Enantioselective Total Synthesis of (-)-Nardoaristolone B via a Gold(I)-Catalyzed Oxidative Cyclization

Anna Homs, Michael E. Muratore and Antonio M. Echavarren*
Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain

E-mail: aechavarren@iciq.es

Supporting Information

Table of Contents

1. General Information
2. Screening of Conditions
3. Synthesis of (-)-nardoaristolone B and compounds $\mathbf{8}$ and $\mathbf{1 0}$
4. NMR Spectra
5. X-Ray Crystallographic Data
6. MS for $\mathbf{3}$ and $\mathbf{4}$

1. General Information

Unless otherwise stated, reactions were carried out under argon atmosphere in solvents dried by passing through an activated alumina column on a PureSolv ${ }^{\mathrm{TM}}$ solvent purification system (Innovative Technologies, Inc., MA). Analytical thin layer chromatography was carried out using TLC-aluminium sheets with 0.2 mm of silica gel (Merck GF_{234}) using UV light as the visualizing agent and an acidic solution of vanillin or anisaldehyde in ethanol as the developing agent. Chromatographic purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, 40-63 $\mu \mathrm{m}$). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.
NMR spectra were recorded at 298 K on a Bruker Avance 400 Ultrashield and Bruker Avance 500 Ultrashield apparatuses. Mass spectra were recorded on a Waters Micromass LCT Premier (ESI), Waters Micromass GCT (EI, CI) and Bruker Daltonics Autoflex (MALDI) spectrometers. Melting points were determined using a Büchi melting point apparatus.

Crystal structure determinations were carried out using a Bruker-Nonius diffractomer equipped with an APPEX 24 K CCD area detector, a FR591 rotating anode with $\mathrm{MoK}_{\mathrm{a}}$ radiation, Montel mirrors as monochromator and a Kryoflex low temperature device $\left(T=-173^{\circ} \mathrm{C}\right)$. Full-sphere data collection was used with w and j scans. Programs used: Data collection APEX-2, data reduction Bruker Saint V/.60A and absorption correction SADABS. Structure Solution and Refinement: Crystal structure solutions were achieved using direct methods as implement in SHELXTL and visualized using the program XP. Missing atoms were subsequently located from difference Fourier synthesis and added to the atom list. Least-squares refinement on F2 using all measured intensities was carried out using the program SHELXTL. All non-hydrogen atoms were refined including anisotropic displacement parameters. HPLC analysis was carried out in an Agilent Tehcnologies instrument HPLC 1100 series with VWD detector or HPLC 1200 series with DAD detector. The column used was a Chiralpack IC (4.6 mm x 250 mm) eluting with hexane:isopropanol ($99: 1$), $0.85 \mathrm{~mL} / \mathrm{min}$ flow, $5 \mu \mathrm{~L}$ injection and $\lambda=210 \mathrm{~nm}$. 2-methylcyclohexenone, ${ }^{1}$ phosphoramidite L*, ${ }^{2}$ methallyl iodide ${ }^{3}$ and 2-tert-butylpyridine N-oxide (PNO6) ${ }^{4}$ were prepared according to the literature whereas the other reagents were purchased from SigmaAldrich or Alfa Aesar. $\mathrm{RhCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ was purchased from Strem Chemicals.

[^0]
2. Screening of Conditions

a) Isomerization of the exo-olefin $\mathbf{3}$ into trisubstituted endo-olefin $\mathbf{4}$

Preliminary screening of conditions

Entry	Metal or acid	Conditions	Outcome
1	$\mathrm{RhCl}^{\left(\mathrm{PPh}_{3}\right)_{3}}$	EtOH, reflux, 52 h	No reaction
2	$\mathrm{PdCl}_{2}\left(\mathrm{PhCN}_{2}\right.$	$\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$, reflux, 20 h	Traces of $\mathbf{3}$
3	$\mathrm{RhCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}^{[\mathrm{a]}}$	EtOH, sealed tube	42% of $\mathbf{3}+10 \%$
4	$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	$115^{\circ} \mathrm{C}, 1 \mathrm{~h}$	usm
dioxane, $95^{\circ} \mathrm{C}, 30 \mathrm{~h}$	Decomposition		
usm = unreacted starting material			

