Charge-State Control of Mn²⁺ Spin Relaxation Dynamics in Colloidal *n*-type Zn_{1-x}Mn_xO Nanocrystals

Alina M. Schimpf, Jeffrey D. Rinehart,[†] Stefan T. Ochsenbein,^{††} and Daniel R. Gamelin^{*}

Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA *Electronic address: <u>Gamelin@chem.washington.edu</u>

[†]Present address: Department of Chemistry and Biochemistry, University of California in San Diego, La Jolla, CA 92013, USA

^{††}Present address: Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

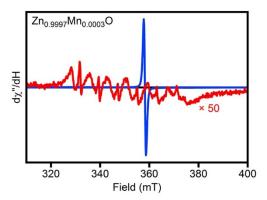


Figure S1. Room-temperature X-band CW EPR spectra of as-prepared (red) and maximally reduced (blue) colloidal d = 3.7 nm Zn_{0.9997}Mn_{0.0003}O nanocrystals.

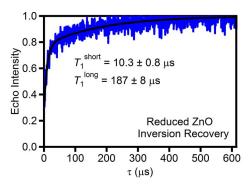


Figure S2. 4.5 K inversion recovery measured on photochemically reduced ($\langle n \rangle \sim 1$) ZnO nanocrystals. Data were fit to equation S1 and the short component ($\sim 67\%$ of total amplitude) was used for T_1^{e} . Even though T_1^{e} likely decreases with increasing $\langle n \rangle$, this value of T_1^{e} (or k_{eSLR}) was used in the model calculations for all nanocrystal reduction levels (*i.e.*, for all n_e). Because the model already overestimates the decrease in T_1^{Mn} at $n_e > 1$, this approximation is not the source of the disagreement between model and experiment in Figure 4 of the main text.

$$I(\tau) = 1 - A_{\text{short}} \exp\left(-\tau / T_1^{\text{short}}\right) - A_{\text{long}} \exp\left(-\tau / T_1^{\text{long}}\right)$$
(S1)

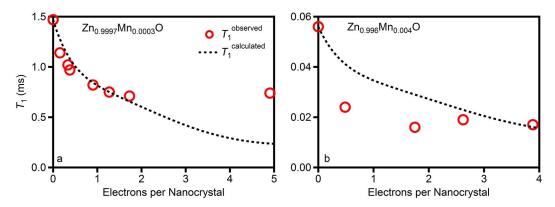


Figure S3. Experimental (circles) and calculated (dashed line) T_1 values plotted versus the average number of conduction-band electrons for (a) d = 3.7 nm Zn_{0.9997}Mn_{0.0003}O and (b) d = 3.7 nm Zn_{0.996}Mn_{0.004}O nanocrystals. Calculated values were obtained using equation S2 with $T_1^{Mn} = T_1^{\text{as-prepared}}$ and $T_1^e = 10 \,\mu\text{s}$. This model explicitly accounts for low- and intermediate-spin configurations expected from an orbital filling scheme. These calculations are intended for illustration purposes only, and it is unknown whether such low- and intermediate-spin configurations expin configurations actually occur.

$$T_{1}^{\text{observed}} = \sum_{n_{e}=0}^{1} \frac{P(n_{e})}{k_{\text{MnSLR}} + n_{e}k_{e\text{SLR}}} + \sum_{n_{e}=2}^{5} \frac{P(n_{e})}{k_{\text{MnSLR}} + (n_{e}-2)k_{e\text{SLR}}} + \sum_{n_{e}=6}^{7} \frac{P(n_{e})}{k_{\text{MnSLR}} + (8 - n_{e})k_{e\text{SLR}}} + \sum_{n_{e}=8}^{10} \frac{P(n_{e})}{k_{\text{MnSLR}} + (n_{e}-8)k_{e\text{SLR}}}$$
(S2a)

$$P(n_{\rm e}) = \frac{\langle n \rangle^{n_{\rm e}} e^{-\langle n \rangle}}{n_{\rm e}!}$$
(S2b)