
Supporting Information for

Sonoporation at Small and Large Length Scales.

Effect of Cavitation Bubble Collapse on

Membranes

Haohao Fu,†,⊥ Jeffrey Comer,‡,¶,⊥ Wensheng Cai,† and Christophe Chipot∗,‡,§,‖

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and

Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin

300071, China, Laboratoire International Associé Centre National de la Recherche
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Methods

Design of the simulations

Because bubble collapse is manifestly a nonequilibrium process, the simulation protocols

must be carefully considered and may differ from those ordinarily employed in equilibrium

simulations, in particular those of bimolecular objects. Here, we describe the setup of our

molecular assemblies, the measurement of the impulse delivered to the membrane, and how

the temperature and pressure are handled.

Computational feasibility dictates that we can only simulate a small patch of a model

membrane enclosed in a nanoscale box with water above and below it. As is often done in

molecular dynamics simulations, we construct the system to be substantially bigger than the

object of interest — in this case, the bubble, and assume that the effects of interest are local

and robust enough that this nanoscale molecular assembly mimics a much larger, meso–

, possibly macroscale system utilized in experiments. The size of the nanoscale molecular

assembly poses some conceptual difficulties when simulating phenomena like bubble collapse,

which involve supersonic flows and transmission of sound waves, due to the high speed

of sound in water — typically on the order of ∼1500 nm/ns. The size of the object at

hand also limits the types of membrane disturbances that can be observed, in particular

bending with wavelengths larger than the system size are not possible. Furthermore, real cell

membranes may have different mechanical properties due to their composition and rigidity,

partially enforced by a cytoskeleton. We, however, show here that the quantity that has

been highlighted as the most important for enhancing the permeation of drugs, namely the

impulse delivered to the membrane, is rather insensitive to the system size when appropriate

simulation protocols are followed.

A small patch of lipid bilayer embedded in a larger membrane resists significant displace-

ments owing to the energy necessary to bend neighboring portions of the membrane. To

mimic this resistance in a small membrane patch, we restrain the position of its center of
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mass, which can be seen as a virtual spring between the latter and a fixed point. This geomet-

ric restraint also conveniently allows the force acting on the lipid bilayer to be measured from

the distance over which the virtual spring is stretched. Restraining the center of mass of the

membrane, rather than each lipid individually, further permits deformation of the membrane

to be observed, which would be suppressed otherwise. In typical equilibrium simulations,

one employs thermostatting algorithms that virtually couple the system to a thermal bath to

maintain the temperature and generate the relevant canonical ensemble distribution. These

algorithms can, however, lead to spurious kinetics1 and may be unsuitable for a rapid, emi-

nently non-equilibrium process such as bubble collapse. For this reason, previous molecular

dynamics simulations of bubble collapse omitted the use of a thermostat.2 In such simula-

tions, linear momentum is in principle conserved (albeit actual conservation is approximate

due to numerical errors), except where external forces, such as geometric restraints acting

on the membrane, are applied. Yet, coupled with the periodic boundary conditions typically

employed to avoid interfaces, the lack of energy and momentum dissipation results in dif-

ficulties in measuring the force exerted on the membrane. Half of the disturbance created

by the collapsing bubble travels toward the nearby interfacial environment, where its force

is registered by causing displacement of the virtual spring restraining the lipid bilayer. The

other half of the disturbance travels away from the membrane, but, due to conservation of

linear momentum and periodic boundary conditions, it travels undissipated and eventually

strikes the opposite side of the membrane, imparting an impulse exactly opposite to the ini-

tial impulse. An example of this phenomenon is shown in Figure S1. To remove the spurious

effect of the second impulse, we constructed a system featuring two lipid bilayers as shown

in Figure S2. A Langevin thermostat3 with a friction constant of 5 ps−1 was applied to the

atoms of the upper membrane only, dissipating any disturbance that reaches it.

