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I. Hamiltonian and discretization 

 For state-to-state calculations of a tetra-atom reactive system using the TSWP approach, 

both the atom-triatom and diatom-diatom Jacobi coordinates need to be defined. As shown in 

Fig. S1, the A+BCD atom-triatom and AB+CD diatom-diatom Jacobi coordinates are denoted as 

1 2 1 2( , , , , , )R r r θ θ ϕ  and 1 2 1 2( , , , , , )R r r θ θ ϕ′ ′ ′ ′ ′ ′ , respectively. The z-axis of the body-fixed (BF) frame 

for the A+BCD or AB+CD system is defined to coincide the R  or ′R  vector, and the vector 1r  

or 1
′r  lies in the corresponding x-z plane. We note that the triangle formed by A, B, and the CD 

center-of-mass (COM) spans a common plane in both coordinate systems and 2r  and 2
′r  are the 

same vector. For the current system, A, B, C, and D are F, H, O and H’,  respectively. 

Since the AB+CD and A+BCD Hamiltonians have the same form, we use below the 

latter Hamiltonian ( =1 hereafter): 
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For the A+BCD system, µ  is the reduced mass between A and the COM of BCD, 1µ  is the 

reduced mass between B and the COM of CD, and 2µ  is the reduced mass of CD. 12ĵ  and 2ĵ  are 

the rotational angular momentum operators of BCD and CD, respectively, and 1 12 2
ˆ ˆ ˆj j j= −  is the 

orbital angular momentum operator of B relative to CD. For the AB+CD system, 1µ′  and 2µ′  are 

diatomic reduced masses for AB and CD, µ ′  is the reduced mass between the COMs of AB and 

CD. 1ĵ′  and 2ĵ′  are the rotational angular momentum operators of AB and CD, respectively, and 
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they are coupled to form 12ĵ′ . For both cases, the total angular momentum quantum number (J) is 

conserved, and the reference vibrational Hamiltonians ˆ ( )i ih r  are defined as  
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where ( )i iV r  are the one-dimensional (1D) reference potentials. Note that the two arrangement 

channels have different 1D reference potentials and the potential term in Eq. (S1), V, is the total 

PES minus the reference potentials. 

The wave functions is discretized in the terms of BF bases, 
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where M and K are the projections of J in the space-fixed (SF) and body-fixed (BF) frames, 

respectively. The composite index υ  denotes the two vibrational quantum numbers, 1υ  and 2υ , 

and the vibrational eigenfunctions ( )
i irυφ  are the eigenfunctions of the reference vibrational 

Hamiltonians ˆ ( )i ih r , which define the potential optimized discrete variable representation 

(PODVR).
1
 The translational basis 1 ( )nu R

υ  is defined as
2
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where 3 1asy
L R R= −  and 2 1intL R R= −  are the lengths of the asymptotic and interaction regions 

along R, and the point 2R  separates the R coordinate range ( 1 3,R R ) into the asymptotic and 

interaction regions in an L-shaped scheme.
3
 Different translational bases are used in the two 

regions with the same grid points. 
asyυ  is chosen to be the number of energetically open 

vibrational channels plus one or two closed channels. The composite index j  denotes ( 1 2 12, ,j j j

),ε  is the parity of the system defined as 1 2( 1) j j lε + += −  with l  being the quantum number for the 

orbital angular momentum 12
ˆ ˆ ˆl J j= − . The parity-adapted BF rotational basis 1 2

ˆ ˆ ˆ( , , )JM

jKy R r rε
 is 

given as 
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where *

, ( , , )J

K MD α β γ  is the Wigner rotation matrix
4
 that rotates the SF frame to BF frame by 

three Euler angles ( , ,α β γ ). The restriction, 1 2 12( 1) 1j j j Jε + + +− = , for 0K =  partitions the 

rotational basis set into even and odd parities. It again should be noted here that the definition of 

12

1 2 1 2( , , )
j K

j jY θ θ ϕ  is different for the A+BCD and AB+CD arrangements. The A+BCD rotational 

basis 12

1 2 1 2( , , )
j K

j jY θ θ ϕ  is given by
5
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where jm
y  is the spherical harmonics, and 2 1 120j mj j m  is the Clebsch-Gordan coefficient.

