Total synthesis of the cyclic depsipeptide YM-280193, a platelet aggregation inhibitor.

Harveen Kaur, ${ }^{\dagger}$ Paul W. R. Harris, ${ }^{\dagger}$ Peter J. Little, ${ }^{\ddagger}$ Margaret A. Brimble ${ }^{*,}{ }^{\dagger}$
+ School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand, and \ddagger Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC 3083, Australia.

Supporting Information

Table of Contents

1. General information S2-S3
2. Synthesis of building blocks $8,15,22,23$ S4-S17
3. General procedures for peptide synthesis S18-S19
4. Synthesis of peptides 5 and YM-280193 (1) S20-S22
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra S23-S41
6. References S42

1. General Information

All reagents were used as supplied. Solvents for RP-HPLC were purchased as HPLC grade and used without further purification. L-Proline, glycine, O-(7-azabenzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}-$ tetramethyluronium hexafluorophosphate (HATU), O-(benzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}-$ tetramethyluronium hexafluorophosphate (HBTU), O-(6-chlorobenzotriazol-1-yl)- $N, N, N N^{\prime}, N^{\prime}-$ tetramethyluronium hexafluorophosphate (HCTU), 1-hydroxy-7-azabenzotriazole (HOAt), Nfluorenylmethoxycarbonyl succinimide (Fmoc-OSu) and di-tert-butyl dicarbonate ($\mathrm{Boc}_{2} \mathrm{O}$) were purchased from GL Biochem. N, N^{\prime}-Diisopropylcarbodiimide (DIC), N, N-diisopropylethylamine (DIPEA) and piperidine were purchased from Aldrich. D-Phenyllactic acid, $\mathrm{H}-\mathrm{Ala}-\mathrm{OMe} \cdot \mathrm{HCl}$ and dithiothreitol (DTT) were purchased from AK Scientific. Fmoc- N-MeAla was purchased from Peptides International. Boc-Thr $(\mathrm{OH})-\mathrm{COOH}$ and $\mathrm{Boc-Thr}(\mathrm{Bzl})-\mathrm{COOH}$ were purchased form PolyPeptide Group. $\mathrm{H}-\mathrm{Cys}\left(\mathrm{S}^{t} \mathrm{Bu}\right)$ COOH was purchased from Chem Impex International. 2-Chlorotrityl chloride resin was purchased from Novabiochem. TFA was purchased from Scharlau. Unless stated otherwise, all reactions were performed under an atmosphere of nitrogen using standard techniques.

Analytical thin-layer chromatography (TLC) was carried out using Kieselgel $\mathrm{F}_{254} 200 \mu \mathrm{~m}$ (Merck) silica plates. The compounds were then visualised by ultraviolet fluorescence or by staining with ninhydrin followed by heating of the plate for a few minutes. Column chromatography was performed using Kieselgel $\mathrm{F}_{254} \mathrm{~S}$ 63-100 $\mu \mathrm{m}$ silica gel with the indicated eluent. Melting points, in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, were measured on a Reichert melting point apparatus, equipped with a Reichert microscope and were uncorrected. Infrared spectra were recorded on a Perkin Elmer Spectrum 100 infrared spectrometer and reported in wavenumbers $\left(v, \mathrm{~cm}^{-1}\right)$. Optical rotations were determined at the sodium D line (589 nm) at $20^{\circ} \mathrm{C}$ on a Perkin Elmer 341 instrument. High resolution mass spectra were recorded on a Bruker micrOTOFQ mass spectrometer.
Nuclear magnetic resonance (NMR) spectra were recorded at room temperature on either a Bruker AVANCE 400 spectrometer $\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100 \mathrm{MHz}\right.$) or a Bruker AVANCE HD 500 spectrometer $\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125 \mathrm{MHz}\right.$). All chemical shifts are reported in parts per million (ppm) from tetramethylsilane ($\delta=0$) and were measured relative to the solvent in which the sample was analysed $\left(\mathrm{CDCl}_{3}: \delta 7.26\right.$ for ${ }^{1} \mathrm{H}$ NMR, $\delta 77.0$ for ${ }^{13} \mathrm{C}$ NMR; $\mathrm{CD}_{3} \mathrm{OD}: \delta 3.31$ for ${ }^{1} \mathrm{H} N M R, \delta 49.00$ for ${ }^{13} \mathrm{C}$ NMR; $D_{2} \mathrm{O}: \delta 4.79$ for ${ }^{1} \mathrm{H}$ NMR; $\mathrm{CD}_{3} \mathrm{CN}: \delta 1.94$ for ${ }^{1} \mathrm{H}$ NMR, $\delta 118.26$ for ${ }^{13} \mathrm{C}$ NMR). The ${ }^{1} \mathrm{H}$ NMR shift values are reported as chemical shift $\left(\delta_{H}\right)$, the corresponding integral, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{qd}=$ quartet of doublets), coupling constant (J in Hz) and assignments. ${ }^{13} \mathrm{C}$ NMR values are reported as the chemical shift $\left(\delta_{\mathrm{C}}\right)$, the degree of hybridisation and assignment. The assignments were made
with the aid of HSQC, COSY and HMBC experiments. Where distinct from those due to the major rotamer, resonances due to minor rotamers are denoted by an asterisk.

Semi-preparative RP-HPLC was performed on a Thermo Scientific Dionex Ultimate 3000 UHPLC equipped with a four channel UV Detector at 210, 225, 254 and 280 nm using either an analytical column (Phenomenex Gemini $C_{18}, 110 \AA, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$) at a flow rate of $1 \mathrm{~mL} \mathrm{~min}^{-1}$ or a semi-preparative column (Phenomenex Gemini $C_{18}, 110 \AA$, $250 \mathrm{~mm} \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}$) at a flow rate of $5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. A suitably adjusted gradient of 1% B to 80% B was used, where solvent A was 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}$ and B was 0.1% TFA in acetonitrile.

LCMS spectra were acquired on either an Agilent Technologies 1120 Compact LC equipped with a Hewlett-Packard 1100 MSD mass spectrometer or an Agilent Technologies 1260 Infinity LC equipped with an Agilent Technologies 6120 Quadrupole mass spectrometer. An analytical column (Agilent C C_{3}, $150 \mathrm{~mm} \times 3.0 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$) was used at a flow rate of $0.3 \mathrm{~mL} \mathrm{~min}^{-1}$ using a linear gradient of 5% B to 95% B over 30 min , where solvent A was 0.1% formic acid in $\mathrm{H}_{2} \mathrm{O}$ and B was 0.1% formic acid in acetonitrile.

2. Synthesis of building blocks

2.1 Synthesis of (S)-2-((R)-2-(((9 H -fluoren-9-yl)methoxy)carbonyl)(methyl)amino)-

 3-(tert-butyldisulfanyl)propanamido)propanoic acid 8

(R)-2-((tert-butoxycarbonyl)amino)-3-(tert-butyldisulfanyl)propanoic acid S1

To a stirring suspension of $\mathrm{Cys}\left(\mathrm{S}^{t} \mathrm{Bu}\right)-\mathrm{COOH}(300 \mathrm{mg}, 1.43 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and THF (4 mL) was added solid $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(236 \mathrm{mg}, 1.9 \mathrm{mmol})$ and the mixture stirred at room temperature for 10 min until mostly dissolved. To this was added di-tert-butyl dicarbonate ($415 \mathrm{mg}, 1.9 \mathrm{mmol}$) and the resultant suspension was stirred at room temperature for $18 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, acidified with $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$ to pH 4 and extracted with EtOAc ($4 \times 15 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the title compound S1 as a white solid (423 mg , 96\%); $[\alpha]_{\mathrm{D}}{ }^{20}=-145.0$ (c 1.00, MeOH); HRMS (EI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}_{2}$: 332.0966, observed: 332.0968; IR (film) $\boldsymbol{v}_{\text {max }}$: 3302, 3103, 2973, 2927, 1718, 1688, 1649. 1404, 1363, 1251, 1163, 1137, 1052, 1025, 840, 770, 654; mp 118-119 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{1} 119-120^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.4,8.7 \mathrm{~Hz}, \mathrm{Cys} \beta-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $3.18\left(1 \mathrm{H}, \mathrm{dd}, J=13.4,4.4 \mathrm{~Hz}, \mathrm{Cys} \beta-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.41(1 \mathrm{H}, \mathrm{dd}, J=8.5,4.3 \mathrm{~Hz}, \mathrm{Cys} \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 28.7\left(\mathrm{CH}_{3}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.2\left(\mathrm{CH}_{3}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 43.1\left(\mathrm{CH}_{2}, \mathrm{Cys} \beta-\mathrm{C}\right), 48.6\left(\mathrm{C}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 54.4(\mathrm{CH}$, Cys $\alpha-\mathrm{C}), 80.7\left(\mathrm{C}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 157.7(\mathrm{C}, \mathrm{CON}), 174.2(\mathrm{C}, \mathrm{COOH})$.

Mixture of (R)-2-((tert-butoxycarbonyl)amino)-3-(tert-butyldisulfanyl)propanoic acid S1

 and 2-((tert-butoxycarbonyl)(methyl)amino)-3-(tert-butyldisulfanyl)propanoic acid S2

S1

To a stirring solution of Boc-NH-Cys(StBu)-COOH S1 (299 mg, 0.97 mmol) in anhdyrous THF (3 mL) at $0{ }^{\circ} \mathrm{C}$ was added sodium hydride ($100 \mathrm{mg}, 2.5 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in small portions. The resulting suspension was stirred for 5 min after which iodomethane ($0.217 \mathrm{~mL}, 3.5 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature for 21 h , after which $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and EtOAc (1 mL) was added. The reaction mixture was concentrated under reduced pressure, acidified with $1 \mathrm{M} \mathrm{HCl}(0.8 \mathrm{~mL})$ to pH 4 and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{AcOH}, 97: 2: 1\right)$ to afford an inseparable mixture of the title compounds S2:S1 (210 mg, 4:1); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) (Boc- $N-\mathrm{MeCys}\left(\mathrm{S}^{t} \mathrm{Bu}\right)-\mathrm{COOH}$ S2, 1:1 rotamer ratio, * denotes single rotamer signals): $\delta 1.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.93$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.99\left(1 \mathrm{H}, \mathrm{dd}, J=13.6,9.8 \mathrm{~Hz}, \mathrm{Cys} \beta-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{*}\right), 3.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \beta-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{*}\right), 3.30(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.13.5,4.3 \mathrm{~Hz}, \mathrm{Cys} \beta-\mathrm{H}_{\mathrm{A}} H_{B}\right), 4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \alpha-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (Boc-NH-Cys(S $\left.\left.{ }^{t} \mathrm{Bu}\right)-\mathrm{COOH}\right)$ S1: $\delta 1.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \beta-\mathrm{H}_{2}\right), 4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \alpha-\mathrm{H}), 5.36$ (1H, d, J = 6.8 Hz, NH).