Optimization of conditions

Entry	$\mathbf{R h C l}_{3} \cdot \boldsymbol{x} \mathbf{H}_{\mathbf{2}} \mathbf{O}$ $(\mathbf{m o l} \mathbf{\%})$	Temp.	Time	$[\boldsymbol{c}]$	Yield $\mathbf{4 + 3} \mathbf{3}^{\mathbf{a}}$
1	30	$23^{\circ} \mathrm{C}$	24 h	0.019 M	$<1 \%+>95 \%$
2	30	$40^{\circ} \mathrm{C}$	24 h	0.019 M	$4 \%+>90 \%$
3	30	$60^{\circ} \mathrm{C}$	24 h	0.019 M	$74 \%+5 \%$
4	30	$60^{\circ} \mathrm{C}$	4 h	0.019 M	$83 \%+10 \%$
5	30	$75^{\circ} \mathrm{C}$	4 h	0.019 M	$68 \%+<3 \%$
6	20	$75^{\circ} \mathrm{C}$	5 h	0.019 M	$86 \%+<3 \%(71 \%)^{\mathrm{b}}$
7	20	$90^{\circ} \mathrm{C}$	2 h	0.019 M	$64 \%+4 \%$
8	10	$75^{\circ} \mathrm{C}$	10 h	0.019 M	$64 \%+5 \%$
9	10	$90^{\circ} \mathrm{C}$	2 h	0.019 M	$72 \%+9 \%$
10	10	$90^{\circ} \mathrm{C}$	2 h	0.048 M	$66 \%+2 \%$
11	5	$75^{\circ} \mathrm{C}$	2 h	0.037 M	$65 \%+6 \%$
$\mathbf{1 2}$	$\mathbf{5}$	$\mathbf{7 5}^{\circ} \mathbf{C}$	$\mathbf{4 . 5 \mathbf { h }}$	$\mathbf{0 . 0 7 8} \mathbf{M}$	$\mathbf{8 3 \%}+<\mathbf{3 \%} \mathbf{(7 4 \%)}{ }^{\mathbf{b}}$

[^1]b) Kumada Cross-Coupling

Optimization on model enol triflate

Entry	Solvent	Catalyst loading	Equiv Grignard	Time	Outcome $^{\text {a }}$ GC yield (ratio product/impurity)
1	THF/Et ${ }_{2} \mathrm{O}$	5\%	4	14 h	73\% (2/3)
2	$\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$	1\%	4	14 h	71\% (1/1)
3	$\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$	5\%	2.1	14 h	78\% (2/1)
4	$\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$	2.5\%	1.2	14 h	Low conversion
5	$\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$	2.5\%	1.5	14 h	$29 \%(1 / 2)+62 \% 5$
6	$\mathrm{Et}_{2} \mathrm{O}$	5\%	2.1	4 h	80\% (2/1)
7	$\mathrm{Et}_{2} \mathrm{O}$	4\%	2.1	4 h	82\% (2/1)
8	$\mathrm{Et}_{2} \mathrm{O}$	3\%	2.1	4 h	78\% (5/3)
9	$\mathrm{Et}_{2} \mathrm{O}$	2\%	2.1	2 h	$\begin{gathered} 84 \%(7 / 3) \\ 63 \% \text { isolated product } \\ \hline \end{gathered}$

${ }^{\text {a }}$ Calibrated GC yields against 1,3,5-tribromobenzene as internal standard; GC ratio of areas product/impurity (uncalibrated).

Optimization on substrate 5

Entry	Solvent	Catalyst loading	Equiv Grignard	Temp.	Time	Outcome
1	$\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$	4%	2.1	$23^{\circ} \mathrm{C}$	16 h	$28: 72^{\mathrm{a}}$
2	$\mathrm{Et}_{2} \mathrm{O}$	10%	3	$23{ }^{\circ} \mathrm{C}$	60 h	$5: 1^{\mathrm{a}}$
3	$\mathrm{Et}_{2} \mathrm{O}$	10%	4	$23^{\circ} \mathrm{C}$	60 h	$9: 1^{\mathrm{a}}$
4	$\mathrm{Et}_{2} \mathrm{O}$	10%	4	$55^{\circ} \mathrm{C}$	9 h	$95: 5^{\mathrm{a}}$
5	$\mathrm{Et}_{2} \mathrm{O}$	10%	4	$55^{\circ} \mathrm{C}$	16 h	$68 \%^{\mathrm{b}, \mathrm{c}}$
$\mathbf{9}$	$\mathbf{E t}_{\mathbf{2}} \mathbf{O}$	$\mathbf{2 0 \%}$	$\mathbf{4}$	$\mathbf{2 3}^{\circ} \mathbf{C}$	$\mathbf{2 0} \mathbf{~ h}$	$\mathbf{7 2 \%}^{\mathbf{b}, \mathbf{d}}$

