Supplemental Material for

Measurement and Modeling of Carbon Monoxide Emission Rates from Multiple Wood Pellet Types

Lydia Soto-Garcia^{1,2}, Xinrui Huang, Devraj Thimmaiah^{1,2}, Zach Denton, Alan Rossner, and Philip Hopke^{1,2}

1Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699 USA

2Institute for the Sustainable Environment, Clarkson University, Potsdam, NY 13699 USA

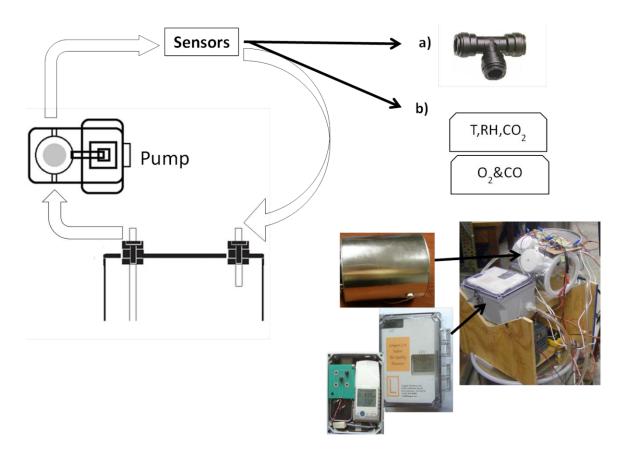
Nomenclature

[CO] is the gaseous mixing fraction of carbon monoxide

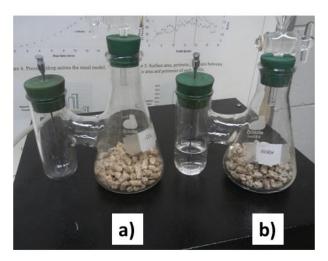
 $V_{\rm g}$ is the total volume of the gas phase inside the drum.

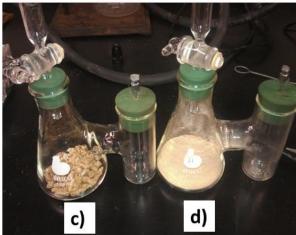
 k_{co} = the rate constant of CO off-gassing

 k_{OD} = the rate constant for any other O_2 depletion reactions


 m_p = the total mass of stored pellets

 W_{R-CO} is the unit amount of reactant (generating CO) on the pellet surface.


 $W_{R-CO,T}$ is the total potential amount of CO-generating reactant on the pellet surface.


Table S1. Units of parameters or variables in the improved model develop

Parameter / variable	Dimension
[CO], [O ₂]	$\frac{mol}{m^3}$
W_{R-CO} W_{R-CO}	$\frac{mol \text{ Reactant}}{kg \text{ pellets}}$
k_{co}	$\frac{\sqrt{m^3/mol}}{s}$
$k_{\scriptscriptstyle OD}$	$\frac{m^3}{kg \cdot s}$
r_{CO}, r_{OD}, r_{O_2}	$\frac{mol}{kg \ pellets \cdot s}$

Figure S1. Recirculation system to get air samples used for the off-gassing experiments: **a**) first set of experiment using a T shape fit to the CO, O_2 , and RH sensors; and **b**) second set up were the air loop pass through 2 boxes with CO, O_2 , CO_2 , T and RH sensors.

Figure S2. Photographs for the testing of Moisture Content and Surface Area effect in pellets by using Erlenmeyer flasks as storing chambers. Flask (a) loaded with dried pellets; Flask (b) contains liquid water; Flask (c) loaded with regular pellets; Flask (d) loaded with ground pellets.

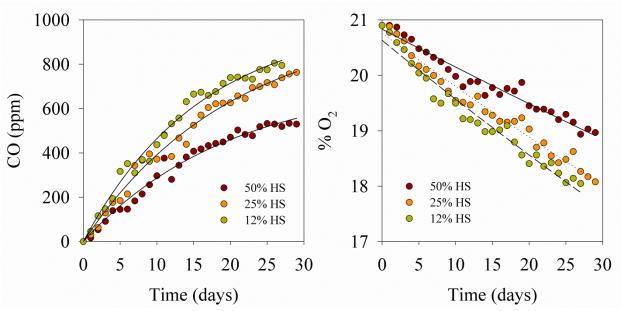
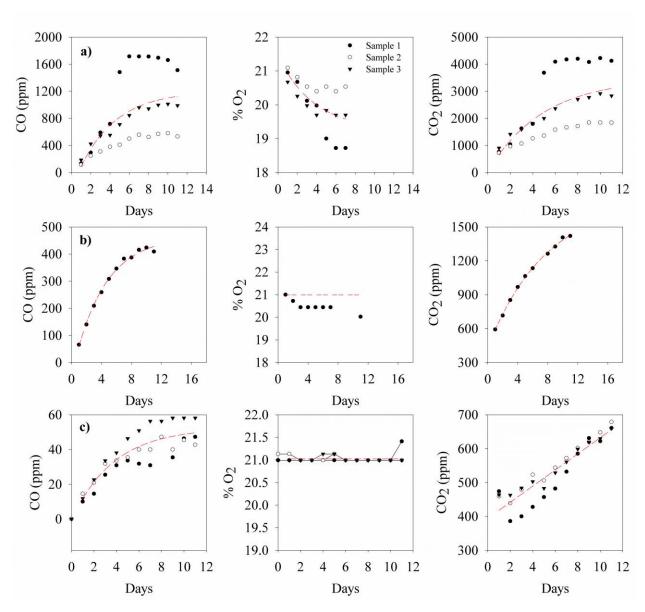



Figure S3. CO concentration and % O_2 as a function of time for 50%, 25% and 12% HS.

Figure S4. CO, O₂, CO₂ concentrations as a function of time for aged pellets (one month old) under three differents temperatures conditions: a) 30, b) 22, and c) 6-8°C..