Title: Direct Coherent Raman Temperature Imaging and Wideband Chemical Detection in a Hydrocarbon Flat Flame

Authors: A. Bohlin and C. J. Kliewer*

Affiliation:

Sandia National Laboratories, Livermore, CA 94551

*Correspondence to: cjkliew@sandia.gov

Supporting Information:

Synthetic temperature profile and spatial-filtering functions

The synthetic temperature profile describing the combustion time-history of a premixed-flame was simulated as a variant of an exponential-growth process, and implemented with the logistic function, T(k), progressed over discrete indices *k* according to:

$$T(k) = (T_{end} - T_{start}) \frac{1}{1 + e^{-(k - \Delta k)/b}} + T_{start}, k = \{1, 2, \dots, 100\}$$
 Eqn (1)

with boundaries $T_{end} = 2000$ K, $T_{start} = 300$ K, inflexion point $\Delta k = 50$ and rate-constant $b = \{5,10\}$. The domain of the argument is arbitrary, however, with the range set to span ~2mm the choices of *b* representing the two flames with thicknesses ~360 µm and ~720 µm, respectively.

The spatial-filtering Gaussian functions simulating the imaging system blur were generated according to:

$$g(k) = C^{-1} e^{-\left(2\sqrt{\ln(2)}(k-\Delta k)/w\right)^2}, w = \{2,5,7.5\}$$
 Eqn (2)

where C is the integral normalization constant, and the employed width (w) representing the current filters with 40 μ m, 100 μ m and 150 μ m FWHM, respectively.

CARS signal simulation and spectral fitting

The temperature was evaluated by fitting the extracted spectra to a theoretical library of precalculated spectra for the prevailing conditions. The calculated CARS spectrum is recovered via the Fourier transform of the time-dependent CARS response (E_{CARS}), which is the product of the impulsively excited N₂ transients and the delayed (τ) probe-electric-field time-varying amplitude (E_{probe}), according to;

$$E_{CARS}(t,\tau) = E_{probe}(t-\tau) \sum_{J=0}^{J\max} \Lambda_J e^{\left(\left(i\Delta E_J - \Gamma_J\right)t/h\right)} \qquad \text{Eqn (3)}$$

where ΔE_J denote the N₂ transition energy, Γ_J the reciprocal dephasing time, and Λ_J the oscillation amplitude of the *J*-specific S ($\Delta v=0, \Delta J=2$) transition involved. The specific contributions from major perturbing species-colliders on the total dephasing time were included in the calculation and weighted according to chemical equilibrium calculations of the specific flame-conditions involved. The oscillation amplitude depends on the isotropic- and/or anisotropic polarizability tensor invariant, and the normalized Boltzmann population difference factor. The CARS response is calculated here as an unmodulated signal, cancelling the probe-electric-field carrierfrequency, improving the speed of calculation. The probe-electric-field amplitude is approximated with a Gaussian shape (70 ps, FWHM), as verified through autocorrelation, measuring the CARS signal in a series of probe-delay-scans performed in a non-resonant gas of argon.