(S)-methyl

2-((R)-2-((tert-butoxycarbonyl)(methyl)amino)-3-(tert-

butyldisulfanyl)propanamido)propanoate S3

To a stirring mixture of Boc- $N-\operatorname{MeCys}\left(S^{t} B u\right)-C O O H: B o c-N H-C y s\left(S^{t} B u\right)-C O O H$ S2:S1 (279 mg, 4:1), HCTU ($457 \mathrm{mg}, 1.10 \mathrm{mmol}$) and $\mathrm{H}-\mathrm{Ala}-\mathrm{OMe} \cdot \mathrm{HCl}(161 \mathrm{mg}, 1.15 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ DMF (9:1, 5 mL) at $0^{\circ} \mathrm{C}$ was added DIPEA ($385 \mu \mathrm{~L}, 3.48 \mathrm{mmol}$) dropwise. The reaction mixture was stirred with slow warming to room temperature for 2 h . To this was added $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The organic extract was washed successively with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue
was purified by flash column chromatography (hexanes:EtOAc, 3.5:1) to afford the title compound $\mathbf{S 3}$ as a colourless oil ($219 \mathrm{mg}, 42 \%$ over two steps); $[\alpha]_{\mathrm{D}}{ }^{20}=-126.6$ (c 0.61, CHCl $)_{3}$); HRMS (EI): $m / z[\mathrm{M}+$ Na^{+}calculated for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}_{2}$: 431.1650; observed: 431.1642; IR (film) $\boldsymbol{v}_{\text {max }}$: 3339, 2960, 2926, $1743,1678,1518,1451,1365,1320,1213,1155,757{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (1:1 rotamer ratio, * denotes single rotamer signals): $\delta 1.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.38\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ala}-\mathrm{H}_{3}\right), 1.49(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \beta-\mathrm{H}_{A} H_{B}{ }^{*}\right), 3.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \beta-\mathrm{H}_{A} H_{B}{ }^{*}\right), 3.31(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \beta-$ $\left.H_{A} H_{B}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.55(1 \mathrm{H}, \mathrm{m}$, Ala $\alpha-\mathrm{H}), 4.76(1 \mathrm{H}, \mathrm{s}, \mathrm{Cys} \alpha-\mathrm{H}), 6.52(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.79(1 \mathrm{H}, \mathrm{s}$, NH^{*}); ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) (1:1 rotamer ratio, * denotes single rotamer signals): $\delta 18.5\left(\mathrm{CH}_{3}\right.$, Alaß-C), 18.7 $\left(\mathrm{CH}_{3}, \mathrm{Ala} \mathrm{\beta-C}{ }^{*}\right)$, $28.5\left(\mathrm{CH}_{3}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $30.0\left(\mathrm{CH}_{3}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $\left.31.4\left(\mathrm{CH}_{3}, \mathrm{NCH}\right)_{3}\right), 31.9\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{NCH}_{3}{ }^{*}\right)$, $38.9\left(\mathrm{CH}_{2}, \mathrm{Cys} \beta-\mathrm{C}\right), 48.1\left(\mathrm{C}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right) 48.2(\mathrm{CH}, \mathrm{Ala} \alpha-\mathrm{C}), 52.6\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 58.7(\mathrm{CH}, \mathrm{Cys} \alpha-\mathrm{C})$, $59.5\left(\mathrm{CH}, \mathrm{Cys} \alpha-\mathrm{C}^{*}\right), 81.0\left(\mathrm{C}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 81.5\left(\mathrm{C}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}\right), 155.4\left(\mathrm{C}, \mathrm{CONCH}_{3}\right), 156.5\left(\mathrm{C}, \mathrm{CONCH}_{3}{ }^{*}\right)$, 169.5 (C, CONH), 173.1 (C, $\mathrm{CO}_{2} \mathrm{CH}_{3}$).
(S)-2-((R)-2-((tert-butoxycarbonyl)(methyl)amino)-3-(tert-butyldisulfanyl)propanamido)propanoic acid S4

To a stirring solution of Boc-N-MeCys(StBu)-Ala-CO2 $\mathbf{M e} \mathbf{S 3}(77 \mathrm{mg}, 0.189 \mathrm{mmol})$ in THF:MeOH (3:1, 0.8 mL) was added an aqueous solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(8.3 \mathrm{mg}, 2.0 \mathrm{mmol}, 0.2 \mathrm{~mL}$). The reaction mixture was stirred at room temperature for 1 h after which $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added. The resultant mixture was acidified with $1 \mathrm{M} \mathrm{HCl}(0.3 \mathrm{~mL})$ to pH 4 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by flash column chromatography (hexanes:EtOAc, 1:3) to afford the title compound $\mathrm{S4}$ as a white solid ($66 \mathrm{mg}, 89 \%$); $[\alpha]_{\mathrm{D}}{ }^{20}=-136.2\left(c 0.68, \mathrm{CHCl}_{3}\right)$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}_{2}$: 417.1494; observed: 417.1476; IR (film) $\boldsymbol{v}_{\text {max }}$: 3346, 2961, 2926, 1734, $1668,1520,1452,1391,1366,1156,736 ; \mathrm{mp} 130-132{ }^{\circ}{ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 1.36$ ($9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ala} \mathrm{\beta}-\mathrm{H}_{3}\right), 1.50\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \beta-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $3.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \beta-\mathrm{H}_{A} H_{B}\right), 4.41(1 \mathrm{H}, \mathrm{m}$, Ala $\alpha-\mathrm{H}), 4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)(1: 1$ rotamer ratio, * denotes single rotamer signals): $\delta 17.6\left(\mathrm{CH}_{3}, \mathrm{Ala} \beta-\mathrm{C}\right)$, $28.7\left(\mathrm{CH}_{3}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.2\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $32.2\left(\mathrm{CH}_{3}, \mathrm{NCH}_{3}\right), 40.6\left(\mathrm{CH}_{2}, \mathrm{Cys} \beta-\mathrm{C}\right), 40.8\left(\mathrm{CH}_{2}, \mathrm{Cys} \beta-\mathrm{C}^{*}\right), 49.5(\mathrm{CH}, \mathrm{Ala} \mathrm{\alpha-C)}$, $59.6(\mathrm{CH}, \mathrm{Cys} \alpha-$ C), $60.8\left(\mathrm{CH}, \mathrm{Cys} \alpha-\mathrm{C}^{*}\right), 81.8\left(\mathrm{C}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 82.3\left(\mathrm{C}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}\right), 157.2\left(\mathrm{C}, \mathrm{CONCH}_{3}\right), 157.9(\mathrm{C}$, $\left.\mathrm{CONCH}_{3}{ }^{*}\right), 171.8$ (C, CONH), 175.7 (C, COOH).

(S)-2-((R)-2-(((9 H -fluoren-9-yl)methoxy)carbonyl)(methyl)amino)-3-(tert-

 butyldisulfanyl)propanamido)propanoic acid 8

To a stirring solution of Boc- N - $\mathrm{MeCys}\left(\mathrm{S}^{t} \mathrm{Bu}\right)-\mathrm{Ala}-\mathrm{COOH}$ S4 ($58 \mathrm{mg}, 0.147 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3.0 \mathrm{~mL})$ was added trifluoroacetic acid $(0.3 \mathrm{~mL})$ dropwise. The reaction mixture was stirred at room temperature for 30 minutes, after which it was concentrated under reduced pressure. The resultant residue was dissolved in 1,4-dioxane (1.5 mL) and 10% aqueous NaHCO_{3} solution (3 mL) was added, followed by a solution of N-fluorenylmethoxycarbonyl succinimide ($59.4 \mathrm{mg}, 0.176 \mathrm{mmol}$) in 1,4 dioxane (1.5 mL) dropwise. The resulting suspension was stirred at room temperature for 22 h after which $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added. The aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, acidified with 1 M $\mathrm{HCl}(4 \mathrm{~mL})$ to pH 4 and extracted with EtOAc $(4 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by flash column chromatography (hexanes:EtOAc, 1:1) to afford the title compound 8 as a colourless foam (67 mg , 88%); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=-86.8$ (c 0.95, CHCl_{3}); HRMS (EI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}_{2}$: 539.1650; observed: 539.1637; IR (film) $\boldsymbol{v}_{\text {max }}$: 3324, 2952, 2931, 1678, 1527, 1478, 1451, 1400, 1317, 1213, 1170, 758, 741; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) (2:1 rotamer ratio, * denotes minor rotamer signals): $\delta 1.32\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{Ala} \beta-\mathrm{H}_{3}\right), 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}{ }^{*}\right), 2.90(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 2.99\left(1 \mathrm{H}, \mathrm{dd}, J=13.9,9.6 \mathrm{~Hz}, \mathrm{Cys} \beta-H_{\mathrm{A}} H_{B}\right), 3.22\left(1 \mathrm{H}, \mathrm{dd}, J=13.9,5.8 \mathrm{~Hz}, \mathrm{Cys} \beta-\mathrm{H}_{\mathrm{A}} H_{B}\right), 3.32(1 \mathrm{H}$, dd, $\left.J=14.0,4.0 \mathrm{~Hz}, \mathrm{Cys} \beta-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}{ }^{*}\right), 4.28\left(1 \mathrm{H}, \mathrm{t}, J=6.9, \mathrm{OCH}_{2} \mathrm{CH}\right), 4.39\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right.$, Ala $\alpha-H), 4.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Cys} \alpha-\mathrm{H}^{*}\right), 4.99(1 \mathrm{H}, \mathrm{dd}, J=5.8,9.5, \mathrm{Cys} \alpha-\mathrm{H}), 6.73\left(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{NH}^{*}\right), 7.09$ $(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{NH}), 7.32(2 \mathrm{H}, \mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.40(2 \mathrm{H}, \mathrm{t}, J=7.4,0.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.59(2 \mathrm{H}$, dd, $J=7.2,3.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.77(2 \mathrm{H}, \mathrm{dd}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2:1 rotamer ratio, * denotes minor rotamer signals): $\delta 18.2\left(\mathrm{CH}_{3}, \mathrm{Ala} \beta-\mathrm{C}\right), 30.0\left(\mathrm{CH}_{3}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.9\left(\mathrm{CH}_{3}, \mathrm{NCH}_{3}\right), 38.9$ $\left(\mathrm{CH}_{2}, \mathrm{Cys} \beta-\mathrm{C}\right), 47.2\left(\mathrm{CH}, \mathrm{OCH}_{2} \mathrm{CH}\right), 48.2\left(\mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 48.4(\mathrm{CH}, \mathrm{Ala} \alpha-\mathrm{C}), 58.6(\mathrm{CH}, \mathrm{Cys} \alpha-\mathrm{C}), 68.5\left(\mathrm{CH}_{2}\right.$, OCH_{2}), $120.2(\mathrm{CH}, 2 \times \mathrm{Ar}-\mathrm{CH}), 125.1(\mathrm{CH}, \mathrm{Ar}-\mathrm{CH}), 125.2(\mathrm{CH}, \mathrm{Ar}-\mathrm{CH}), 127.3(\mathrm{CH}, 2 \times \mathrm{Ar}-\mathrm{CH}), 128.0(\mathrm{CH}$, $2 \times \mathrm{Ar}-\mathrm{CH}$), 141.5 (C, $2 \times \mathrm{Ar}-\mathrm{C}), 143.7$ ($\mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 143.9 (C, Ar-C), 157.7 ($\mathrm{C}, \mathrm{CONCH}_{3}{ }^{*}$), 169.2 (C, CONH), $175.5(\mathrm{C}, \mathrm{COOH})$.

