the PMF curve shown in Fig. 3. 
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V. Computing the association affinity of the barnase-barstar complex.  

The all-atom model system of Barnase-Barstar complex1-6, shown in Fig. S5, was formed from the 

crystallographic structure (PDB code: 1BRS)5 by taking its C and F chains, rotating it to the orientation of 

Barstar on top of Barnase along the z-axis, putting the complex in the center of a water box of 

10 80 608 Å Å Å  , neutralizing the system with four Na+ ions, and salinating the system to 100 mM of 

NaCl. During the 50 ns equilibrium MD run, system settles down (after 3 ns) to fluctuate slightly around 

the dimensions of 10 80 478 Å Å Å  . It needs to be pointed out that, unlike what was done in the 

computational study of the wild-type complex,6 residues 40 and 82 of this protein-protein complex were 

not mutated back to cysteine in this study.  
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Fig. S5. Barnase-barstar complex shown in ribbons colored by residue types. Also shown in (A) 
are the six pulling centers: The alpha carbons of three barstar residues (Leu 20, Leu 41, and Leu 
51) are shown as purple spheres. They are chosen as pulling centers to steered along the +z 
direction. The alpha carbons of three barnase residues (Ala 30, Ala 74, and Tyr 103) are shown as 
yellow spheres. These three are chosen as pulling centers to be steered in the –z direction. (B) The 
interfacial residues are shown as spheres colored by residue types: Barstar residues Tyr 29, Asn 
33, Leu 34, Asp 35, Ala 36, Trp 38, Trp 44, Val 45, Glu 46, and Glu 76. Barnase residues Lys 27, 
Ala 37, Ser 38, Arg 59, Glu 60, Phe 82, Arg 83, Ser 85 His 102, Tyr 103, and Gln 104. (C) and 
(D) show, respectively, the barnase and barstar residues within a distance of 3 Å away from the 
partner proteins barstar and barnase. The representations in (C) and (D) are identical to (B). 
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For the barnase-barstar system, we choose three alpha carbons on each protein as the steering/pulling 

centers: Ala 30, Ala 74, and Tyr 103 on barnase (noted as P1, their position vectors noted as 

 (P1) (P1) (P1)
1 2 3, ,r r r ) along with Leu 20, Leu 41 and Leu 51 on barstar (notated as P2, position vectors as 

 (P2) (P2) (P2)
1 2 3, ,r r r ). The numerical results are tabulated in Table S1. 

Table S1. Computed results of barnase-barstar complex. 

The 6-D partial partition of barnase in the dissociated state when 
one center is fixed 

(P1)
3 1Z    5 615. 2 09 Å   

The 6-D partial partition of barstar in the dissociated state when 
one center is fixed 

(P2)
3 1Z    5 613. 0 03 Å  

The 6-D partial partition of barnase-barstar complex in the 
associated state when one center is fixed 

3 1,0Z   5 613. 7 01 Å  

The 9x9 matrix for fluctuations in the associated state defined in 
Eq. (25) [or Eq. (S24)] 

3 )( oDet   10 181.808 10 Å  

The deviations of the initial state from the equilibrium average 
state as measured in Eq. (23) [or Eq. (S25)] for k=3 

3o  4.66 kcal/mol 

PMF difference between the one chosen associated state and the 
corresponding dissociated state 

0,W   −26.3±1.5 kcal/mol 

The absolute free energy of barnase-barstar association, 
computed with hSMD, Cys(40, 83)Ala  double mutant, 100 mM 
NaCl 

hSMDG  −16.8±1.5 kcal/mol 

The experimental data of Cys(40, 83)Ala  double mutant, 100 
mM NaCl 2, 5 (The effect of 100 mM NaCl reduces the binding 
by 1.4 kcal/mol.5) 

exp.G  −16.0 kcal/mol 

The experimental data of wild type, no NaCl5 
exp.G  −18.9 kcal/mol 

The barnase-barstar association free energy, computed by 
Gumbart, Roux, and Chipot6, wild type 

GBSAG  −21.0±1.4 kcal/mol 

 

Note that each of the three 6-D partial partitions involved in Eq. (28) was reduced three 1-D sampling 

problems for which the numerical data were presented in Figs. S7 and S8. The 9x9 matrix 3o for 
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fluctuations in the associated state defined in Eq. (25) and the deviations of the initial state from the 

equilibrium average state 3o as measured in Eq. (24) for k=3 were computed from the data shown in Fig. 

S9. The 18-D PMF along the puling path illustrated in Fig. S6 was computed from the work curves shown 

in Fig. S10 using Eq. (27). The PMF difference 0,W  was taken between z=0 and z=9Å. 

 

Fig. S6. PMF along the pulling path from the associated state to the dissociated state. The horizontal axis 

indicates displacement z of barstar relative to barnase when they are steered in the positive and the 

negative z-direction, respectively. 
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Fig. S7. The fluctuations of the three pulling centers on Barnase in the dissociated state vs the same in the 
associated state. 
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Fig. S8. The fluctuations of the three pulling centers on Barstar in the dissociated state. 
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Fig. S9. The fluctuations of the three pulling centers on Barstar in the associated state. 
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Fig. S10. Work curves along the pulling paths that were used to extract the PMF curve shown in Fig. S6. 
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