${ }^{a}$ Ratio of areas product:starter determined by GC-MS (uncalibrated); ${ }^{\text {b }}$ Yield isolated after column chromatography; ${ }^{\text {c }}$
Contains $c a .50 \%$ of inseparable impurity originating from the dimerization of the Grignard reagent; ${ }^{\text {d }}$ Contains $c a$.
10% of inseparable impurity originating from the dimerization of the Grignard reagent.
c) Optimization of the $\mathrm{Au}(\mathrm{I})$-catalyzed oxidative cyclization of 1,5-enyne 6

Entry	Oxidant	Yield 7/9 ${ }^{\text {a }}$
1	PNO1	$31 / 5$
2	PNO2	$20 / 36$
3	PNO3	$74 / 15$
4	PNO4	(isolated products)
5	PNO5	$0 / 55$
6	PNO6	$20 / 25$
7	PNO7	$0 / 44$
8	No oxidant	Decomposition

${ }^{\text {a }}$ Unless otherwise stated, yield determined by ${ }^{1} \mathrm{H}$-NMR using diphenylmethane as internal standard

d) Screening of conditions for the $\mathrm{Au}(\mathrm{I})$-catalyzed oxidative cyclization of 1,6-enynes

11

Entry	Metal	\mathbf{R}	Yield $^{\mathrm{a}}$
1	$\mathrm{IPrAuNTf}_{2}$	H	65% isolated
2	AuCl	H	86%
3	AuBr_{3}	H	80%
4	PtCl_{2}	H	$70 \%+25 \%$ cycloisomerized product
5	$\mathrm{IPrAuNTf}_{2}$	TMS	$50 \%(24 \mathrm{~h}, 50 \%$ conversion $)$
6	PtCl_{2}	TMS	No reaction
${ }^{\text {a}}$ Unless otherwise stated, yield determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ using diphenylmethane as internal standard			

3. Procedures for the synthesis of (-)nardoaristolone B and compounds 8 and 10

(2S,3R)-2,3-dimethyl-2-(2-methylallyl)cyclohexan-1-one (3)

To a stirred suspension of copper(I)-thiophene-2-carboxylate ($69 \mathrm{mg}, 0.36 \mathrm{mmol}, 0.02$ equiv) in 15 mL $\mathrm{Et}_{2} \mathrm{O}$ was added (R, S, S)-(+)-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a’]dinaphthalen-4-yl)bis(1phenylethyl) amine ($392 \mathrm{mg}, 0.72 \mathrm{mmol}, 0.04$ equiv). After stirring for 15 min at $23^{\circ} \mathrm{C}$, the resulting suspension was cooled to $-35^{\circ} \mathrm{C}$ and 2-methylcyclohex-2-en-1-one ($2.1 \mathrm{~mL}, 18.2 \mathrm{mmol}, 1$ equiv) was added. Subsequently, AlMe_{3} (2 M in heptane, $10.4 \mathrm{~mL}, 20.9 \mathrm{mmol}, 1.15$ equiv) was added slowly over a period of 15 min and allowed to react for 3 h at $-35^{\circ} \mathrm{C}$ (the mixture turns milky bright yellow upon addition of AlMe_{3}).

After 3 h at $-35^{\circ} \mathrm{C}$, dry THF (15 mL) and HMPA (12 mL) were added and the mixture allowed to warm to $-5^{\circ} \mathrm{C}$. $\mathrm{MeLi}\left(1.6 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 12.7 \mathrm{~mL}, 20.3 \mathrm{mmol}, 1.07$ equiv) was added dropwise over 5 min from $-5^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ (the reaction turns greenish upon addition of MeLi). After 20 min stirring, methallyl iodide ($3.5 \mathrm{~mL}, 32.7 \mathrm{mmol}, 1.7$ equiv) was slowly added over 5 min . The reaction mixture was left at 0 ${ }^{\circ} \mathrm{C}$ for 30 min and slowly warmed to $23^{\circ} \mathrm{C}$ and left stirring at this temperature for 60 h . The reaction was then quenched with a saturated aqueous solution of potassium sodium tartrate and extracted with dichloromethane $(5 \times 100 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and brine (200 mL) and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under vacuum and the crude mixture was purified by column chromatography on silica gel eluting with pentane/ $\mathrm{Et}_{2} \mathrm{O} 100: 1$ to $30: 1$ to afford a colorless liquid (3:1 mixture of diastereomers $\mathbf{3}$ and $\mathbf{3}^{\prime}, 1.8 \mathrm{~g}, 10$ mmol, 55% yield, 90% ee). The desired diastereomer 3 could be separated after several chromatography columns eluting with pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 80:1 in essentially pure form ($>30: 1 \mathrm{dr}$).