2.2 Synthesis of (R)-2-(((2S,3R)-2-Acetamido-3-hydroxybutanoyl)oxy)-3phenylpropanoic acid 15

(R)-Benzyl 2-hydroxy-3-phenylpropanoate S5

S5
To a stirring solution of D-phenyllactic acid ($1.00 \mathrm{~g}, 6.0 \mathrm{mmol}$) in anhydrous DMF (4 mL) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.16 \mathrm{~g}, 6.6 \mathrm{mmol})$, and the resulting suspension stirred at room temperature for 40 min . To this was added benzyl bromide ($0.72 \mathrm{~mL}, 6.1 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the reaction mixture stirred for 1 h at $0^{\circ} \mathrm{C}$ and a further 18 h at room temperature. The suspension was diluted with EtOAc (45 mL) and washed successively with saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, water $(40 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (hexanes:EtOAc, 6:1) to afford the title compound $\mathbf{S 5}$ as a colourless gum (1.40 g, 91\%); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=+54.5$ (c 1.30, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (lit. ${ }^{2}$ +55.2 (c 1.88, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)) (lit. ${ }^{3}+54.9$ (c 1.50, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)); HRMS (EI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}$: 279.0997, observed: 279.0997; IR (film) $\boldsymbol{v}_{\text {max }}$: 3450, 3031, 2933, 1733, 1497, 1455, 1262, 1187, 1091, 742, 697; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.01\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.9,6.6 \mathrm{~Hz}, \mathrm{D}-\mathrm{Pla} \beta-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$), 3.15 (1H, dd, J = 13.9, 4.6 Hz, d-Pla $\beta-\mathrm{H}_{\mathrm{A}} H_{B}$), $4.52(1 \mathrm{H}, \mathrm{dd}, J=6.6,4.6 \mathrm{~Hz}, \mathrm{~d}-\mathrm{Pla} \mathrm{\alpha}-\mathrm{H}), 5.21(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}$, OCH_{2}), 7.16-7.41 (10H, m, Ar-H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 40.6\left(\mathrm{CH}_{2}, \mathrm{D}-\mathrm{Pla} \beta-\mathrm{C}\right), 67.5\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2}\right)$, 71.4 (CH, d-Plad-C), 127.0 (CH, Ar-CH), 128.5 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 128.7 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 128.8 (CH, $3 \times \mathrm{Ar}-$ $\mathrm{CH}), 129.7$ (CH, $2 \times \mathrm{Ar}-\mathrm{CH}), 135.1$ (C, Ar-C), 136.2 (C, Ar-CH), 174.1 (C, COO). The spectroscopic data ${ }^{3}$ and optical rotation ${ }^{2,3}$ were in agreement with that reported in the literature.

(2S,3R)-(R)-1-(Benzyloxy)-1-oxo-3-phenylpropan-2-yl 3-(benzyloxy)-2-((tert-

butoxycarbonyl)aminobutanoate S6

To a stirring solution of D-phenyllactic acid benzyl ester $\mathbf{S 5}$ (1.30 g , 5.1 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) was added Boc-L-Thr(Bzl)-COOH ($2.42 \mathrm{~g}, 7.8 \mathrm{mmol}$), DMAP ($0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$) and DCC (1.61 g , $7.8 \mathrm{mmol})$. The resulting suspension was stirred at room temperature for 18 h , filtered and the filtrate concentrated under reduced pressure. The crude residue was purified by flash column chromatography (hexanes:EtOAc, 4:1) to afford the title compound S6 as a colourless oil (2.60 g , 95\%); $[\alpha]_{D}{ }^{20}=+83.0$ (c 1.00, CHCl_{3}); HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{NO}_{7}: 548.2648$, observed: 548.2645; IR (film) $\boldsymbol{v}_{\max }$: 3448, 3033, 2978, 2934, 1751, 1715, 1497, 1455, 1366, 1158, 1070, 910, 732, 695; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.20$ (3H, d, J = 6.2 Hz , Thry-H3), 1.46 ($9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.06\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.2,8.4 \mathrm{~Hz}, \mathrm{D}-\mathrm{Pla} \beta-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.14\left(1 \mathrm{H}, \mathrm{dd}, J=14.2,4.8 \mathrm{~Hz}, \mathrm{D}-\mathrm{Pla} \beta-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.91$ $\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 3.97(1 \mathrm{H}, \mathrm{qd}, J=6.2,2.2 \mathrm{~Hz}, \mathrm{Thr} \beta-\mathrm{H}), 4.24\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right)$, $4.43(1 \mathrm{H}, \mathrm{dd}, J=9.7,2.2 \mathrm{~Hz}, \mathrm{Thr} \alpha-\mathrm{H}), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.24(1 \mathrm{H}, \mathrm{dd}, J=8.5,4.9 \mathrm{~Hz}, \mathrm{~d}-\mathrm{Pla} \alpha-\mathrm{H})$, $5.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathrm{NH}), 7.11-7.35(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 16.5\left(\mathrm{CH}_{3}\right.$, ThryC), $28.5\left(\mathrm{CH}_{3}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 37.4\left(\mathrm{CH}_{2}, \mathrm{D}-\mathrm{Pla} \beta-\mathrm{C}\right), 58.2(\mathrm{CH}, \operatorname{Thr\alpha -C}), 67.3\left(\mathrm{CH}_{2}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 70.9\left(\mathrm{CH}_{2}\right.$, CHOCH_{2}), $74.1(\mathrm{CH}$, d-Pla $\alpha-\mathrm{C}), 75.2(\mathrm{CH}, \operatorname{Thr} \beta-\mathrm{C}), 79.9\left(\mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 127.2(\mathrm{CH}, \mathrm{Ar}-\mathrm{CH}), 127.6(\mathrm{CH}, 2 \times$ $\mathrm{Ar}-\mathrm{CH}$), 127.7 (CH, Ar-CH), 128.3 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 128.4 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 128.5 (CH, Ar-CH), 128.7 (CH, $4 \times \mathrm{Ar}-\mathrm{CH}$), 129.4 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 135.2 (C, Ar-C), 135.7 (C, Ar-C), 138.2 (C, Ar-C), 155.9 (C, CONH), $169.1\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 170.8$ (C, NHCHCO).
(2S,3R)-(R)-1-(Benzyloxy)-1-oxo-3-phenylpropan-2-yl 2-acetamido-3-(benzyloxy)butanoate S7

To a stirring solution of Boc-L-Thr(Bzl)-Pla-CO $\mathbf{C O}_{2} \mathrm{Bn} \mathbf{S 6}(2.60 \mathrm{~g}, 4.75 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added trifluoroacetic acid ($5 \mathrm{~mL}, 65.3 \mathrm{mmol}$) dropwise. The resultant mixture was stirred at room temperature for 1 h . The reaction mixture was concentrated under reduced pressure and the
resultant residue was re-dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. To this was added acetic anhydride ($1.2 \mathrm{~mL}, 12.7 \mathrm{mmol}$) and the reaction mixture stirred at room temperature for 2 h . The reaction mixture was extracted with EtOAc ($4 \times 25 \mathrm{~mL}$), and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (hexanes:EtOAc, 1:1) to afford the title compound $\mathbf{S 7}$ as a colourless oil ($2.19 \mathrm{~g}, 95 \%$); $[\alpha]_{\mathrm{D}}{ }^{20}=+27.9$ (c $1.00, \mathrm{CHCl}_{3}$); HRMS (EI): $m / z\left[\mathrm{M}+\mathrm{Na}^{+}\right.$calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NNaO}_{6}: 512.2049$; observed: 512.2019 ; IR (film) $\boldsymbol{v}_{\text {max }}: 3442$, $3032,2935,1748,1708,1672,1498,1455,1378,1273,1185,1155,1091,1028,908,728,696 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.15\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}\right.$, Thry- H_{3}), $2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.04(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.3$, $\left.8.7 \mathrm{~Hz}, \mathrm{~d}-\mathrm{Pla} \beta-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.12\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.3,4.7 \mathrm{~Hz}, \mathrm{~d}-\mathrm{Pla} \beta-\mathrm{H}_{\mathrm{A}} H_{B}\right), 3.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.4 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right)$, $3.96(1 \mathrm{H}, \mathrm{qd}, J=6.2,2.2 \mathrm{~Hz}, \operatorname{Thr} \beta-\mathrm{H}), 4.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.4 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 4.78(1 \mathrm{H}, \mathrm{dd}, J=9.3,2.2 \mathrm{~Hz}$, Thr $\alpha-H$), $5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.22(1 \mathrm{H}, \mathrm{dd}, J=8.7,4.7 \mathrm{~Hz}, \mathrm{~d}-\mathrm{Pla} \mathrm{\alpha}-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{NH})$, 7.09-7.34 (15H, m, Ar-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.6\left(\mathrm{CH}_{3}\right.$, Thry-C), $23.2\left(\mathrm{CH}_{3}, \mathrm{COCH}_{3}\right), 37.3$ (CH_{2}, d-Plaß-C), $56.5\left(\mathrm{CH}\right.$, Thra-C), $67.3\left(\mathrm{CH}_{2}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right)$, $71.0\left(\mathrm{CH}_{2}, \mathrm{CHOCH}_{2}\right), 74.1(\mathrm{CH}, \mathrm{d}-\mathrm{Pla} \mathrm{\alpha-C}), 75.0$ (CH, Thr β-C), 127.2 (CH, Ar-CH), 127.7 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 127.8 (CH, Ar-CH), 128.4 (CH, $2 \times \mathrm{Ar-CH}$), 128.5 (CH, $2 \times$ Ar-CH), 128.6 (CH, Ar-CH), 128.7 (CH, $4 \times$ Ar-CH), 129.4 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 135.2 (C, Ar-C), 135.6 (C, Ar-C), 138.0 (C, Ar-C), 168.9 (C, $\mathrm{CO}_{2} \mathrm{CH}_{2}$), 170.3 (C, CONH), 170.4 (C, NHCHCO).
(R)-2-(((2S,3R)-2-Acetamido-3-hydroxybutanoyl)oxy)-3-phenylpropanoic acid 15