We began our simulations with a spherical void, the surface of which was positioned about

1.5–2.0 nm from the aqueous interface. An example of the system is shown in Figure S2. To

avoid finite size effects, the bubble occupied 8% or less of the total system volume in all cases,
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and the distance between periodic images of the bubble surface were greater than two-thirds

of the diameter of the bubble. The system was equilibrated for at least 5 ns with the void

maintained by means of an external force, while the pressure was maintained at 1 atm. To

initiate the collapse, the geometric restraints were removed and, under atmospheric pressure,

the bubble spontaneously collapsed.

Computational details

Each system consisted of water and two bilayers of 1-palmitoyl-2-oleoyl-sn-phosphatidylcholine

(POPC) lipids, in either an atomistic or a coarse-grained representation. The dimensions and

compositions of the systems simulated in this work are detailed in Table S1. All molecular

dynamics simulations were performed using NAMD 2.10.3

For the atomistic models, interactions between atoms were calculated in compliance

with the CHARMM36 force field,4 modified for united-atom aliphatic chains.5 The stan-

dard CHARMM version of the TIP3P water model was used. Electrostatic interactions

were calculated via the particle mesh Ewald algorithm6 with a mesh spacing of < 0.12 nm.

As in Comer et al.,7 van der Waals forces were smoothly truncated at 0.8–0.9 nm, as im-

plemented with the vdwForceSwitching keyword of NAMD. The equations of motion were

integrated with time steps of 2 and 4 fs for short– and long-range interactions.8 The Settle

algorithm9 rigidified the water molecules, and the Rattle algorithm10 constrained covalent

bonds featuring hydrogen atoms to their equilibrium length.

The coarse-grained water and POPC molecules were constructed as specified in the MAR-

TINI force field,11 in which groups of 3–5 non-hydrogen atoms are treated as single particles,

referred to as “beads”. The van der Waals and Coulomb forces were smoothly truncated

from 0.9 to 1.2 nm, using the standard MARTINI switching function and standard dielectric

constant of 15.0. The equations of motion were integrated with a 30 fs time step. The

MARTINI reference article11 describes the use of standard bead masses (72 Da), as well

as the alternative of choosing bead masses consistent with the masses of the corresponding
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atoms. In this contribution, we show that the second option yields a much better agreement

between the atomistic and coarse-grained models.

To form the bubbles, an external force was applied to water molecules with distances

from the bubble center, r, less than the desired bubble radius, D/2, thereby expelling water

from the interior of the bubble. In other words, the force is given by Fbub = −kbub(r−D/2)r̂,

for r < D/2 and Fbub = 0, otherwise. The different bubbles examined in this work were

first equilibrated for > 5 ns with the temperature and the pressure maintained at 300 K

and 1 atm, respectively. During both equilibration and collapse simulations, a constant

pressure of 101.325 kPa was maintained by means of the Langevin piston method,12 applied

independently along the z axis, normal to the membrane interface, and the xy–plane. The z–

axis is defined to be normal to the planes of the two membranes in their initial configuration.

The force acting on the bilayer during collapse was determined by harmonically restraining

the z component of the center of mass of all phosphorus atoms of the bilayer — with a force

constant kmem = 20000 kcal mol−1 nm−2. Including all atoms of the bilayer in the calculation

of the restraint force led to an unacceptable loss of computational efficiency. The phosphorus

atoms were, therefore, chosen out of convenience and to reduce the computational effort.

The two choices were nearly equivalent, as the center of mass of the phosphorus atoms never

deviated from the center of mass of all membrane atoms by more than 0.03 nm. The force

exerted on the lipid bilayer was measured to be the negative of the restoring force of the

harmonic restraint, i.e., Fmem = −Fharm = kmem(z − z0)ẑ, where z and z0 are the current

and the initial z coordinates, respectively, of the center of mass of the lower bilayer.