The $d r$ was determined by integrating the olefinic protons in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of both diastereomers. The $e e$ was determined by HPLC.

Major diastereomer: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.63(\mathrm{~m}, 1 \mathrm{H}), 2.65$ (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dddd}, J=15.1,7.0,5.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.84(\mathrm{~m}$, $3 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.7,142.9,114.5,52.0,44.3,38.4,38.3,28.8,24.2,23.5,19.7,15.8 \cdot[\boldsymbol{\alpha}]_{\mathbf{D}}$ $\left(\mathrm{CHCl}_{3}, c 1.02,26^{\circ} \mathrm{C}\right)=-10.0^{\circ}$. MS (GSMS) m / z 180.1.

HPLC Chiralpack IC ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$); hexane:IPA 99:1; $0.85 \mathrm{~mL} / \mathrm{min} ; \lambda=210 \mathrm{~nm}, 5 \mu \mathrm{~L}$ injection; t_{R} (major) 7.5-7.6 min, t_{R} (minor) $7.8-8.0 \mathrm{~min}, 91-92 \%$ ee.

Figure S1 Diastereomeric mixture of $\mathbf{3}^{\prime} \mathbf{3}^{\prime}: c a .3: 1 d r$

Figure S2 HPLC chromatogram of racemic 3+3

Figure S3 Enantioenriched mixture of $\mathbf{3 + 3}^{\prime}: c a .92 \%$ ee

(2R,3R)-2,3-dimethyl-2-(2-methylprop-1-en-1-yl)cyclohexan-1-one (4)

3 ($70 \mathrm{mg}, 0.38 \mathrm{mmol}, 1$ equiv) was placed in a 20 mL microwave vial and dissolved in 20 mL of HPLC analytical grade EtOH and $\mathrm{RhCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(64 \mathrm{mg}, 0.117 \mathrm{mmol}, 38 \% \mathrm{Rh}, 0.3$ equiv) was added. The vial was sealed and heated at $75^{\circ} \mathrm{C}$ for 4 h .

Six experiments were conducted and after cooling to $23^{\circ} \mathrm{C}$, the combined mixtures were poured on 400 mL of brine and extracted with pentane $(5 \times 400 \mathrm{~mL})$. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was concentrated and the crude residue was purified by column chromatography eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O}$ $50: 1$ to afford 4 as a colorless liquid ($314 \mathrm{mg}, 1.74 \mathrm{mmol}, 75 \%$ yield) as a 15:1 mixture of 4:3.

The reaction was also performed decreasing the amount of catalyst to $c a .5 \%$ and increasing the concentration. Thus, 3 ($58 \mathrm{mg}, 0.322 \mathrm{mmol}, 1$ equiv) was placed in a 5 mL microwave vial and dissolved in HPLC analytical grade EtOH (5 mL) and $\mathrm{RhCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}, 0.019 \mathrm{mmol}, 38 \% \mathrm{Rh}$, 0.056 equiv) was added. The vial was sealed and heated at $75^{\circ} \mathrm{C}$ for 4.5 h . The work-up and purification were the same as previously stated.

4 was isolated as a colorless oil ($43 \mathrm{mg}, 0.238 \mathrm{mmol}, 74 \%>97: 3$ mixture of $\mathbf{4}: 3$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.37(\mathrm{p}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.11$ $-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 216.5,133.8,132.4,54.6$, $45.0,39.3,28.8,27.1,23.9,20.7,18.5,14.4 .[\boldsymbol{\alpha}]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.50,26^{\circ} \mathrm{C}\right)=60.5^{\circ} . \mathbf{M S}(\mathrm{GSMS}) \mathrm{m} / \mathrm{z}$ 180.1

(5R,6R)-5,6-dimethyl-6-(2-methylprop-1-en-1-yl)cyclohex-1-en-1-yl trifluoromethanesulfonate (5)