To a stirring solution of Ac-L-Thr(Bzl)-Pla-CO2 $\mathrm{Bn} \mathrm{S7}(2.20 \mathrm{~g}, 4.5 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added palladium on activated carbon ($10 \%, 200 \mathrm{mg}, 1.7 \mathrm{mmol}$). The resulting mixture was stirred under an atmosphere of H_{2} (balloon) at room temperature for 6 h . The reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate concentrated under reduced pressure to afford the title compound $\mathbf{1 5}$ as a white solid ($1.30 \mathrm{~g}, 94 \%$); $[\alpha]_{\mathrm{D}}{ }^{20}=-10.7$ (c 1.10, MeOH); HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NNaO}_{6}$: 332.1110; observed: 332.1113; IR (film) $\boldsymbol{v}_{\text {max }}$: 3502, 3311, 2904, 1736, 1712, 1564, 1498, 1443, 1413, 1294, 1230, 1147, 1112, 1057, 1019, 705, 654; mp 152-155 ${ }^{\circ} \mathrm{C} ;{ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 1.13\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4\right.$, Thry- H_{3}), $2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.4,8.2 \mathrm{~Hz}, \mathrm{~d}-\mathrm{Pla} \mathrm{\beta}-$ $\left.H_{A} H_{B}\right), 3.22\left(1 \mathrm{H}, \mathrm{dd}, J=14.4,4.4 \mathrm{~Hz}, \mathrm{~d}-\mathrm{Pla} \beta-\mathrm{H}_{\mathrm{A}} H_{B}\right), 4.17(1 \mathrm{H}, \mathrm{qd}, J=6.4,3.6 \mathrm{~Hz}, \mathrm{Thr} \beta-\mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{d}$, 3.6, Thra-H), 5.24 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1,4.4 \mathrm{~Hz}, \mathrm{D}-\mathrm{Pla} \mathrm{\alpha}-\mathrm{H}$), $7.22-7.31$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 20.1\left(\mathrm{CH}_{3}\right.$, Thry-C), $22.4\left(\mathrm{CH}_{3}, \mathrm{COCH}_{3}\right), 38.1\left(\mathrm{CH}_{2}, \mathrm{D}-\mathrm{Pla}-\mathrm{C}\right)$, $59.6(\mathrm{CH}, \mathrm{Thr} \alpha-\mathrm{C}), 68.3(\mathrm{CH}$,

Thr $\beta-C$), 75.0 (CH, d-Pla $\alpha-C$), 128.0 (CH, Ar-CH), 129.4 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 130.5 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 137.5 (C, Ar-C), $171.4(\mathrm{C}, \mathrm{NHCHCO}), 172.7(\mathrm{C}, \mathrm{COOH}), 173.5\left(\mathrm{C}, \mathrm{CH}_{3} \mathrm{CO}\right)$.

2.3 Synthesis of (2S,3R)-2-((tert-butoxycarbonyl)(methyl)amino)-3-

 methoxybutanoic acid 22

Mixture of (2S,3R)-2-((tert-butoxycarbonyl)(methyl)amino)-3-methoxybutanoic acid S8 and 2-((tert-butoxycarbonyl)(methyl)amino)but-2-enoic acid S9

S8

To a stirring solution of Boc-L-Thr $(\mathrm{OH})-\mathrm{COOH}(1.50 \mathrm{~g}, 6.8 \mathrm{mmol})$ and iodomethane ($4.26 \mathrm{~mL}, 68.4$ mmol) in anhydrous THF (40 mL) at $0^{\circ} \mathrm{C}$ was added sodium hydride ($1.37 \mathrm{~g}, 34.2 \mathrm{mmol}, 60 \%$ dispersion in mineral oil). The resulting suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and a further 17 h at room temperature. The reaction mixture was diluted with water (10 mL) and EtOAc (10 mL), concentrated under reduced pressure and acidified with 10% citric acid to pH 4 . The aqueous layer was extracted with EtOAc ($4 \times 25 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by flash column chromatography (hexanes:EtOAc, 3:1) to afford an inseparable mixture of the title compounds $\mathbf{S 8 : S 9}(1.5 \mathrm{~g}, 3: 1)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) (Boc- N-MeThr(OMe)-COOH S8, 2:1 rotamer ratio, * denotes minor rotamer signals): $\delta 1.17\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}\right.$, Thry $\left.-\mathrm{H}_{3}\right), 1.19\left(3 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}\right.$, Thrp- $\left.\mathrm{H}_{3}{ }^{*}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}\right)$, $1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}{ }^{*}\right), 3.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.97(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}$, $\left.\operatorname{Thr} \beta-\mathrm{H}^{*}\right), 4.05(1 \mathrm{H}, \mathrm{qd}, J=6.2,5.8 \mathrm{~Hz}, \operatorname{Thr} \beta-\mathrm{H}), 4.62\left(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \operatorname{Thr} \alpha-\mathrm{Hs}^{*}\right), 4.87(1 \mathrm{H}, \mathrm{d}, J=4.8$ Hz , Thra-H); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Boc- $\mathrm{N}-\mathrm{MeDhb}-\mathrm{COOH}$ S9, $2: 1$ isomer ratio, * denotes minor isomer signals): $\delta 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.81\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{Dhbp}-\mathrm{H}_{3}\right), 2.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.85(1 \mathrm{H}$, $q, J=7.1 \mathrm{~Hz}, \mathrm{Dhb} \beta-H), 6.99\left(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{Dhb} \beta-\mathrm{H}^{*}\right)$.

Benzyl 2-((tert-butoxycarbonyl)(methyl)amino-3-methoxybutanoate S10

To a stirring solution of Boc-N-MeThr(OMe)-COOH:Boc-N-MeDhb-COOH S8:S9 (1.50 g, 2:1) in anhydrous DMF (10 mL) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.44 \mathrm{~g}, 7.5 \mathrm{mmol})$, and the resulting suspension stirred at room temperature for 15 min . To this was added benzyl bromide ($0.9 \mathrm{~mL}, 7.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the reaction mixture stirred for 30 min at $0^{\circ} \mathrm{C}$ and a further 16 h at room temperature. The suspension was diluted with EtOAc (50 mL) and washed successively with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, water ($2 \times 50 \mathrm{~mL}$) and brine (50 mL). The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (hexanes:EtOAc, 6:1) to afford the title compound S10 as a colourless oil (1.10 g , 48% over two steps); $[\alpha]_{\mathrm{D}}{ }^{20}=+18.7$ (c 1.00, CHCl_{3}); HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NNaO}_{5}$: 360.1787, observed: 360.1785; IR (film) $\boldsymbol{v}_{\text {max }}$: 2976, 2933, 1748, 1688, 1480, 1455, 1391, 1366, 1314, 1139, 1079, 872, 697; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2:1 rotamer ratio, * denotes minor rotamer signals): $\delta 1.14\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{Thr} \gamma-\mathrm{H}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{Thr} \boldsymbol{\mathrm { H }} \mathrm{H}_{3}{ }^{*}\right), 1.41(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}\right)$, $1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}{ }^{*}\right), 3.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.24(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}{ }^{*}\right), 3.96\left(1 \mathrm{H}, \mathrm{qd}, J=6.1,6.0 \mathrm{~Hz}, \operatorname{Thr} \beta-\mathrm{H}^{*}\right), 4.03(1 \mathrm{H}, \mathrm{qd}, J=6.4,4.8 \mathrm{~Hz}, \operatorname{Thr} \beta-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{d}, J=$ $\left.5.3 \mathrm{~Hz}, \mathrm{Thra}-\mathrm{H}^{*}\right), 4.97(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{Thra}-\mathrm{H}), 5.13\left(1 \mathrm{H}, \mathrm{d}, J=12.4, \mathrm{CH}_{2}\right), 5.15(1 \mathrm{H}, \mathrm{d}, J=12.4$, $\left.\mathrm{CH}_{2}{ }^{*}\right), 5.24\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4, \mathrm{CH}_{2}\right), 7.32-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 15.3\left(\mathrm{CH}_{3}\right.$, Thry-C), $15.8\left(\mathrm{CH}_{3}\right.$, Thrү-C*), $28.5\left(\mathrm{CH}_{3}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.8\left(\mathrm{CH}_{3}, \mathrm{NCH}_{3}{ }^{*}\right), 33.2\left(\mathrm{CH}_{3}, \mathrm{NCH}_{3}\right), 57.2\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{OCH}_{3}\right), 62.3(\mathrm{CH}$, Thr $\alpha-\mathrm{C}), 63.8\left(\mathrm{CH}\right.$, Thr $\left.\alpha-\mathrm{C}^{*}\right), 66.7\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}^{*}\right), 66.8\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}\right), 76.5\left(\mathrm{CH}\right.$, Thr $\left.\beta-\mathrm{C}^{*}\right)$, $77.1(\mathrm{CH}, \operatorname{Thr} \beta-\mathrm{C}), 80.6\left(\mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 80.4\left(\mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}\right), 128.3(\mathrm{CH}, 2 \times \mathrm{Ar}-\mathrm{CH}), 128.4\left(\mathrm{CH}, \mathrm{Ar}-\mathrm{CH}^{*}\right)$, 128.6 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 128.7 (CH, Ar-CH), 135.8 (C, Ar-C*), 135.9 (C, Ar-C), 155.9 (C, CON*), 157.1 (C, CON), 170.2 (C, COO*), 170.4 (C, COO).

