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Germany
∗ E-mail: seydel@ill.eu

1 Amplitudes of density fluctuations

Here we discuss a hypothetical picture of cluster formation via dynamic density fluctuations. The increase
of attractive interactions between proteins due to bound Y3+ ions on the protein surface enhances fluc-
tuations of the local volume fraction ϕ and thus leads to a density distribution G(ϕ). Fluctuations in ϕ

decrease the averaged apparent self-diffusion coefficient throughout the sample, since most proteins expe-
rience a denser packing.

The average diffusion coefficient can be written as:

Dav = D0

∫
φ max

0
G(ϕ)ϕ β (ϕ)dϕ, (1)

where G(ϕ) is the probability density function of the local volume fraction ϕ , φ max is the maximum packing
fraction, D0 represents the dilute limit diffusion coefficient of a protein and β (ϕ) is the theoretical reduced
diffusion coefficient, such as that by Tokuyama and Oppenheim1.

We could not reproduce the experimental data assuming a unimodal probability distribution of local
volume fractions. However, some well-separated bimodal distributions could explain the damping of the
dynamics as e.g. in the limiting case of a distribution consisting of two delta functions

G(ϕ) = δ (ϕ− (φ −A))+δ (ϕ− (φ +A)) ,

corresponding to square-wave-like fluctuations with an amplitude A around the average volume fraction φ

(cf. Figure 1).
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Figure 1 (a) Local density ϕ(x) as a function of the position x for a square-well-like fluctuation. Increasing salt concentration cs/cp increases
the amplitude A of the fluctuation. (b) Probability density G(ϕ) of local volume fractions ϕ as a function of ϕ , in the limiting case of Delta-
functions (corresponding to the spatial profile shown in (a)). With increasing cs/cp, G(ϕ) evolves from a single peak to two peaks at distance
A from the average volume fraction φ . (c) Amplitude A of density fluctuations as a function of cs/cp obtained from the fit of experimental data
under the assumption of square-well-like density fluctuations.



At this point, two aspects seem difficult to reconcile with a physical explanation along this scenario:
(i) There is no obvious physical reason for a well-separated bimodal distribution G(ϕ) away from a phase
separation. (ii) There is no obvious physical reason why density fluctuations should produce a universal
scaling, since this implies a very specific relation between the fluctuation amplitude and the overall protein
and salt concentration (see Figure 1(c)).

2 Subtraction of the signal of the empty sample holder with the Paalman-Pings
coefficients

In order to remove from the spectra the contribution of the sample holder, the Paalman-Pings coefficients,
accounting for the q-dependent absorption of neutrons by the sample and the cell walls, have beeen used2.
The scattering intensity Is of the sample without contribution of the empty cell is

Is(q,ω) = αsc(q)Isc
sc (q,ω)−βsc(q)Ic

c (q,ω) , (2)

where Isc
sc represents the scattering intensity after scattering and absorption from both the sample and the

cell and Ic
c depicts the scattering intensity after scattering and absorption from the cell only. α and β are

defined as follows:

αsc =
1

As
sc

βsc =
1

As
sc

Ac
sc

Ac
c
.

(3)

Therein As
sc, Ac

sc, Ac
c denote the q dependent cylindrical absorption factors called Paalman-Pings coefficients.

They are in turn defined as the integral

AV
Σ(q) =

1
V

∫
V

exp
[
−
∫

γ(x)
Σ(x′)ds(x′)

]
d3x , (4)

where V denotes the scattering volume (either of the sample, or of the cell), γ indicates the path of a
scattered neutron, Σ(x) is the linear attenuation coefficient at position x and ds(x) depicts the infinitesimal
line element of the line integral. The values of the attenuation coefficients have been calculated using the
National Institute of Standards and Technology (NIST) utility3. The density ρ used in the calculation of
the linear attenuation coefficient of the BSA solutions was obtained for a concentration cp = 200mg/ml as
follows:

ρ = (1−ϕ)ρD2O +ϕ ρBSA , (5)
where ϕ = 0.136 is the protein volume fraction, without hydration shell and ρBSA = 1.36g cm−3. With
ρD2O = 1.1050g cm−3, the density of the solution results ρ = 1.14g cm−3 . This value has been used for
the calculation of the Paalman-Pings coefficients, which were used for all the samples, since the variation
in density of the investigated solutions results in variations of the linear attenuation coefficient of the order
of a few percent and thus of acceptable magnitude.

3 Number density of n-clusters

Figure 2 depicts the number density ρ∗n of the n-clusters calculated using the result for the bonding proba-
bility pb from the main article.
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Figure 2 Number density ρ∗n of n-clusters according to equation (3) of the main article computed using the bonding probability pb obtained
from the experiment (figure 2 of the main article), plotted versus the number n of proteins per cluster and the ratio of the salt concentration cs
and protein concentration cp.
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