A solution of distilled diisopropylamine ($0.35 \mathrm{~mL}, 2.50 \mathrm{mmol}$) in anhydrous THF (10 mL) was cooled to $0^{\circ} \mathrm{C}$ and $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $1.0 \mathrm{~mL}, 2.50 \mathrm{mmol})$ was added dropwise. After 10 min at $0^{\circ} \mathrm{C}$, the solution was cooled to $-78^{\circ} \mathrm{C}$ and $4(240 \mathrm{mg}, 1.33 \mathrm{mmol})$ was added as a solution in anhydrous THF (2 mL). After 1 h stirring at $-78^{\circ} \mathrm{C}$, a solution of N-(2-pyridyl)bis(trifluoromethanesulfonimide) ($800 \mathrm{mg}, 2.24 \mathrm{mmol}$) in anhydrous THF (1 mL) was added. The resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$ for 1 h and then stirred at room temperature for 16 hours. It was then poured on brine $(100 \mathrm{~mL})$ and extracted with pentane $(5 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude mixture was purified by column chromatography on silica gel eluting with pentane to afford $\mathbf{5}$ as a colorless oil (340 $\mathrm{mg}, 1.09 \mathrm{mmol}, 82 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71$ (dd, $J=5.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (app. pent, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.32 $2.14(\mathrm{~m}, 2 \mathrm{H}), 2.05($ app. dqd, $J=11.9,6.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.58-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.7$, $135.0,127.7,118.3\left(\mathrm{q}, J_{C-F} 319.2 \mathrm{~Hz}\right.$), 115.4, 43.1, 39.2, 27.4, 26.1, 23.8, 21.0, 18.4, 16.2. ${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{F}}-75.4$. HRMS $(\mathrm{ESI}+)$ calculated mass for $\left[\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SNa}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) \mathrm{m} / \mathrm{z}$ 335.0899, measured mass $m / z 335.0899 .[\boldsymbol{\alpha}]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.67,25^{\circ} \mathrm{C}\right)=-7.17^{\circ}$.
((5 R,6R)-5,6-dimethyl-6-(2-methylprop-1-en-1-yl)cyclohex-1-en-1-yl)ethynyl)trimethylsilane (6a)

$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 0.02$ equiv) and $\mathrm{CuI}(6 \mathrm{mg}, 0.032 \mathrm{mmol}, 0.05$ equiv) were suspended in degassed $\mathrm{Et}_{3} \mathrm{~N}$ ($1.43 \mathrm{~mL}, 10.2 \mathrm{mmol}, 16$ equiv). To this suspension was added $5(200 \mathrm{mg}, 0.64$ mmol, 1 equiv) dissolved in 1 mL of degassed DMF immediately followed by addition of TMSacetylene ($0.11 \mathrm{~mL}, 0.77 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred at $23^{\circ} \mathrm{C}$ for 3 h , then poured on brine $(50 \mathrm{~mL})$ and extracted with pentane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (30 mL) and concentrated under reduced pressure. The crude material was used in the following reaction without further purification.
Note: alternatively this enyne can be purified by column chromatography on silica gel eluting with pentane to afford analytically pure material.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.11(\mathrm{dd}, J=4.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (app. pent, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 $2.09(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.36(\mathrm{~m}$,
$2 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.6,132.6$, 132.4, 131.2, 107.1, 91.0, 42.3, 37.6, 27.5, 26.6, 26.1, 22.9, 18.5, 17.2, 0.2. HRMS (APCI+) calculated mass for $\left[\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{Si}\right]^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) m / z$ 261.2033, measured mass m / z 261.2033. $[\boldsymbol{\alpha}]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.75,25{ }^{\circ} \mathrm{C}\right)$ $=-17.5^{\circ}$.

(5R,6R)-1-ethynyl-5,6-dimethyl-6-(2-methylprop-1-en-1-yl)cyclohex-1-ene (6)

6
The crude material obtained previously was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(177 \mathrm{mg}, 1.28$ mmol , theor. 2 equiv) was added. The resulting suspension was stirred at $23{ }^{\circ} \mathrm{C}$ for 5 h (monitored by GC-MS) and poured on half-saturated brine $(100 \mathrm{~mL})$ and extracted with pentane $(5 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was concentrated. Purification by column chromatography on silica gel eluting with pentane afforded $\mathbf{6}$ as a pale yellow oil $(90 \mathrm{mg}, 0.48$ mmol, 74% over 2 steps).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.17(\mathrm{dd}, J=4.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (app. pent, $\left.J=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.67$ (app. s, 1H), 2.17-2.10 (m, 2H), $1.86(\mathrm{dqd}, J=11.9,6.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J 1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~d}$, $J 1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J 6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.5,133.0,132.0,130.0,84.9,74.2,41.9,37.5,27.4,26.5,26.0,22.8,18.2$, 17.0. HRMS (APCI +) calculated mass for $\left[\mathrm{C}_{14} \mathrm{H}_{21}\right]^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) \mathrm{m} / \mathrm{z} 189.1638$, measured mass m / z 189.1645. $[\alpha]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.60,26^{\circ} \mathrm{C}\right)=19.0^{\circ}$.
(1aS,1bR,2R,6aR)-1,1,1b,2-tetramethyl-1a,1b,2,3,4,6a-hexahydrocyclopropa $[a]$ inden-6(1H)-one (7)