(2S,3R)-2-((tert-butoxycarbonyl)(methyl)amino)-3-methoxybutanoic acid 22

22
 added palladium on activated carbon ($10 \%, 70 \mathrm{mg}, 0.6 \mathrm{mmol}$). The resulting mixture was stirred under an atmosphere of H_{2} (balloon) at room temperature for 6 h . The reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$, the filtrate concentrated under reduced pressure and the crude residue
was purified by flash column chromatography (hexanes:EtOAc, 2:1) to afford the title compound 22 as a white solid (610 mg, 82\%); $[\alpha]_{\mathrm{D}}{ }^{20}=+9.6$ (c 1.25, MeOH); HRMS (EI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NNaO}_{5}$: 270.1317, observed: 270.1317; IR (film) $\boldsymbol{v}_{\text {max }}: 3105,2976,2936,1740,1640,1483$, $1457,1366,1321,1253,1150,1081,872,745,670 ; \mathbf{m p} 72-75^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)(3: 2$ rotamer ratio, * denotes minor rotamer signals): $\delta 1.16\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{Thry}-\mathrm{H}_{3}\right), 1.20(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.2 \mathrm{~Hz}, \operatorname{Thrp}^{-\mathrm{H}_{3}}{ }^{*}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}\right), 1.48\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}{ }^{*}\right), 2.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.00\left(1 \mathrm{H}, \mathrm{qd}, J=6.2,6.0 \mathrm{~Hz}, \operatorname{Thr} \beta-\mathrm{H}^{*}\right), 4.05(1 \mathrm{H}, \mathrm{qd}, J=6.3,4.9 \mathrm{~Hz}, \operatorname{Thr} \beta-\mathrm{H}), 4.55$ $\left(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{Thr} \alpha-\mathrm{H}^{*}\right), 4.77(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{Thr} \mathrm{\alpha}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 15.8\left(\mathrm{CH}_{3}\right.$, Thry-C), $16.3\left(\mathrm{CH}_{3}\right.$, Thry-C*), $28.6\left(\mathrm{CH}_{3}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.5\left(\mathrm{CH}_{3}, \mathrm{NCH}_{3}{ }^{*}\right), 33.6\left(\mathrm{CH}_{3}, \mathrm{NCH}_{3}\right), 57.5\left(\mathrm{CH}_{3}\right.$,
 $81.8\left(\mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}\right), 157.8\left(\mathrm{C}, \mathrm{CON}^{*}\right), 158.7(\mathrm{C}, \mathrm{CON}), 173.1\left(\mathrm{C}, \mathrm{COO}^{*}\right), 173.3(\mathrm{C}, \mathrm{COO})$.

2.4 Synthesis of (2S,3R)-2-(((9 H -fluoren-9-yl)methoxy)carbonyl)amino-3-hydroxy-

4-methylpentanoic acid 23

(S)-1-Benzylpyrrolidine-2-carboxylic acid hydrochloride S11

A suspension of L-proline ($10.1 \mathrm{~g}, 87.7 \mathrm{mmol}$) and potassium hydroxide ($18.7 \mathrm{~g}, 333 \mathrm{mmol}$) in isopropanol (85 mL) was heated at $40^{\circ} \mathrm{C}$ until mostly dissolved. To this was added benzyl chloride ($15.2 \mathrm{~mL}, 132 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 6 h . The resultant suspension was cooled to room temperature and acidified with concentrated HCl to pH 4 . $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added and the mixture stored at $4{ }^{\circ} \mathrm{C}$ overnight. The solid was removed by
filtration and the filtrate was concentrated under reduced pressure to give a solid residue that was suspended in acetone with stirring. The precipitate was isolated by filtration and air dried to afford the title compound S11 as a white solid (12.5 g, 59\%); $[\alpha]_{\mathrm{D}}{ }^{20}=-24.6$ (c 1.00, EtOH) (lit. ${ }^{4}-25.8$ c 1.00, EtOH); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 1.96-2.06\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Prop}-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.08-2.24\left(2 \mathrm{H}, \mathrm{m}\right.$, Proß- $\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$, Prop$\left.H_{A} H_{B}\right), 2.51-2.59\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Pro} \beta-\mathrm{H}_{\mathrm{A}} H_{B}\right), 3.31-3.38\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Pro} \delta-H_{A} H_{B}\right), 3.63-3.69\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Pro} \delta-\mathrm{H}_{A} H_{B}\right)$, $4.20(1 \mathrm{H}, \mathrm{dd}, J=9.4,7.3, \operatorname{Pro\alpha }-\mathrm{H}), 4.43\left(1 \mathrm{H}, \mathrm{d}, J=12.9, \mathrm{NCH}_{2} \mathrm{C}\right), 4.47\left(1 \mathrm{H}, \mathrm{d}, J=12.9, \mathrm{NCH}_{2} \mathrm{C}\right), 7.52$ (5H, br s, Ar-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 22.5\left(\mathrm{CH}_{2}, \operatorname{Pro\gamma }-\mathrm{C}\right), 28.5\left(\mathrm{CH}_{2}, \operatorname{Pro}-\mathrm{C}\right), 54.8\left(\mathrm{CH}_{2}, \operatorname{Pro\delta }-\mathrm{C}\right)$, $58.5\left(\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{C}\right), 67.1$ (CH, Proa-C), 129.2 (CH, $\left.2 \times \mathrm{Ar}-\mathrm{CH}\right), 129.8$ (C, Ar-C), 130.1 (CH, Ar-CH), 130.6 $(\mathrm{CH}, 2 \times \mathrm{Ar}-\mathrm{CH}), 172.3(\mathrm{C}, \mathrm{COOH})$. The spectroscopic data ${ }^{5}$ and optical rotation ${ }^{4}$ were in agreement with that reported in the literature.

(S)-2-[N-(N^{\prime}-Benzylpropyl)amino]benzophenone hydrochloride S12

To a stirring solution of N -methylimidazole ($5.88 \mathrm{~mL}, 73.8 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of N_{2}, was added methanesulfonyl chloride ($1.44 \mathrm{~mL}, 18.5 \mathrm{mmol}$) followed by BP•HCl S11 ($4.475 \mathrm{~g}, 18.5 \mathrm{mmol}$). The reaction mixture was stirred for 5 min , after which 2aminobenzophenone ($3.29 \mathrm{~g}, 16.7 \mathrm{mmol}$) was added at room temperature. The resultant mixture was stirred at $48{ }^{\circ} \mathrm{C}$ for 19 h , and then quenched with saturated ammonium chloride solution (40 $\mathrm{mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was diluted with minimal acetone, acidified with concentrated HCl to pH 2 and stirred at room temperature for 3 h . The resulting solid was filtered, washed with ice cold acetone and air dried to afford the title compound S12 as a pale cream solid ($6.47 \mathrm{~g}, 83 \%$); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}=-114$ (c 1.00, MeOH) (lit. ${ }^{4}$ 134 c 1.00, MeOH); ${ }^{1}$ H NMR (400 MHz, CD ${ }_{3} O D$): $\delta 1.59-1.68\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Pro} \beta-H_{A} H_{B}\right), 1.83-1.94(1 \mathrm{H}, \mathrm{m}$, Prop- $H_{A} H_{B}$), 2.11-2.21 (1H, m, Prop- $\left.H_{A} H_{B}\right), 2.37-2.47\left(1 H, m, \operatorname{Pro}-H_{A} H_{B}\right), 3.32-3.39(2 H, m, \operatorname{Pro\delta }-$ $\left.H_{A} H_{B}\right), 3.56-3.61\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Pro\delta }-\mathrm{H}_{\mathrm{A}} H_{B}\right), 4.32-4.40\left(3 \mathrm{H}, \mathrm{m}, \operatorname{Pro\alpha }-\mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}\right), 7.40-7.80(14 \mathrm{H}, \mathrm{m}$, Ar-H, NH); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 23.8\left(\mathrm{CH}_{2}, \operatorname{Prov}-\mathrm{C}\right), 29.5\left(\mathrm{CH}_{2}, \operatorname{Pro} \beta-\mathrm{C}\right), 55.8\left(\mathrm{CH}_{2}, \operatorname{Pro\delta }-\mathrm{C}\right), 59.3$ $\left(\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{C}\right), 68.0(\mathrm{CH}, \operatorname{Pro\alpha }-\mathrm{C}), 125.6(\mathrm{CH}, \mathrm{Ar}-\mathrm{CH}), 126.9(\mathrm{CH}, \mathrm{Ar}-\mathrm{CH}), 129.5(\mathrm{CH}, 2 \times \mathrm{Ar}-\mathrm{CH}), 130.2$ (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 131.1 (C, Ar-C), 131.2 (CH, $3 \times \mathrm{Ar}-\mathrm{CH}$), 131.5 (CH, Ar-CH), 132.0 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 133.1 (CH, Ar-CH), 134.3 (CH, Ar-CH), 136.0 (C, Ar-C), 138.5 (C, Ar-C), 167.2 (C, CONH), 197.6 (C, $\mathrm{C}_{2} \mathrm{CO}$). The spectroscopic data ${ }^{5}$ and optical rotation ${ }^{4}$ are in agreement with that reported in the literature.