It should be pointed out that the parameters used in our simulations are empirical and

widely validated by equilibrium simulations. Given, however, the violence of the process at

hand, the reliability of the time step value ought to be further verified. To explore whether

the time step affects the dynamics of bubble collapse, two additional simulations, namely an

atomistic simulation with a time step of 0.5 fs and a coarse-grained one with a time step of

20 fs, have been performed. The results (see Figure S3) suggest that the all-atom simulations
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with a 2 fs time step and the coarse-grained simulations with a 30 fs time step are suitable

to characterize the collapse of cavitation nanobubbles.

Because the focus of the present work is to understand the effect of bubble collapse on

a lipid membrane, we have chosen the CHARMM36 force field, which has been rigorously

developed to reproduce a number of important mechanical properties of lipid membranes.

The CHARMM36 lipid model has been parameterized with the rigid TIP3P model of water,

standard to the CHARMM force field; we have, therefore, chosen this model for consistency.

It is important to note that the rigid TIP3P water model has not been thoroughly tested at

the extremes of temperature and pressure commonly measured at the surface of cavitation

bubbles shortly before their complete collapse. These extremes are, nevertheless, quite local

in space and time, and most of the water in the system, including that near the membrane,

remains near physiological conditions.

Atomistic and MARTINI coarse-grained models — agreement and limitations.

In general, the MARTINI force field has the ability to reflect the basic features of the

dynamics of atomistic force fields. For example, in a recent paper, Santo and Berkowitz13

showed that the relationship between the shock wave velocity and the particle velocity is

somewhat different for MARTINI water than for SPC water, or in experiment. Specifically,

at high particle velocities (¿ 2.5 km/s), the shock velocity of MARTINI water is about 13%

higher than for SPC water or in experiment. Such extreme speeds are only seen for the

largest bubbles simulated in this work.

In the present work, the most crucial property, namely the impulse delivered to the

membrane, is an additive effect of the movement of water molecules. The atomistic and the

MARTINI coarse-grained models can also yield the same impulses on the membrane, pro-

vided that the latter models use realistic masses. See Figure S5. However, given the reduced

representation of the MARTINI model, coarse-graining approaches may trade computational

efficiency for accuracy in some particular cases. For example, because the coarse-grained
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MARTINI water particles embrace four individual molecules, it is not possible to observe

the permeation of single water molecules through the lipid bilayer.
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Figure S1: Impulse on a membrane near a
collapsing bubble in simulations with periodic
boundary conditions. The collapse of the bub-
ble creates disturbances that travel toward and
away from the nearby membrane. Without a
barrier to dissipate it, the latter eventually
crosses most of the system and reaches the
membrane, which is an artifact of the periodic
boundary conditions that evidently could not
occur in experiment. As shown by the black
line, the impulse of the half of the disturbance
initially moving away from the membrane ex-
actly cancels out that of the half of the dis-
turbance moving toward the membrane. A
second membrane to which a thermostatting
algorithm is applied can act as a barrier, dis-
sipating the disturbance initially moving away
from the membrane, as shown by the red line.

Table S1: Composition of simulated systems. “A” refers to atomistic models,
using the CHARMM36 force field modified for united-atom aliphatic chains, and
“CG,” to coarse-grained models, using the MARTINI force field.

Bubble
Diameter

(nm)
Model

Number of
Atoms/Beads

Number of Water
Molecules/Beads

Box Size (nm3)

6 A 734,168 204,664 16.3×16.3×33.4
8 A 734,168 204,664 16.3×16.3×33.4
8 A 1,045,976 308,600 16.3×16.3×45.9
8 A 3,003,731 841,009 32.6×32.6×33.4

20 A 4,197,212 1,238,836 33.3×33.3×47.0
15 CG 394,157 309,709 34.4×34.5×49.9
20 CG 394,157 309,709 34.6×34.8×52.5
30 CG 1,486,585 1,296,577 53.0×53.2×82.0
40 CG 3,165,977 2,828,185 71.3×70.1×97.5