To a solution of $6\left(65 \mathrm{mg}, 0.345 \mathrm{mmol}, 1\right.$ equiv) in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(1.5 \mathrm{~mL})$ were added 3,5-dichloropyridine N-oxide ($226 \mathrm{mg}, 1.381 \mathrm{mmol}, 4$ equiv) and $\operatorname{IPrAuNTf}_{2}(15 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.05$ equiv). The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was poured on a saturated solution of CuSO_{4} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under vacuum. The crude material was purified by column chromatography on silica gel eluting with pentane/ $\mathrm{Et}_{2} \mathrm{O} 10: 1$ to afford 7 as a pale yellow oil ($52 \mathrm{mg}, 0.255 \mathrm{mmol}, 74 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.43(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.73$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=5.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}$,
$3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.2,146.8$, 131.6, 42.4, 42.2, 39.2, 33.5, 30.2, 28.9, 26.5, 25.9, 22.5, 16.9, 16.1. HRMS (APCI+) calculated mass for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}\right]^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) m / z$ 205.1587, measured mass m / z 205.1590. $[\boldsymbol{\alpha}]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.53,26{ }^{\circ} \mathrm{C}\right)=-$ 39.0°.

(1aS,1bR,2R,6aR)-1,1,1b,2-tetramethyl-1,1a,1b,2,3,6a-hexahydrocyclopropa[a]indene (9)

Along with 7 , side product $9(9 \mathrm{mg}, 0.048 \mathrm{mmol}, 15 \%$ yield contaminated with 10% of an unknown impurity) was also isolated.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.14(\mathrm{dd}, J=9.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{ddd}, J=9.7,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.03-$ $1.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.5,128.7123 .4,121.8,49.0,37.1,34.9,33.0,32.8,27.8,24.7,21.2,17.1,16.7$. HRMS (EI+) calculated mass for $\left[\mathrm{C}_{14} \mathrm{H}_{20}\right]^{+}\left(\mathrm{M}^{+}\right) m / z 188.1565$, measured mass m / z 188.1563.
(1aS,1bR,2R,6aR)-1,1,1b,2-tetramethyl-1,1a,1b,2,3,6a-hexahydrocyclopropa[a]indene-4,6-dione, (-)-nardoaristolone B (1)

To a suspension of $7(15 \mathrm{mg}, 0.073 \mathrm{mmol}$, 1 equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{mg}, 0.022 \mathrm{mmol}$, 0.3 equiv) were added $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\left(5 \mathrm{mg}, 0.007 \mathrm{mmol}, 20 \% \mathrm{Pd}, 0.1\right.$ equiv) and $t-\mathrm{BuO}_{2} \mathrm{H}$ (5 M in decane, $74 \mu \mathrm{~L}, 0.367 \mathrm{mmol}, 5$ equiv). The reaction was stirred for 5 h at $23^{\circ} \mathrm{C}$. The crude was filtered though Celite and the solvent was concentrated. Purification by column chromatography on silica gel eluting with pentane/ $\mathrm{Et}_{2} \mathrm{O} \quad 2: 1$ afforded the natural product $(-)$-nardoaristolone $\mathbf{B}(\mathbf{1})$ as a pale yellow solid ($15 \mathrm{mg}, 0.069 \mathrm{mmol}, 93 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.22(\mathrm{~s}, 1 \mathrm{H}), 2.50-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dd}, J=18.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=5.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.3,199.7,164.9,123.3,44.1,42.1,42.0,40.0,35.3$, 31.9, 28.6, 20.6, 17.6, 15.6. HRMS (ESI+) calculated mass for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) \mathrm{m} / \mathrm{z}$ 219.1380, measured mass m / z 219.1371. [$\boldsymbol{\alpha}]_{\mathbf{D}}\left(\mathrm{MeOH}, ~ c ~ 0.50, ~ 26{ }^{\circ} \mathrm{C}\right)=-7.40{ }^{\circ} .{ }^{5}$ M.p. $96-97{ }^{\circ} \mathrm{C} .{ }^{6}$ Structure confirmed by X-Ray: CCDC 1037494.
(3-((5R,6R)-5,6-dimethyl-6-(2-methylprop-1-en-1-yl)cyclohex-1-en-1-yl)prop-1-yn-1yl)trimethylsilane