(S)-Glycine-nickel-(S)-2-[N-(N^{\prime}-benzylpropyl)amino]benzophenone S13

To a stirring solution of BPB. $\mathrm{HCl} \mathbf{S 1 2}(6.0 \mathrm{~g}, 14.3 \mathrm{mmol})$ in methanol (60 mL) at $50^{\circ} \mathrm{C}$ under an atmosphere of N_{2}, was added glycine ($5.5 \mathrm{~g}, 73.3 \mathrm{mmol}$), $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(8.3 \mathrm{~g}, 28.6 \mathrm{mmol})$ and KOH $(6.8 \mathrm{~g}, 121.4 \mathrm{mmol})$. The suspension was stirred under reflux for 1 h , cooled to room temperature, neutralised with acetic acid and stirred at room temperature for 15 min . Water (240 mL) was added and the mixture allowed to stand at room temperature for 15 h . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the resulting residue by flash column chromatography ($\mathrm{CH}_{2} \mathrm{Cl} 2$: acetone, 7:1 to 2:1) afforded the title compound $\mathbf{S 1 3}$ as a bright red solid (4.42 g, 62\%); $[\alpha]_{\mathrm{D}}{ }^{20}=+2392(c 0.15, \mathrm{MeOH})\left(\mathrm{lit} .{ }^{4}+2006 \mathrm{c} 0.10, \mathrm{MeOH}\right) ; \mathbf{m p} 206-210{ }^{\circ} \mathrm{C}$ (lit. ${ }^{6}$ 208-212 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.07-2.15\left(2 \mathrm{H}, \mathrm{m}, \operatorname{Prov}-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, \operatorname{Pro\delta }-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.36-2.47(1 \mathrm{H}$, $\left.\mathrm{m}, \operatorname{Pro} \beta-H_{A} H_{B}\right), 2.52-2.60\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Pro}-\mathrm{H}_{A} H_{B}\right), 3.26-3.36\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Prop}-\mathrm{H}_{A} H_{B}\right), 3.45-3.48(1 \mathrm{H}, \mathrm{m}, \operatorname{Pro\alpha }-$ H), 3.65-3.80 ($4 \mathrm{H}, \mathrm{m}, \operatorname{Pro\delta }-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, \mathrm{NCH}_{2} \mathrm{C}, \mathrm{Gly} \alpha-\mathrm{H}_{2}$), $4.48\left(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{C}\right), 6.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1$ Hz, Ar-H), 6.78-6.80 (1H, m, Ar-H), 6.95-6.99 (1H, m, Ar-H), $7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{t}$, $J=7.1 \mathrm{~Hz}$, Ar-H), $7.28-7.32(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.40-7.44$ (2H, m, Ar-H), 7.47-7.52 (3H, m, Ar-H), 8.07 (2 H , $\mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.29(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.8\left(\mathrm{CH}_{2}, \operatorname{Prop}-\mathrm{C}\right)$, 30.8 (CH_{2}, Proß-C), 57.6 ($\left.\mathrm{CH}_{2}, \operatorname{Pro\delta }-\mathrm{C}\right), 61.5\left(\mathrm{CH}_{2}, \mathrm{Gly} \alpha-\mathrm{C}\right), 63.3\left(\mathrm{CH}_{2}, \mathrm{NCH} 2 \mathrm{C}\right), 70.0(\mathrm{CH}, \operatorname{Pro\alpha -C}), 120.9$ (CH, Ar-CH), 124.4 (CH, Ar-CH), 125.3 (C, Ar-C), 125.8 (CH, Ar-CH), 126.4 (CH, Ar-CH), 129.0 (CH, $2 \times$ Ar-CH), 129.2 (CH, Ar-CH), 129.5 (CH, Ar-CH), 129.7 (CH, Ar-CH), 129.8 (CH, Ar-CH), 131.8 (CH, $2 \times$ ArCH), 132.3 (CH, Ar-CH), 133.3 (CH, Ar-CH), 133.4 (C, Ar-C), 134.8 (C, Ar-C), 142.7 (C, Ar-C), 171.8 (C, $\mathrm{C}_{2} \mathrm{CN}$), 177.4 (C, COO), 181.5 (C, CON). The spectroscopic data 5 and optical rotation ${ }^{4}$ are in agreement with that reported in the literature.

Ni(II)-(S)-BPB/(2S,3R)-2-amino-3-hydroxy-4-methyl-pentanoic acid Schiff base complex S14

To a stirring solution of glycine-Ni(II)-BPB S13 ($1.00 \mathrm{~g}, 2.0 \mathrm{mmol}$) in anyhydrous THF (12 mL) under an atmosphere of Ar was added sodium hydride ($80 \mathrm{mg}, 2.0 \mathrm{mmol}, 60 \%$ dispersion in mineral oil). The
stirred mixture was cooled with liquid nitrogen and degassed via the freeze/thaw technique. To the degassed mixture was added isobutyraldehyde ($0.36 \mathrm{~mL}, 4.0 \mathrm{mmol}$) at $16^{\circ} \mathrm{C}$ under an atmosphere of Ar. The reaction mixture was stirred at this temperature for 10 min , after which it was quenched by pouring into 10% aqueous acetic acid $(75 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (3×150 mL) and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the resulting residue by flash column chromatography (EtOAc: acetone, 4:1) afforded the title compound S14 as a red solid ($875 \mathrm{mg}, 77 \%$); $[\alpha]_{\mathrm{D}}{ }^{20}=+2836\left(c 0.16, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. $^{7}+3100$ c 0.04, CHCl_{3}); mp $154-155{ }^{\circ} \mathrm{C}$ (lit. ${ }^{7} 157{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.83\left(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \beta\right.$-Hyleu $\left.\delta-\mathrm{H}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \beta\right.$-Hyleu $\left.\delta-\mathrm{H}_{3}\right), 2.15(2 \mathrm{H}, \mathrm{m}$, Prop- $\left.H_{A} H_{B}, \operatorname{Pro} \delta-H_{A} H_{B}\right), 2.54\left(2 H, m, \operatorname{Pro} \beta-H_{A} H_{B}, \beta-\right.$ Hyleup-H), $2.84\left(1 H, \operatorname{Pro} \beta-H_{A} H_{B}\right), 3.53$ (3H, Proy$\left.H_{A} H_{B}, \operatorname{Pro\delta }-H_{A} H_{B}, \operatorname{Pro\alpha }-\mathrm{H}\right), 3.59\left(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{C}\right), 3.94(1 \mathrm{H}, \mathrm{m}, \beta$-Hyleuß-H), $4.13(1 \mathrm{H}, \mathrm{d}, J=$ $5.1 \mathrm{~Hz}, \beta$-Hyleu $\alpha-H$), $4.43\left(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{C}\right), 6.69(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 7.16-7.22 (2H, m, Ar-H), 7.32-7.39 (3H, m, Ar-H), 7.48-7.54 (3H, m, Ar-H), 8.11 (2H, d, J=6.6 Hz, ArH), $8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.8\left(\mathrm{CH}_{3}, \beta\right.$-Hyleu $\left.\delta-\mathrm{C}\right), 21.9\left(\mathrm{CH}_{3}, \beta-\right.$ Hyleu⿱-C), 23.7 (CH_{2}, Prop-C), 30.1 (CH, β-Hyleup-C), $30.8\left(\mathrm{CH}_{2}, \operatorname{Pro} \beta-\mathrm{C}\right)$, $57.2\left(\mathrm{CH}_{2}, \operatorname{Pro\delta }-\mathrm{C}\right), 63.4\left(\mathrm{CH}_{2}\right.$, $\mathrm{NCH}_{2} \mathrm{C}$), 70.6 (CH, Pro $\alpha-\mathrm{C}$), 73.2 (CH, β-Hyleu $\alpha-\mathrm{C}$), 77.7 (CH, β-Hyleuß-C), 120.8 (CH, Ar-CH), 123.4 (CH, Ar-CH), 126.6 (C, Ar-C), 127.2 (CH, Ar-CH), 128.9 (CH, $2 \times \mathrm{Ar}-\mathrm{CH}$), 129.0 (CH, $3 \times \mathrm{Ar}-\mathrm{CH}$), 129.2 (CH, Ar-CH), 129.9 (CH, Ar-CH), 131.6 (CH , $2 \times \mathrm{Ar}-\mathrm{CH}$), 132.5 (CH, Ar-CH), 133.4 (C, Ar-C), 133.9 (CH, Ar-CH), 134.3 ($\mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 142.6 ($\mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 172.2 ($\mathrm{C}, \mathrm{C}_{2} \mathrm{CN}$), 178.7 (C, COO), 180.4 (C, CON). The spectroscopic data ${ }^{7}$ and optical rotation ${ }^{7}$ are in agreement with that reported in the literature.
(2S,3R)-2-amino-3-hydroxy-4-methylpentanoic acid S15

To a stirring solution of (2S,3R)-hydroxyleucine-Ni(II)-BPB S14 (80 mg, 0.14 mmol$)$ in methanol (2 mL) was added 2 M aqueous $\mathrm{HCl}(1.4 \mathrm{~mL})$ and the mixture stirred under reflux for 1 h . The reaction mixture was cooled to room temperature and basified with 25% aqueous NH_{3} to pH 9 . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, concentrated under reduced pressure and the crude residue purified by ion exchange chromatography (DOWEX-50Wx4-50, water then 5% aqueous NH_{3}) and lyophilised to afford the title compound $\mathbf{S 1 5}$ as a white fluffy solid ($19 \mathrm{mg}, 93 \%$); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}=+23.0$ (c $1.00,5 \mathrm{~N} \mathrm{HCl})\left(\right.$ lit. $\left.^{7}+19.0 \mathrm{c} 1.00,5 \mathrm{~N} \mathrm{HCl}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 0.83(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \beta$-Hyleú $\left.H_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \beta\right.$-Hyleu $\left.\delta-\mathrm{H}_{3}\right), 1.63(1 \mathrm{H}, \mathrm{m}, \beta$-Hyleup-H), $3.64(1 \mathrm{H}, \mathrm{dd}, J=7.9,3.8 \mathrm{~Hz}, \beta-$ Hyleuß-H), 3.70 (1H, d, J = $3.8 \mathrm{~Hz}, \beta$-Hyleu $\alpha-H) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 17.4\left(\mathrm{CH}_{3}, \beta\right.$-Hyleu -C$)$,
18.4 (CH_{3}, β-Hyleus-C), 30.2 (CH, β-Hyleup-C), 56.9 (CH, β-Hyleu $\alpha-\mathrm{C}$), 75.1 (CH, β-Hyleu $\beta-\mathrm{C}$), 173.4 (C, $\mathrm{COO})$. The spectroscopic data ${ }^{8}$ and optical rotation ${ }^{7}$ are in agreement with that reported in the literature.

(2S,3R)-2-(((9 H -fluoren-9-yl)methoxy)carbonyl)amino-3-hydroxy-4-methylpentanoic acid 23

To a stirring solution of ($2 S, 3 R$)-hydroxyleucine $\mathbf{S 1 5}(\mathbf{4 0 ~ m g}, 0.27 \mathrm{mmol})$ in a mixture of 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(4 \mathrm{~mL})$ and 1,4 -dioxane (3 mL) was added a solution of N -fluorenylmethoxycarbonyl succinimide ($108 \mathrm{mg}, 0.32 \mathrm{mmol}$) in 1,4-dioxane (3 mL) dropwise. The resultant suspension was stirred at room temperature for 24 h . The reaction mixture was acidified with 1 M HCl to pH 3 and the aqueous phase was extracted with EtOAc ($4 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with saturated NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by flash column chromatography (hexane:EtOAc, 3:1 to 1:1) afforded the title compound $\mathbf{2 3}$ as a colourless foam ($70 \mathrm{mg}, 70 \%$); $[\alpha]_{\mathrm{D}}{ }^{20}=-2.8$ (c 1.00, CHCl_{3}); HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ Na^{+}calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{5}$: 392.1474; observed: 392.1468; IR (film) $\boldsymbol{v}_{\text {max }}$: 3350, 3066, 2962, $2926,1713,1522,1450,1415,1328,1249,1218,1117,1055,758,740 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $0.93\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \beta\right.$-Hyleu $\left.\delta-\mathrm{H}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \beta\right.$-Hyleu $\left.\delta-\mathrm{H}_{3}\right), 1.75(1 \mathrm{H}, \mathrm{m}, \beta$-Hyleup-H), $3.82\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \beta\right.$-Hyleuß-H), $\left.4.21\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1, \mathrm{CHCH}_{2}\right), 4.40(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH})_{2}\right), 4.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 8.7, β-Hyleua-H), 5.79 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3, \mathrm{NH}$), $7.29(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.38(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.58(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.0\left(\mathrm{CH}_{3}, \beta-\right.$ Hyleu8-C), 19.3 (CH_{3}, β-Hyleu $\delta-\mathrm{C}$), 30.9 (CH, β-Hyleup-C), 47.2 (CH, CHCH_{2}), 56.4 (CH, β-Hyleu $\alpha-\mathrm{C}$), $67.5\left(\mathrm{CH}_{2}, \mathrm{CHCH}_{2}\right), 77.4(\mathrm{CH}, \beta$-Hyleu $\beta-\mathrm{C}), 120.1$ (CH, $\left.2 \times \mathrm{Ar}-\mathrm{CH}\right), 125.2(\mathrm{CH}, \mathrm{Ar}-\mathrm{CH}), 125.3(\mathrm{CH}, \mathrm{Ar}-\mathrm{CH})$, 127.2 (CH, $2 \times$ Ar-CH), 127.8 (CH, $2 \times$ Ar-CH), 141.4 (C, $2 \times$ Ar-C), 143.7 (C, Ar-C), 144.0 (C, Ar-C), 157.2 (C, CON), 175.9 (C, COOH).

3. General procedure for peptide synthesis

The peptides were assembled manually by Fmoc-solid phase peptide synthesis (Fmoc-SPPS) using a fritted glass reaction vessel.

Method 1. Attachment of C-terminal residue: To 2-chlorotrityl chloride resin ($100 \mathrm{mg}, 0.1 \mathrm{mmol}$) pre-swollen in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 5 \mathrm{~min})$, was added a solution of Fmoc-Hyleu-COOH 23 (74 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and ${ }^{\prime} \mathrm{Pr}_{2} \mathrm{EtN}(85 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The reaction mixture was gently agitated at room temperature for 1 h . The resin was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5$ mL). A mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}:{ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}(8: 1.5: 0.5, \mathrm{v} / \mathrm{v}, 2 \mathrm{~mL})$ was added and the reaction agitated for 10 min , filtered and repeated once for a further 10 min . The resin was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 5 \mathrm{~mL})$ and $\mathrm{DMF}(2 \times 5 \mathrm{~mL})$.

Method 2. General procedure for removal of \boldsymbol{N}^{α}-Fmoc-protecting group: The peptidyl resin was treated with a solution of 20% piperidine in DMF (2 mL) and the mixture agitated at room temperature for 5 min , filtered and repeated once for a further 15 min . The resin was filtered and washed with DMF ($3 \times 5 \mathrm{~mL}$).

Method 3. Coupling method 1: To the peptidyl resin was added a mixture of Fmoc- N-MeAla-COOH 6 $(98 \mathrm{mg}, 0.30 \mathrm{mmol})$, HBTU ($111 \mathrm{mg}, 0.29 \mathrm{mmol}$) and ${ }^{i} \mathrm{Pr}_{2} \operatorname{EtN}(104 \mu \mathrm{~L}, 0.60 \mathrm{mmol})$ in DMF (2 mL). The reaction mixture was agitated at room temperature for 1 h , after which the resin was filtered and washed with DMF ($3 \times 5 \mathrm{~mL}$).

Method 4. Coupling method 2: To the peptidyl resin was added a mixture of Fmoc- N-MeCys $\left(S^{t} B u\right)$ -Ala-COOH 8 ($78 \mathrm{mg}, 0.15 \mathrm{mmol}$), HATU ($56 \mathrm{mg}, 0.15 \mathrm{mmol}$), HOAt ($20 \mathrm{mg}, 0.15 \mathrm{mmol}$) and ${ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}$ $(52 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ in DMF (2 mL). The reaction mixture was agitated at room temperature for 2 h , after which the resin was filtered and washed with DMF ($3 \times 5 \mathrm{~mL}$).

Method 5. Coupling method 3: To the peptidyl resin was added a mixture of Ac-Thr-D-Pla-COOH 15 $(46 \mathrm{mg}, 0.15 \mathrm{mmol})$, HATU (56 mg, 0.15 mmol$)$, HOAt ($20 \mathrm{mg}, 0.15 \mathrm{mmol}$) and ${ }^{i} \operatorname{Pr}_{2} \mathrm{EtN}(52 \mu \mathrm{~L}, 0.30$ mmol) in DMF (2 mL). The reaction mixture was agitated at room temperature for 24 h , filtered and repeated once for a further 24 h . The resin was filtered and washed with DMF ($2 \times 5 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 5 \mathrm{~mL}$).

Method 6. Coupling method 4: To the peptidyl resin was added a mixture of Boc- $\mathrm{N}-\mathrm{Me} \operatorname{Thr}(\mathrm{OMe})-$ COOH 22 ($37 \mathrm{mg}, 0.15 \mathrm{mmol}$), DIC ($23 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) and DMAP ($1.8 \mathrm{mg}, 0.015 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ DMF (19:1, 2 mL). The reaction mixture was agitated at room temperature for 2 h , after which the resin was filtered and washed with DMF ($3 \times 5 \mathrm{~mL}$).

Method 7. Deprotection of $\mathbf{N}-\mathrm{MeCys}\left(\mathrm{S}^{t} \mathrm{Bu}\right)$ and bis-alkylation-elimination to \mathbf{N}-MeDha: To the peptidyl resin was added a mixture of dithiothreitol ($80 \mathrm{mg}, 0.52 \mathrm{mmol}$) and ${ }^{i} \operatorname{Pr}_{2} \operatorname{EtN}(174 \mu \mathrm{~L}, 1.00$ $\mathrm{mmol})$ in DMF (2 mL). The reaction mixture was agitated at room temperature for 12 h , after which the resin was filtered and washed with DMF ($3 \times 5 \mathrm{~mL}$). The peptidyl resin was suspended in DMF (2 mL) and solid $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ and 1,4-dibromobutane ($44 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$) was added. The reaction mixture was agitated at room temperature for 5 h , after which the resin was filtered, washed with DMF $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ alternately $(3 \mathrm{x}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and air-dried.

Method 8. Cleavage of peptide from linker with concomitant removal of protecting groups: To the peptidyl resin was added a solution of trifluoroacetic acid: $\mathrm{H}_{2} \mathrm{O}(9: 1,2 \mathrm{~mL})$ and the reaction agitated for 10 min , filtered and repeated once for a further 10 min . The combined filtrates were partially concentrated under a gentle stream of N_{2}, diluted with $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ TFA (1:1, 10 mL) and lyophilised.

4. Synthesis of peptides 5 and YM-280193 (1)

Linear YM-280193 5.

The C-terminal residue, Fmoc-Hyleu-COOH 23, was attached to 2 -chlorotrityl chloride resin according to Method 1. The N^{α}-Fmoc-protecting group was removed using Method 2 and Fmoc- N -MeAla-COOH 6 was coupled using Method 3. The substitution level of an air-dried sample was 0.68 $\mathrm{mmol} / \mathrm{g}$ as determined according to the method of Meienhofer et al. ${ }^{9}$ The N^{α}-Fmoc-protecting group
 Method 4. The N^{α}-Fmoc-protecting group was removed using Method 2 followed by coupling of Ac-Thr-d-Pla-COOH 15 via Method 5, and subsequently the coupling of Boc- N-MeThr(OMe)-COOH 22 via Method 6. Deprotection of $N-\mathrm{MeCys}\left(\mathrm{S}^{t} \mathrm{Bu}\right)$ and bis-alkylation-elimination to $N-\mathrm{MeDha}$ was performed according to Method 7. The resin-bound peptide was cleaved from the linker using Method 8, and the crude residue was purified by semi-preparative RP-HPLC to afford the title compound 5 as white fluffy flakes ($9 \mathrm{mg}, 16 \%$); $\boldsymbol{R}_{\mathrm{t}} 20.7 \mathrm{~min} ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}-\mathrm{MS}) 807.4$ ($[\mathrm{M}+\mathrm{H}]^{+}$requires 807.41).

Figure 1. LC-MS profile of linear YM-280193 5 (5% B to 95% B over $30 \mathrm{~min}, 0.3 \mathrm{~mL} \mathrm{~min}^{-1+}$).

Synthesis of YM-280193 (1)

To a stirring solution of ${ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}(2 \mu \mathrm{~L}, 11.5 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added a mixture peptide 5 (1.5 $\mathrm{mg}, 2.2 \mu \mathrm{~mol})$, HATU ($2.5 \mathrm{mg}, 6.6 \mu \mathrm{~mol}$) and HOAt ($0.9 \mathrm{mg}, 6.6 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ DMF ($9: 1,2 \mathrm{~mL}$) dropwise at a rate of $0.5 \mathrm{~mL} / \mathrm{h}$. After complete addition of reagents, the reaction mixture was concentrated under reduced pressure, diluted with $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ TFA (5:1, 2.4 mL) and purified by analytical RP-HPLC to afford the title compound (1) as white fluffy flakes ($0.4 \mathrm{mg}, 27 \%$); $[\alpha]_{\mathrm{D}}{ }^{20}=-$ 52.0 (c 0.08, MeOH) (lit. ${ }^{10}-61.3$ c $0.30, \mathrm{MeOH}$); $\boldsymbol{R}_{\mathrm{t}} 23.2 \mathrm{~min}$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{NaO}_{12}$: 811.3854, observed: 811.3857; $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{O}_{12}$: 789.4034, observed: 789.4052; IR (film) $\boldsymbol{v}_{\text {max }}$: 3329, 2970, 2937, 1749, 1654, 1638, 1529, 1449, 1413, 1381, 1312, 1280, 1176, 1137, 1069, 965, 799, 700.

Figure 2. LC-MS profile of YM-280193 (1) (5% B to 95% B over $30 \mathrm{~min}, 0.3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$).

Figure 3. HRMS profile of YM-280193 (1).

Table 1. ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) assignment in $\mathrm{CD}_{3} \mathrm{CN}$ for the major conformer of naturally occurring and synthetic YM-280193 (1):

Residue	${ }^{13} \mathrm{C}$ (natural)	${ }^{13} \mathrm{C}$ (synthetic)	${ }^{1} \mathrm{H}$ (natural)	${ }^{1} \mathrm{H}$ (synthetic)
β-Hyleu				
α	51.3	51.2	4.93 (dd, 10.1, 7.0)	4.94 (dd, 9.8, 7.3)
β	77.3	77.3	3.45 (m)	3.45 (m)
Y	29.5	29.5	1.94 (m)	1.94 (m)
δ	21.0	20.9	1.01 (d, 7.0)	1.01 (d, 6.9)
δ	16.1	16.1	0.93 (d, 6.7)	0.93 (d, 6.7)
CO	171	170.9	(d)	
NH	-	-	7.00 (d, 10.1)	7.00 (d, 9.9)
$\mathrm{N}, \mathrm{O}-\mathrm{Me}_{2} \mathrm{Thr}$				
α	69.0	68.9	3.45 (d, 8.9)	3.45 (m)
β	75.0	74.9	3.90 (dq, 8.9, 5.8)	3.91 (dq, 8.7, 6.0)
Y	18.9	18.9	1.31 (d, 5.8)	1.31 (d, 5.7)
CO	168.5	168.4	-	-
NMe	40.7	40.6	3.21 (s)	3.21 (s)
OMe	57.2	57.1	3.26 (s)	3.26 (s)
Acetyl				
1	171.4	171.4	-	-
2	23.0	23.0	2.05 (s)	2.05 (s)
Thr				
α	56.2	56.2	4.78 (dd, 9.5, 2.4)	4.78 (dd, 9.5, 2.5)
β	71.0	70.9	5.79 (m)	5.80 (m)
γ	17.1	17.0	1.15 (d, 6.4)	1.15 (d, 6.5)
CO	170.2	170.2	-	-
NH	-	-	6.80 (d, 9.5)	6.80 (d, 9.5)
D-Pla				
1	169.1	169.0	-	-
2	72.1	72.1	5.55 (dd, 10.2, 5.4)	5.55 (dd, 9.5, 5.4)
3	39.3	39.3	3.12 (m)	3.13 (m)
4	136.6	136.6	-	-
5,9	131.2	131.1	7.24 (m)	7.25 (m)
6,8	129.5	129.5	7.28 (m)	7.28 (m)
7	128.1	128.1	7.28 (m)	7.28 (m)
N-MeDha				
α	142.9	142.8	-	-
β	123.4	123.1	5.65 (br s)	5.67 (br s)
β	-	-	3.77 (br s)	3.79 (br s)
CO	162.8	162.9	-	-
NMe	37.3	37.3	2.90 (s)	2.90 (s)
Ala				
α	45.0	45.0	5.12 (dq, 7.8, 6.7)	5.11 (m)
β	17.5	17.4	1.21 (d, 6.7)	1.21 (d, 6.8)
CO	173.3	17.3.3	d,	-
NH	-	-	7.10 (d, 7.8)	7.11 (d, 7.9)
N -MeAla				
α	62.1	62.0	3.66 (q, 7.0)	3.67 (q, 6.7)
β	13.1	13.1	1.40 (d, 7.0)	1.40 (d, 6.9)
CO	170.3	170.3	-	-
NMe	38.8	38.7	3.20 (s)	3.20 (s)

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra

${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectra of YM-280193 (1).

へホNণ

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectra of $(R)-2-(($ tert-butoxycarbonyl)amino)-3-(tert-butyldisulfanyl)propanoic acid S1.

${ }^{1} \mathrm{H} \quad\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ spectra of mixture of (R)-2-((tert-butoxycarbonyl)amino)-3-(tertbutyldisulfanyl)propanoic acid S1 and 2-((tert-butoxycarbonyl)(methyl)amino)-3-(tertbutyldisulfanyl)propanoic acid S2.

${ }^{1} \mathrm{H} \quad\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ spectra of (S)-methyl 2-((R)-2-((tert-butoxycarbonyl)(methyl)amino)-3-(tert-butyldisulfanyl)propanamido)propanoate S3.

${ }^{1} \mathrm{H} \quad\left(400 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C} \quad\left(100 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{OD}\right)$ spectra of $(S)-2-((R)-2-(($ tert -butoxycarbonyl)(methyl)amino)-3-(tert-butyldisulfanyl)propanamido)propanoic acid S4.

${ }^{1} \mathrm{H} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $(S)-2-((R)-2-(((19 H$-fluoren-9-yl)methoxy)carbonyl)(methyl)amino)-3-(tert-butyldisulfanyl)propanamido)propanoic 8.

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of (R)-benzyl 2-hydroxy-3-phenylpropanoate
S5.

[^0]${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $(2 S, 3 R)$-(R)-1-(benzyloxy)-1-oxo-3-phenylpropan-2-yl 3-(benzyloxy)-2-((tert-butoxycarbonyl)aminobutanoate S6.

のNNनのm N
$\stackrel{+}{\stackrel{\sim}{\infty}} \stackrel{n}{\infty} \stackrel{n}{\infty}$

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $(2 S, 3 R)$-(R)-1-(benzyloxy)-1-oxo-3-phenylpropan-2-yl 2-acetamido-3-(benzyloxy)butanoate S7.

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of (R)-2-($((2 S, 3 R)$-2-acetamido-3-hydroxybutanoyl)oxy)-3-phenylpropanoic acid 15.

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of mixture of (2S,3R)-2-((tert-butoxycarbonyl)(methyl)amino)-3methoxybutanoic acid S8 and 2-((tert-butoxycarbonyl)(methyl)amino)but-2-enoic acid S9.

${ }^{1} \mathrm{H} \quad\left(400 \quad \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C} \quad\left(100 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ spectra of benzyl 2-((tert-butoxycarbonyl)(methyl)amino-3-methoxybutanoate S10.

$\begin{array}{llllllllllllllllllllllllllllllllllllll}9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & p p m\end{array}$

$$
\begin{aligned}
& \begin{array}{ll}
\infty & m \\
1 & 0 \\
\\
& 1
\end{array}
\end{aligned}
$$

${ }^{1} \mathrm{H} \quad\left(400 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C} \quad\left(100 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{OD}\right)$ spectra of (2S,3R)-2-((tert-butoxycarbonyl)(methyl)amino)-3-methoxybutanoic acid 22.

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ spectra of (S)-1-Benzylpyrrolidine-2-carboxylic acid hydrochloride S11.

${ }^{1} \mathrm{H} \quad\left(400 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{OD}\right) \quad$ and $\quad{ }^{13} \mathrm{C} \quad\left(100 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{OD}\right)$ spectra of $(S)-2-\left[N-\left(N^{\prime}-\right.\right.$ benzylpropyl)amino]benzophenone hydrochloride S12.

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of (S)-Glycine-nickel-(S)-2-[N - $\left(N^{\prime}-\right.$ benzylpropyl)amino]benzophenone S13.

8.5	8.0
8.5	7.5

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathrm{Ni}(\mathrm{II})-(S)-\mathrm{BPB} /(2 S, 3 R)$-2-amino-3-hydroxy-4-methyl-pentanoic acid Schiff base complex S14.

88			
		NヘNNNへ	
	$1 \mathrm{~V} / \mathrm{V}$	$1 \geqslant 1$	V

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ spectra of (2S,3R)-2-amino-3-hydroxy-4-methylpentanoic acid S15.

${ }^{1} \mathrm{H} \quad\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ spectra of (2S,3R)-2-(()(9H-fluoren-9-yl)methoxy)carbonyl)amino-3-hydroxy-4-methylpentanoic acid 23.

6. References

(1) Debethune, L.; Marchan, V.; Fabregas, G.; Pedroso, E.; Grandas, A. Tetrahedron 2002, 58, 6965.
(2) Degerbeck, F.; Fransson, B.; Grehn, L.; Ragnarsson, U. J. Chem. Soc. Perk. Trans. 1 1993, 11.
(3) Xu, Y. J.; Chen, L. G.; Duan, X. M.; Meng, Y.; Jiang, L. Q.; Li, M. L.; Zhao, G. L.; Li, Y. Tetrahedron Lett. 2005, 46, 4377.
(4) Belokon', Y. N.; Tararov, V. I.; Maleev, V. I.; Savel'eva, T. F.; Ryzhov, M. G. Tetrahedron-Asymmetry 1998, 9, 4249.
(5) Hung, K. Y.; Harris, P. W. R.; Brimble, M. A. J. Org. Chem. 2010, 75, 8728.
(6) Belokon, Y. N.; Bulychev, A. G.; Vitt, S. V.; Struchkov, Y. T.; Batsanov, A. S.; Timofeeva, T. V.; Tsyryapkin, V. A.; Ryzhov, M. G.; Lysova, L. A.; Bakhmutov, V. I.; Belikov, V. M. J. Am. Chem. Soc. 1985, 107, 4252.
(7) Belokon, Y. N.; Kochetkov, K. A.; Ikonnikov, N. S.; Strelkova, T. V.; Harutyunyan, S. R.; Saghiyan, A. S. Tetrahedron-Asymmetry 2001, 12, 481.
(8) Makino, K.; Okamoto, N.; Hara, O.; Hamada, Y. Tetrahedron-Asymmetry 2001, 12, 1757.
(9) Meienhofer, J.; Waki, M.; Heimer, E. P.; Lambros, T. J.; Makofske, R. C.; Chang, C. D. Int. J. Pept. Prot. Res. 1979, 13, 35.
(10) Taniguchi, M.; Suzumura, K.; Nagai, K.; Kawasaki, T.; Takasaki, J.; Sekiguchi, M.; Moritani, Y.; Saito, T.; Hayashi, K.; Fujita, S.; Tsukamoto, S.; Suzuki, K. Bioorg. Med. Chem. 2004, 12, 3125.

[^0]: | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 7 |