4
 

The Wigner rotation matrix 12*

1(0, , )
j

KmD θ ϕ  rotates the BF frame to the MF frame (the z axis of 
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this frame lies along vector 1r ) by the Euler angles ( 10, ,θ ϕ ). On the other hand, the AB+CD 

rotational basis 12

1 2 1 2( , , )
j K

j jY θ θ ϕ′ ′
′ ′ ′ ′ ′  is given by6 
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The radial kinetic energy operator in the Hamiltonian is expressed in a small and dense matrix, 

while the angular kinetic energy operator assumes a diagonal form.
1
 

II. Thermal flux eigenstates 

The thermal flux eigenstates were determined in the diatom-diatom Jacobi coordinates 

using the Lanczos method implemented in ARPACK.
7
 These eigenstates ( n

Tf ) come in pairs 

with eigenvalues (
n

Tf ) of the same absolute value but opposite in sign.
8
 The lowest ten pairs 

have been determined and their energies, defined as relative to the ground (n=1) vibrational 

energy of the activated complex: 

1(ln ln )n

n B T TE k T f f≈ − − ,                                          (S8) 

where the approximate energy of this ground state is 1

1 ln TE kT f≈ − , represent approximately 

the excitation energies of higher thermal flux eigenstates relative to 1E . They can be considered 

as energies of the activated complex and listed in Table S1.  

III. Convergence 

Parameters used in the final calculations are given as follows. The propagation of the 

TSWPs was carried out using the second order split-operator method
53
 with a time step of 10 au. 

The total propagation time is 90000 and 50000 au for the reactant and product arrangement 

channels, respectively. The long propagation is due to the resonances in the pre- and post-
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reaction wells. In the atom-triatom arrangement channel, a total of 333 sine basis functions 

covering a range from 2.5 to 23.0 bohr were used for R , with 48 for the interaction region. 32 

and 9 PODVR basis functions in the range from 0.7 to 5.0 bohr were used for 1r  in the 

interaction and asymptotic regions, respectively. Only 4 PODVR basis functions in the range 

from 0.7 to 5.0 bohr were used for 2r . The size of the rotational basis functions was controlled 

by the parameters, 1maxj = 28, 2maxj = 20. The reactant asymptotic dividing surface was placed at 

rR
∞
 = 16.0 bohr. The absorption potentials use following form:  

0( )

n
q q

V q iC
L

− = −  
 

                                                                           (S9) 

where C, q0 and L are the strength, length and starting point of the absorption potential. For R , 

RC = 0.0025 au, 0R =17.1 au, RL = 5.9 au and 1.5Rn = ; for 
1r , 1r

C = 0.045 au, 
1,0r = 2.7 au, 

1r
L =

2.3 au and 
1

1.5rn = . 

In the diatom-diatom arrangement channel, a total number of 309 sine basis functions 

covering a range from 2.5 to 23.0 bohr were used for R ′ , with 48 for the interaction region. 32 

and 6 PODVR basis functions in the range from 0.7 to 5.0 bohr were used for 1r′  in the 

interaction and asymptotic regions, respectively. Similarly, 4 PODVR basis functions in the 

range from 0.7 to 5.0 bohr were used for the OH bond length 2r′ . The size of the rotational basis 

functions was controlled by the parameters, 1maxj′ = 42, 2maxj′ = 18. The product asymptotic 

dividing surface was located at 
pR
∞  = 16.0 bohr. The absorption potentials use the same form as 

in Eqn. (S9). For R′ , RC ′ =0.0025 au, 0R′ =17.1 au, RL ′ =5.9 au and 1.5Rn ′ = ; for 
1r′ , 1r
C ′ = 0.05 au, 

1,0r′ = 3.5 au,
1r

L ′ =1.5 au and 1
1.5rn ′ = . 
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We first examine the convergence of initial state-selected reaction probabilities with 

respect to the number of thermal flux eigenstates. As shown in Fig. S1 for three rotational states 

of H2O in its ground vibrational state, the reaction probabilities with eight pairs of thermal flux 

eigenstates are indistinguishable from the corresponding ones with ten pairs, indicating 

convergence for the initial state-selected reaction probabilities in the current energy range. 