[^2]

A dry 2-neck round-bottom flask equipped with a condenser, was charged with activated magnesium tunings ($315 \mathrm{mg}, 13.0 \mathrm{mmol}, 1.5$ equiv) that were covered with anhydrous diethyl ether (8 mL). Dibromoethane ($10 \mu \mathrm{~L}, 4.6 \mu \mathrm{~mol}$, catalytic) was added followed by trimethylsilylpropargyl bromide $(0.5 \mathrm{~mL}, 2.9 \mathrm{mmol}, 0.33$ equiv). The reaction was initiated by warming to reflux. A gentle reflux was then maintained by slow addition of the remaining bromide ($1 \mathrm{~mL}, 5.8 \mathrm{mmol}, 0.66$ equiv). After addition the mixture was heated to reflux for 20 additional minutes. The Grignard reagent was titrated and used in the following reaction.

A dry Schlenk tube was charged with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(148 \mathrm{mg}, 0.128 \mathrm{mmol}, 0.2$ equiv) which was suepended in anhydrous $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$. The suspension was stirred vigorously and 5 ($200 \mathrm{mg}, 0.64$ mmol, 1 equiv) was added as a solution in anhydrous $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ immediately followed by addition of the solution of Grignard reagent freshly prepared $(0.37 \mathrm{M}, 6.9 \mathrm{~mL}, 2.56 \mathrm{mmol}, 4$ equiv) were added dropwise. The resulting reaction was stirred for 20 h at $23^{\circ} \mathrm{C}$ (monitored by GC-MS). The mixture was poured on brine $(100 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent concentrated. The crude material was used in the next step without further purification.
(5R,6R)-5,6-dimethyl-6-(2-methylprop-1-en-1-yl)-1-(prop-2-yn-1-yl)cyclohex-1-ene (8)

The crude material from the reaction described above (theor. 0.64 mmol , 1 equiv) was dissolved in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(177 \mathrm{mg}, 1.28 \mathrm{mmol}$, 2 equiv) was added. The resulting suspension was stirred at $23{ }^{\circ} \mathrm{C}$ for 6 h (monitored by GC-MS) and then poured on brine (50 mL) and extracted with pentane $(5 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,filtered and solvent was concentrated. Purification by column chromatography on silica gel eluting with pentane afforded $\mathbf{8}$ as a colourless oil ($100 \mathrm{mg}, 0.494 \mathrm{mmol}, 77 \%$ yield over 2 steps).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 6.20-6.12(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.09$ $-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.83(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR
$\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 140.1,133.5,132.9,123.4,83.8,71.0,43.0,39.1,27.5,27.3,26.2,22.5,22.4$,
18.2, 17.4. HRMS (EI+) calculated mass for $\left[\mathrm{C}_{15} \mathrm{H}_{22}\right]^{+}\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z}$ 202.1722, measured mass m / z 202.1721. $[\alpha]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.37,23^{\circ} \mathrm{C}\right)=-2.3^{\circ}$.
(1aS,1bR,2R,6aS)-1,1,1b,2-tetramethyl-1a,1b,2,3,4,6-hexahydrocyclopropa[a]indene-6a(1H)carbaldehyde (10)

To a solution of $\mathbf{8}\left(10 \mathrm{mg}, 0.049 \mathrm{mmol}, 1\right.$ equiv) in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(0.5 \mathrm{~mL})$ was added 3,5-dichloropyridine N-oxide ($32 \mathrm{mg}, 0.198 \mathrm{mmol}, 4$ equiv) and $\operatorname{IPrAuNTf}_{2}(4 \mathrm{mg}, 4.9 \mu \mathrm{~mol}, 0.1$ equiv). The resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 4 h . After cooling to $23{ }^{\circ} \mathrm{C}$, the mixture was poured on a saturated solution of $\mathrm{CuSO}_{4}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed in vacuo. The crude material was purified by column chromatography on silica gel eluting with pentane/ $\mathrm{Et}_{2} \mathrm{O} 20: 1$ to afford $\mathbf{1 0}$ as a pale yellow oil ($7 \mathrm{mg}, 0.032 \mathrm{mmol}, 65 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=$ $16.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.52$ $-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 202.3, 146.4, 119.0, 51.4, 46.4, 45.6, 35.0, 34.7, 29.8, 26.9, 25.6, 24.8, 21.1, 17.3, 17.1. HRMS (ESI+) calculated mass for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) m / z 241.1563$, measured mass m / z 241.1555. [$\left.\alpha\right]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}\right.$, $\left.c 0.57,26^{\circ} \mathrm{C}\right)=-73.9^{\circ}$.