S7



0 ps 20 ps 40 ps 60 ps

(A) (B)

0 80 160
time [ps]

0

0.5

1

de
ns

ity
 [g

/c
m

3 ]

diameter
— 4 nm
— 6 nm
— 8 nm

Figure S2: Molecular dynamics simulations of bubble collapse. (A) Cross-section of the
simulation system at different times after the release of the restraints maintaining the bubble.
A restraint is applied to the center of mass of the lower membrane, permitting the force
exerted on it to be measured. The purpose of the upper membrane is to dissipate the upward
traveling disturbance created by the collapsing bubble, thereby preventing it from reaching
the lower membrane as conservation of energy and momentum would dictate. To accomplish
this, a Langevin thermostat is applied to the upper membrane only. The initial diameter of
the bubble in this example is 6 nm. Water molecules are represented as transparent blue
spheres. Lipids are shown as gray tubes with phosphate and choline moieties highlighted as
yellow spheres. (B) The mass density of the spherical region initially forming the bubble
as a function of time after the geometrical restraints are released. The results are shown
for bubbles of three different initial diameters. The limiting value approaches the density of
bulk model water.

Figure S3: Effect of the time step on the impulses delivered to the membrane during collapse
of a cavitation bubble. (A) Atomistic model, and (B) coarse-grained model. The diameter of
the bubbles is 6 and 20 nm for the atomistic and the coarse-grained simulations, respectively.
As shown, the impulses on the membrane obtained with the different models are nearly
identical for the corresponding systems, which suggests that the atomistic simulations with
a 2 fs time step and the coarse-grained simulations with a 30 fs time step are suitable to
characterize the collapse of cavitation nanobubbles.
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Figure S4: (A) Impulse on the membrane for the collapse of a 8 nm-diameter bubble for
systems of different sizes. (B) Root-mean-square roughness of the membrane surface nearest
the bubble as a function of time. (Inset) Magnification of the roughness for the 6– and 8 nm-
diameter bubbles.

Figure S5: (A) Comparison of the impulse on the membrane during collapse of a 20 nm-
diameter bubble in coarse-grained simulations using MARTINI standard bead masses (72 Da)
or correct bead masses and atomistic simulations. (B) Coarse-grained mapping strategy for
a POPC molecule.
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Figure S6: Deformation of a POPC membrane due to the collapse of a 20 nm-diameter
bubble. The membrane was pulled by strong upward forces in the initial stage of the collapse,
leading to the appearance of a positive peak around 2.4 ns, and then recovered in tens of
nanoseconds.
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Calculation of impulse per unit area

Stringent assumption: All the effect of the collapse is concentrated in a certain surface area,

A, on the membrane (Figure S7 (left)).

Figure S7: Three-dimensional (left) and two-dimensional (right) schematic representation
of the collapse of a bubble at the surface of the membrane. d is the minimum distance
between the surface of the bubble and the membrane in the simulations. Here, d = 2 nm.
We assume that the impulse in negligible if the distance between the surface of the bubble
and the membrane is larger than a threshold, h. Here h is set to 8 nm. It ought to be noted,
however, that changes of h of several nanometers (e.g. 6 ≤ h ≤ 10 nm ) do not affect the
order of magnitude of the result.

The stressed area is

A = πr2

Because

r =
√
R2 − [R− (h− d)]2

=
√

2R(h− d)− (h− d)2,
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then

IA = Itotal/A =
cD2.15

π(h− d)[2R− (h− d)]

=
c0D

2.15

D − (h− d)
.

When h = 8 nm, h− d = 6 nm, and c0 = 0.0033.

For bubbles used in experiments, the diameters often reach tens of micrometers, thus D �

h− d. Then,

IA = c0D
1.15.

For 10 µm-diameter bubbles,

IA = 0.0033× 100001.15 = 131 Pa · s.

For 100 µm-diameter bubbles,

IA = 0.0033× 1000001.15 = 1856 Pa · s.
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