 

The convergence of state-to-state reaction probabilities is then examined by comparing 

the J=0 initial state-selected total reaction probability of the F + H2O(000, 000) reaction obtained 

from three different methods: (1) the TSWP method with propagation only in the reactant 

rearrangement channel; (2) the sum of TSWP state-to-state reaction probabilities over all product 

states; (3) an initial state specific wave packet (ISSWP) method using the reactant coordinates, 

which can be considered as a benchmark. The TSWP calculations were performed with the 

lowest eight pairs of thermal flux eigenstates. It can be seen from Fig. S3 that the agreement 

among the three calculations is excellent in the energy range, which validates the 

implementation.  

 

References: 

 

(1) Light, J. C.; Carrington Jr., T. Discrete-Variable Representations and Their Utilization. 

Adv. Chem. Phys. 2000, 114, 263-310. 

(2) Colbert, D. T.; Miller, W. H. A Novel Discrete Variable Representation for Quantum 

Mechanical Reactive Scattering Via the S-Matrix Kohn Method. J. Chem. Phys. 1992, 

96, 1982. 

(3) Zhang, D. H.; Zhang, J. Z. H. Accurate Quantum Calculations for the Benchmark 

Reaction H2+OH → H2O + H in Five-Dimensional Space: Reaction Probability for J=0. 

J. Chem. Phys. 1993, 99, 5615-5618. 

(4) Zare, R. N. Angular Momentum; Wiley, New York, 1988. 

(5) Zhang, D. H.; Light, J. C. A Six-Dimensional Quantum Study for Atom-Triatom 

Reactions: The H + H2O → H2 + OH Reaction. J. Chem. Phys. 1996, 104, 4544-4553. 

(6) Zhang, D. H.; Zhang, J. Z. H. Full-Dimensional Time-Dependent Treatment for Diatom-

Diatom Reactions: The H2+OH Reaction. J. Chem. Phys. 1994, 101, 1146-1156. 



 S8

(7) Lehoucq, R. B.; Sorensen, D. C.; Yang, C. ARPACK User Guide: Solution of Large Scale 

Eigenvalue Problems by Implicitly Restarted Arnoldi Methods; SIAM, Philadelphia, PA, 

1998. 

(8) Manthe, U. A New Time-Dependent Approach to the Direct Calculation of Reaction 

Rates. J. Chem. Phys. 1995, 102, 9205-9213. 

(9) Feit, M. D.; Fleck Jr., J. A.; Steiger, A. Solution of the Schroedinger Equation by a 

Spectral Method. J. Comput. Phys. 1982, 47, 412-433. 

 

 

 

 

Table S1. Excitation energies of the activated complex. 

 

n En (cm
-1
) 

1 0.0 

2 311.0 

3 499.9 

4 612.0 

5 812.3 

6 925.4 

7 968.5 

8 1142.2 

9 1258.0 

10 1270.5 
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Figure S1. The A+BCD 1 2 1 2( , , , , , )R r r θ θ ϕ  and AB+CD Jacobi coordinates 1 2 1 2( , , , , , )R r r θ θ ϕ′ ′ ′ ′ ′ ′  

for tetra-atomic reactions. The angle between the two BF z axes � and �� is denoted as ∆. 

 

Figure S2. Convergence of the initial state-selected reaction probability with respect to the 

number of thermal flux eigenpairs for three initial rotational states of vibrationless H2O: a. 000, b. 

101, and c. 404 . 

 

Figure S3. Initial state-selected total reaction probabilities of the F + H2O(000, 000) reaction 

obtained from the TSWP method with only reactant propagation (black solid) and the sum of 

TSWP state-to-state reaction probabilities over all product states (red solid). For comparison, the 

reaction probability obtained by the ISSWP method is also shown (green dashed). The TSWP 

calculations use eight pairs of thermal flux eigenstates. 
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Figure S1 
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Figure S2 



 S12

 
Figure S3 

 

 