4. NMR Spectra

4

4

5

AHRO 0338-F2.10.fid
Researchroup
ResearchGroup Echavarren
ICIO 1 H12 p8s CDCI3 $/$ opt/topspin ahoms 32

ARRO 0338-F1.10.fid
ResearchCroup Echavarren
CCIO 1412 p8s CDCl3 /opt/topspin ahoms 31

AHRO 0338-F1.11.fid

Nardoaristolone B

MMu0807_16enyne. 10 .fid
ResearchGGoup Echavarren
ResearchGGroup Echavarren
CCIO_1H12p32s CD2CI2 /opt/topspin mmuratore 92

[^3]
GOESY (irradiation at $1.93 \mathbf{p p m}$)

5. X-Ray

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=43.527^{\circ}$
Absorption correction
Max. and min. transmission
mo_MMuNardo_0m
C14 H18 O2
218.28

100(2) K
0.71073 Å

Orthorhombic
P2(1)2(1)2(1)
$\mathrm{a}=8.0591(4) \AA$
$\alpha=90^{\circ}$.
$\mathrm{b}=9.6081(5) \AA$
$\beta=90^{\circ}$.
$c=15.5767(8) \AA$
$\gamma=90^{\circ}$.
$1206.15(11) \AA^{3}$
4
$1.202 \mathrm{Mg} / \mathrm{m}^{3}$
$0.079 \mathrm{~mm}^{-1}$
472
$0.40 \times 0.15 \times 0.15 \mathrm{~mm}^{3}$
2.491 to 43.527°.
$-14<=\mathrm{h}<=9,-18<=\mathrm{k}<=11,-23<=\mathrm{l}<=29$
29745
$7025[\mathrm{R}(\mathrm{int})=0.0261]$
82.5\%

Empirical
0.988 and 0.834

Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Flack parameter
Largest diff. peak and hole

Full-matrix least-squares on F^{2}
7025/ 0/ 149
1.102
$\mathrm{R} 1=0.0331, \mathrm{wR} 2=0.0893$
$\mathrm{R} 1=0.0355, \mathrm{wR} 2=0.0915$
$\mathrm{x}=-0.30$ (18)
0.334 and -0.378 e. \AA^{-3}

MS for compound 3

File : D: \MassHunter \GCMS \1 \data \Echavarren \backslash Michael $\backslash M M u 0811 F 38$.D
Operator : GCMS5977A \admin
Acquired : 27 Oct 2014 18:15 using AcqMethod Michael60-210_50-350-11min.M
Instrument : GCMS5977A
Sample Name: MMu0811E38
Misc Info
Vial Number: 42

MS for compound 4

File : D: \MassHunter\GCMS \1\data \Echavarren \backslash Michael $\backslash M M u 0814 c o l . D$
Operator : GCMS5977A \admin
Acquired : 07 Dec 2014 11:58 using AcqMethod Michael60-210_50-350-11min.M
Instrument : GCMS5977A
Sample Name: MMu0814col
Misc Info:
Vial Number: 4

[^0]: ${ }^{1}$ Baker, L.; Minehan, T. J. Org. Chem. 2004, 69, 3957-3960.
 ${ }^{2}$ Smith, C. R.; RajanBabu, T. V. Org. Lett. 2008, 10, 1657-1659.
 ${ }^{3}$ Smith, A. B., III,; Mesaros, E. F.; Meyer, E. A. J. Am. Chem. Soc. 2006, 128, 5292-5299.
 ${ }^{4}$ Bell, T. W.; Hu, L. H.; Patel, S. V. J. Org. Chem. 1987, 52, 3847-3850.

[^1]: ${ }^{a}$ GC-MS yield determined using diphenylmethane as internal standard; ${ }^{b}$ Yields isolated after purification by column chromatography.

[^2]: ${ }^{5}$ The reported α_{D} of the isolated natural product is the following: $[\alpha]_{\mathrm{D}}\left(\mathrm{MeOH}, c 0.5,26{ }^{\circ} \mathrm{C}\right)=-19.60^{\circ}($ Liu, M.-L.; Duan, Y.-H.; Hou, Y.-L.; Li, C.; Gao, H.; Dai, Y.; Yao, X.-S. Org. Lett. 2013, 15, 1000-1003).
 ${ }^{6}$ Melting point of the racemate: $60-62{ }^{\circ} \mathrm{C}$ (Handore, K. L.; Reddy, D. S. Org. Lett. 2014, 16, 4252-4255).

[^3]:

