## SUPPLEMENTARY INFORMATION

## The most reactive amide as a transition state mimic for

## cis-trans interconversion.

Igor V. Komarov*, Stanislav Yanik, Aleksandr Yu. Ishchenko, John E. Davies, Jonathan M. Goodman, Anthony J. Kirby*<br>* Corresponding authors. E-mail: ajk1@cam.ac.uk (AJK); ik214@yahoo.com (IVK).

## 1. PDF files

1. Supplementary information: Contents below
2. Crystallographic information:

Checkcifs for compounds 2 and $3 . \mathrm{H}^{+} . \mathrm{BF}_{4}{ }^{-}$.
2. Crystallographic information files

Crystallographic data for compounds 2 and $3 . \mathrm{H}^{+} . \mathrm{BF}_{4}{ }^{-}$.
(CCDC Deposition nos. 1031183 and 1031182)

## Supplementary information: Contents.

S1. Calculations
S-3
Structures calculated using 6-31++G**/M06-2X
Figure S1. Molecule 4 showing the barrel-distortion of the ground state
| Table S1.1 Geometries compared for calculated and crystal structures of twisted amides 1-4.
Tables S1.2 Energies and geometries for molecules 1, 2, 3, 4, 10 and 11
S2. Kinetic measurements
S-7
Figure S2. Temperature regime for growing crystals of 3 by pyrolysis of 8 on silica gel.
Figure S3. Representative spectroscopic data set for kinetic measurements, hydrolysis of $2\left(0.086 \mathrm{M}\right.$ solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$ )
Figure S4. Concentrations of $2(\mathrm{~mol} / \mathrm{l})$ and 7 vs time in the course of the hydrolysis ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}$, 5 equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$ )
Figure 55 Representative spectroscopic data set for kinetic measurements, hydrolysis of $3\left(0.086 \mathrm{M}\right.$ solution in $\mathrm{CD}_{3} \mathrm{CN}$, 5 equivalents of $\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$ )
Figure S6. Concentration of the twisted amide $3(\mathrm{~mol} / \mathrm{l})$ vs time during the hydrolysis ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$ )
Figure S7. Representative spectroscopic data set for kinetic measurements, hydrolysis of $1 \cdot \mathrm{HBF}_{4}\left(0.086 \mathrm{M}\right.$ solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\left.\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}\right)$
Figure S8. Concentrations of $1 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l})$ and 12 vs time during the hydrolysis ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$ )
Figure S9. Representative spectroscopic data set for kinetic measurements, hydrolysis of $2 \cdot \mathrm{HBF}_{4}\left(\mathbf{0 . 0 8 6 M}\right.$ solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\left.\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}\right)$
Figure S10. Concentrations of $2 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l}), 7 \cdot \mathrm{HBF}_{4}$ and $13 v s$ time during the hydrolysis ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}$, 5 equivalents of $\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$ )

Figure S11. Representative spectroscopic data set for kinetic measurements, hydrolysis of $3 \cdot \mathrm{HBF}_{4}\left(\mathbf{0 . 0 8 6 M}\right.$ solution in $\mathrm{CD}_{3} \mathrm{CN}$, 5 equivalents of $\left.\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}\right)$
Figure S12. Concentrations of $3 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l})$ and $9 \cdot \mathrm{HBF}_{4} v s$ time during the hydrolysis ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}$, 5 equivalents of $\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$ )
Figure S13. Results of the HPLC analysis of the reaction mixture (compound 3 and 0.6 equiv. of water in $\mathbf{T H F}-d_{8}$ after 75 mm of the hydrolysis) quenched by $\mathrm{LiAlH}_{4}$ ( 1 h at $23{ }^{\circ} \mathrm{C}$ ), aqueous work-up.
Figure S14. Results of the HPLC analysis of the reaction mixture (compound 3 and 0.6 equiv. of water in THF-d 8 after 75 min of the hydrolysis) quenched by $\mathrm{LiAlH}_{4}$ (reflux 5 h ), aqueous work-up.
Figure S15. Assignments of the HPLC peaks (UV detection at 215 nm ) of the products obtained by $\mathrm{LiAlH}_{4}$ quenching of the reaction mixture (compound 3 and 0.6 equiv. of water in THF-d $\mathbf{d}_{8}$ after 75 min of the hydrolysis); a) 1 h at $23^{\circ} \mathrm{C}$; b) reflux, $\mathbf{5 h}$.

Table S2. Concentrations of $2(\mathrm{~mol} / \mathrm{l})$ and its hydrolysis product $v s$ time.*
Table S3. Concentration of the twisted amide 3 (mol/l) vs time during the hydrolysis.* Table S4 Concentrations of $1 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l})$ and its hydrolysis product $\boldsymbol{v s}$ time during the hydrolysis.*
Table S5. Concentrations of $2 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l})$ and its hydrolysis products $\boldsymbol{v s}$ time during the hydrolysis.*
Table S6. Concentrations of $3 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l})$ and $9 \cdot \mathrm{HBF}_{4} v s$ time during the hydrolysis.*

S3.1 General procedures
S3.2 3-Benzoyl-7-methyl-3-azabicyclo[3.3.1]nonane-7-carboxylic acid ethyl ester
3-Methyl-1-azatricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-2-one (2)
S3.4 7-benzyl 3-tert-butyl 7-methyl-3-aza-bicyclo[3.3.1]nonane-3,7-dicarboxylate
S3.5
3-(tert-butoxycarbonyl)-7-methyl-3-aza-bicyclo[3.3.1]nonane-7-carboxylic
acid (20)
S3.6 tert-butyl 7-(hydroxymethyl)-1,5,7-trimethyl-3-aza-bicyclo[3.3.1]nonane-3carboxylate (21)
S3.7 tert-butyl 7-formyl-1,5,7-trimethyl-3-aza-bicyclo[3.3.1]nonane-3-carboxylate
(23)

S3.8 3-(tert-butoxycarbonyl)-1,5,7-trimethyl-3-aza-bicyclo[3.3.1]nonane-7-
carboxylic acid (24)
S3 .9 Synthesis of compounds 1-3 by pyrolysis of the corresponding NBocprotected amino acids
S3.10 Preparation of $1 \cdot \mathbf{H B F}_{4}, 2 \cdot \mathbf{H B F}_{4}$ and $3 \cdot \mathbf{H B F}_{4}$
S3.11 Kinetic measurements for hydrolysis of $\mathbf{1 - 3}, \mathbf{1}^{\cdot} \mathbf{H B F}_{4}, \mathbf{2} \cdot \mathrm{HBF}_{4}$ and $\mathbf{3} \cdot \mathrm{HBF}_{4}$
S3.12 Quenching of the reaction mixture of compound 3 with water by $\mathrm{LiAlH}_{4}$ in order to identify the intermediate dimers and oligomers

## S. 4 References

S. 5 Spectroscopic Data. NMR and Mass spectra S. 44

## S1. Calculations

Calculations used Jaguar, version 7.9, from Schrodinger, LLC.
Structures calculated using 6-31++G**/M06-2X


1


2


3


4


10


11

Figure S1: Molecule 4 showing the barrel-distortion of the ground state
Table S1.1 Geometries compared for calculated and crystal structures of twisted amides 1-4.

|  | Selected structural parameters ${ }^{\text {c }}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | 1 xtl | $1^{\text {a }}$ | 2 xtl | $2^{\text {a }}$ | $3^{\text {b }}$ | $3^{\text {a }}$ | $4^{\text {c }}$ | $4^{\text {a }}$ |
| Twist angle $\tau$, deg | 90.5 | 89.5 | 90.0 | 90.8 | 90.0 | 90.55 | 90.0 | 105.05 |
| $\Sigma$ bond angles at N | 325.7 | 327.4 | 325.6 | 327.4 | 327.1 | 326.9 | 327.1 | 324.2 |
| $\Sigma$ bond angles, $\mathrm{C}=0$ | 359.9 | 360.0 | 359.9 | 360.0 | 360 | 360 | 360 | 359.8 |
| C-N bond length, A | 1.475 | 1.449 | 1.448 | 1.449 | 1.457 | 1.450 | 1.433 | 1.443 |
| $C=O$ bond length, Á | 1.196 | 1.204 | 1.201 | 1.204 | 1.210 | 1.203 | 1.183 | 1.203 |

Notes. ${ }^{a}$ Calculations using 6-31++G**/M06-2X. This work ${ }^{b}$ Geometries optimized at the B3LYP/6-31G* level of theory. Morgan, K. M., et al. J.Phys. Org. Chem. 18, 310314 (2005). ${ }^{\text {c }}$ Calculated at the RHF/6-31G* level. Greenberg, A.; Venanzi, C. A. J. Am. Chem. Soc. 116, 6951 (1993).

Tables S1.2. Energies and geometries for molecules 1, 2, 3, 4, 10 and 11


| C24 | 1.3003263839 | -1.9703429926 | -2.1692286595 |
| :--- | :--- | :--- | :--- |
| H25 | 2.3521958101 | -1.9474051282 | -1.8713294411 |
| H26 | 1.0432995329 | -2.9899953755 | -2.4767338296 |
| H27 | 1.1865265564 | -1.3054468172 | -3.0302569969 |

1.2.3
$E=-480.582103$ minimum

| C1 | 0.3866888158 | -1.5404805659 | -0.9988699692 |
| :--- | ---: | ---: | ---: |
| C2 | -1.0952455143 | -1.5584494077 | -0.26972409729 |
| C3 | -1.9626147917 | -1.0532414991 | 0.9488541921 |
| C4 | -1.7837447152 | -1.9725224203 | 1.3752221029 |
| C5 | -0.3072326200 | -1.9587333344 | 0.2219599974 |
| C6 | 0.5690907021 | -2.4689584125 | -1.8208183618 |
| H7 | 1.0467743895 | -1.8280624190 | -1.7095846101 |
| H8 | -1.3763394871 | -2.5821250320 | -2.3172867740 |
| H9 | -1.2382870400 | -0.9278981356 | -0.5723287867 |
| H10 | -3.0158263123 | -1.0224110374 | 1.7762352178 |
| H11 | -2.4169985083 | -1.6271238825 | 0.7028366022 |
| H12 | -2.0983639172 | -2.9947460096 | 2.2634594337 |
| H13 | -0.1613820812 | -2.5844799068 | -0.0583162337 |
| H14 | 0.2852688637 | -3.4912059024 | 0.5243030375 |
| H15 | 1.6228487878 | -2.4928820558 | 1.6910163425 |
| C16 | 0.1063565411 | -0.5133866369 | 1.9957005085 |
| H17 | 1.1578083673 | -0.4628446837 | 2.5105349030 |
| H18 | -0.4942357410 | -0.1013039846 | 0.1004243530 |
| C19 | -1.4922819571 | 0.3612250226 | 0.9292863282 |
| H20 | -2.0830283822 | 0.7688391735 | -0.7483110818 |
| H21 | -1.6003880987 | 1.0460284837 | -0.5666028869 |
| C22 | 0.7409189629 | -0.1244196343 | -1.0609756013 |
| O23 | 1.6171076953 | 0.5359907990 | 0.5229272859 |

1.2.4
$\mathrm{E}=-403.1749016$ minimum

| C1 | 0.4039605042 | -0.6204113828 |
| :--- | ---: | ---: |
| C2 | -0.9121140680 | 0.0317300332 |
| C3 | -0.8193643090 | 1.5612919209 |
| N4 | 0.5695006435 | 1.9654465356 |
| C5 | 1.3907565003 | 1.4459713224 |
| O6 | 1.8312823467 | 2.1453174613 |
| C7 | 1.5378882862 | -0.0710423639 |
| C8 | 0.6756522461 | -0.1870184261 |
| C9 | 0.9655757545 | 1.3370031535 |
| H10 | 0.3460438346 | -1.7093412024 |
| H11 | -1.7605058123 | -0.4080610098 |
| H12 | -1.0667625346 | -0.1585367310 |
| H13 | -1.4325762632 | 1.8464282755 |
| H14 | -1.1598234281 | 2.1498621718 |
| H15 | 2.5238292674 | -0.3334299555 |
| H16 | 1.4965943422 | -0.4421246213 |
| H17 | 1.5269629225 | -0.7347685635 |
| H18 | -0.1947423674 | -0.4131267848 |
| H19 | 2.0300755408 | 1.5404512343 |
| H20 | 0.4290347446 | 1.8631350329 |

> -0.2436346388
> 0.2139937450
> -0.0645902255
> -0.3864632056
> 0.6808828307
> 1.5547944889
> 0.6389569090
> -1.6895418805
> -1.6626995734
> -0.1623355061
> -0.3199835506
> 1.2821508750
> -0.9252014501
> 0.7901907315
> 0.2342520880
> 1.6670803777
> -2.1067443416 -2.3153105495 -1.8116741234
> -2.4574802068

| 1.2.10 |  |  |  |
| :--- | :---: | ---: | ---: |
| $\mathbf{E}=\mathbf{- 3 6 5 . 1 1 1 1 6 7 2}$ | minimum |  |  |
| C1 | -0.4359825147 | 0.4633233394 | -0.9302116277 |
| C2 | -1.8881705611 | 0.4310822795 | 1.3949277520 |
| C3 | -1.1560646331 | -0.0192480007 | 0.2505852208 |
| C4 | -0.2778774893 | -0.4863825345 | -0.6196826703 |
| H5 | -0.1628430352 | 1.4800217560 | -1.7525835954 |
| H6 | 0.2314230552 | 0.1889167544 | -1.8839057425 |
| H7 | -2.1058631099 | -0.5268209600 | -2.1229832663 |
| H8 | -2.1139412767 | 1.2130678779 | 1.8546094998 |
| H9 | -0.7248383650 | 0.8874626630 | 2.1864330078 |
| H10 | -1.1942461767 | -0.7828191396 | -0.0504951000 |
| H11 | -0.5721223376 | -1.4994451333 | 0.5956691971 |
| H12 | 0.7594166640 | -0.5337386835 | -0.2834684764 |
| C13 | -2.9166538105 | 0.5800953746 | -0.5478283399 |
| O14 | -4.0588380280 | 0.9333973622 | 2.0789744802 |
| C15 | -3.4695756573 | 0.4513954509 | 1.6613166292 |
| H16 | -4.4542219431 | 0.6518045523 | 2.7001252401 |
| H17 | -3.5069691306 | -0.4494996544 | 2.7072908287 |
| H18 | -3.1633247503 | 1.2973998940 | 0.9901553468 |
| N19 | -2.5287920643 | 0.2594185919 |  |

1.2.11
$E=-287.7102324 \quad$ minimum

| C1 | -0.4242145718 | 0.5893960024 | -0.0673704559 |
| :--- | ---: | ---: | ---: |
| N2 | 0.3161632876 | -0.5589686281 | 0.0264634046 |
| O3 | -1.6428382887 | 0.5660875706 | -0.1767931429 |
| C6 | 0.3228466862 | 1.9116661444 | -0.0387775699 |
| H7 | -0.4234468352 | 2.6994282547 | -0.1240426154 |
| H8 | 0.8774884489 | 2.0413257791 | 0.8946988692 |
| H9 | 1.0273398017 | 1.9933665755 | -0.8712374594 |
| H10 | -0.3580285715 | -1.8440536902 | 0.0323699552 |
| H11 | 0.0348553353 | -2.4780843643 | -0.7704070026 |
| H12 | -0.1972311096 | -2.3543889067 | 0.9897215340 |
| C12 | -1.4234978871 | -1.6816871132 | -0.1175152705 |
| H13 | 1.7514055760 | -0.6150599692 | 0.2105709875 |
| H14 | 2.2000388224 | -1.2613033424 | -0.5527088986 |
| H15 | 2.2014824038 | 0.3717918011 | 0.1277461043 |

## S2. Kinetic measurements

Figure S2. Temperature regime for growing crystals of $\mathbf{3}$ by pyrolysis of $\mathbf{8}$ on silica gel.


Figure S3. Representative spectroscopic data set for kinetic measurements, hydrolysis of 2 (0.086M solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$ )


Figure S4. Concentrations of $2(\mathrm{~mol} / \mathrm{l})$ and 7 vs time in the course of the hydrolysis ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$ )


Figure S5 Representative spectroscopic data set for kinetic measurements, hydrolysis of 3 ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$ )


Figure S6. Concentration of the twisted amide $3(\mathrm{~mol} / \mathrm{l}) v s$ time during the hydrolysis ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$ )


Figure S7. Representative spectroscopic data set for kinetic measurements, hydrolysis of $1 \cdot \mathrm{HBF}_{4}\left(\mathbf{0 . 0 8 6} \mathrm{M}\right.$ solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\left.\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}\right)$


Figure S8. Concentrations of $1 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l})$ and 12 vs time during the hydrolysis $(0.086 \mathrm{M}$ solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$ )


Figure S9. Representative spectroscopic data set for kinetic measurements, hydrolysis of $2 \cdot \mathrm{HBF}_{4}\left(\mathbf{0 . 0 8 6} \mathrm{M}\right.$ solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\left.\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}\right)$


Figure S10. Concentrations of $2 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l}), 7 \cdot \mathrm{HBF}_{4}$ and 13 vs time during the hydrolysis ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$ )


Figure S11. Representative spectroscopic data set for kinetic measurements, hydrolysis of $3 \cdot \mathrm{HBF}_{4}\left(\mathbf{0 . 0 8 6} \mathrm{M}\right.$ solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\left.\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}\right)$


Figure S12. Concentrations of $3 \cdot \mathbf{H B F}_{4}(\mathrm{~mol} / \mathrm{l})$ and $9 \cdot \mathrm{HBF}_{4}$ vs time during the hydrolysis ( 0.086 M solution in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$ )


Figure S13. Results of the HPLC analysis of the reaction mixture (compound 3 and 0.6 equiv. of water in THF-d $\mathbf{d}_{8}$ after 75 min of the hydrolysis) quenched by $\mathrm{LiAlH}_{4}(\mathbf{1} \mathbf{h}$ at $\mathbf{2 3}$ ${ }^{\circ} \mathrm{C}$ ), aqueous work-up.

a) HPLC trace, UV detection at 215 nm (Zorbax Eclipse ${ }^{\circledR} X D B-C_{8}$ column ( $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$ ) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(60: 40 \mathrm{v} / \mathrm{v})$ as the isocratic eluent); b) HPLC trace (conditions as in a)), MS detection (CI, positive scan); c) Mass-spectrum of the fraction with RT 0.849 min; d) Massspectrum of the fraction with RT 0.934 min; e) Mass-spectrum of the fraction with RT 0.790 min; f) Mass-spectrum of the fraction with RT 0.612 min.

Figure S14. Results of the HPLC analysis of the reaction mixture (compound 3 and 0.6 equiv. of water in THF-d $\mathbf{d}_{8}$ after 75 min of the hydrolysis) quenched by $\mathrm{LiAlH}_{4}$ (reflux $\mathbf{5 h}$ ), aqueous work-up.

a) HPLC trace, UV detection at 215 nm (Zorbax Eclipse ${ }^{\circledR} X D B-C_{8}$ column ( $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$ ) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(65: 35 \mathrm{v} / \mathrm{v})$ as the isocratic eluent); b) HPLC trace (conditions as in a)), MS detection (CI, positive scan); c) Mass-spectrum of the fraction with RT 0.844 min; d) Massspectrum of the fraction with RT 0.750 min; e) Mass-spectrum of the fraction with RT 0.637 min.

Figure S15. Assignments of the HPLC peaks (UV detection at 215 nm ) of the products obtained by $\mathrm{LiAlH}_{4}$ quenching of the reaction mixture (compound 3 and 0.6 equiv. of water in THF-d $\mathbf{d}_{8}$ after 75 min of the hydrolysis); a) 1 h at $23^{\circ} \mathrm{C}$; b) reflux, $\mathbf{5 h}$.


Table S2. Concentrations of $2(\mathrm{~mol} / \mathrm{l})$ and its hydrolysis product $v s$ time.*

| Nr | Time, s | Concentration of $2, \mathrm{mmol} / \mathrm{L}$ | Concentration of 12, mmol/L |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 86 | 0 |
| 2 | 50 | 82 | 4 |
| 3 | 131 | 80 | 6 |
| 4 | 211 | 78 | 8 |
| 5 | 345 | 77 | 9 |
| 6 | 471 | 79 | 7 |
| 7 | 597 | 77 | 9 |
| 8 | 720 | 75 | 11 |
| 9 | 840 | 74 | 12 |
| 10 | 969 | 73 | 13 |
| 11 | 1182 | 74 | 12 |
| 12 | 1564 | 73 | 13 |
| 13 | 2170 | 70 | 16 |
| 14 | 2487 | 66 | 20 |
| 15 | 2840 | 65 | 21 |
| 16 | 3398 | 64 | 22 |
| 17 | 3951 | 62 | 24 |
| 18 | 4605 | 62 | 24 |
| 19 | 5345 | 60 | 26 |
| 20 | 6869 | 53 | 33 |
| 21 | 8365 | 55 | 31 |
| 22 | 10204 | 58 | 28 |
| 23 | 12140 | 57 | 29 |
| 24 | 14024 | 60 | 26 |
| 25 | 15977 | 60 | 26 |
| 26 | 17639 | 61 | 25 |
| 27 | 19546 | 63 | 23 |
| 28 | 21170 | 64 | 22 |
| 29 | 28752 | 61 | 25 |

* Conditions: 0.086 M solution of 2 in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$

Table S3. Concentration of the twisted amide $3(\mathrm{~mol} / \mathrm{l}) v s$ time during the hydrolysis.*

| $\mathbf{N r}$ | Time, <br> $\mathbf{s}$ | [3], $\mathbf{~ m m o l / l}$ |
| :---: | :---: | :---: |
| 1 | 0 | 86 |
| 2 | 101 | 86 |
| 3 | 191 | 82 |
| 4 | 341 | 71 |
| 5 | 508 | 65 |
| 6 | 713 | 51 |
| 7 | 1100 | 36 |
| 8 | 1360 | 37 |
| 9 | 1594 | 28 |
| 10 | 1833 | 25 |
| 11 | 2078 | 22 |
| 12 | 2441 | 15 |
| 13 | 2768 | 15 |
| 14 | 3702 | 20 |
| 15 | 4680 | 14 |
| 16 | 5677 | 12 |
| 17 | 6453 | 11 |
| 18 | 7303 | 7 |
| 19 | 8553 | 10 |
| 20 | 9892 | 6 |
| 21 | 10993 | 5 |
| 22 | 12167 | 5 |

* Conditions: 0.086 M solution of 3 in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$

Table S4. Concentrations of $1 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l})$ and its hydrolysis product $v s$ time during the hydrolysis.*

| Nr | Time, s | Concentration <br> of $\mathbf{1} \mathbf{H B F}_{4}$, <br> $\mathbf{m m o l} / \mathbf{L}^{2}$ | Concentration of <br> gemiaminal, <br> $\mathbf{m m o l} / \mathbf{L}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 86 | 0 |
| 2 | 488 | 64 | 22 |
| 3 | 820 | 60 | 26 |
| 4 | 1305 | 54 | 32 |
| 5 | 1957 | 50 | 36 |
| 6 | 2623 | 45 | 41 |
| 7 | 3327 | 42 | 44 |
| 8 | 3988 | 39 | 47 |
| 9 | 5878 | 32 | 54 |
| 10 | 7831 | 26 | 60 |
| 11 | 9785 | 23 | 63 |
| 13 | 11754 | 19 | 67 |
| 14 | 23548 | 14 | 72 |
| 15 | 55181 | 10 | 76 |
| 16 | 403618 | 7 | 79 |

* Conditions: 0.086 M solution of $\mathbf{1} \cdot \mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$

Table S5. Concentrations of $2 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l})$ and its hydrolysis products $\boldsymbol{v s}$ time during the hydrolysis.*

| $\begin{gathered} \hline \mathbf{N} \\ \mathbf{r} \end{gathered}$ | Time, s | $\begin{gathered} \hline \text { Concentration } \\ \text { of } 2 \cdot \mathrm{HBF}_{4}, \\ \text { mmol/L } \\ \hline \end{gathered}$ | Concentration of gemiaminal, $\mathrm{mmol} / \mathrm{L}$ | Concentratio $n$ of acid, $\mathrm{mmol} / \mathrm{L}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 86 | 0 | 0 |
| 2 | 71 | 86 | 0 | 0 |
| 3 | 235 | 79 | 3 | 3 |
| 4 | 372 | 78 | 4 | 4 |
| 5 | 545 | 76 | 5 | 5 |
| 6 | 711 | 74 | 5 | 6 |
| 7 | 929 | 73 | 6 | 7 |
| 8 | 1196 | 71 | 6 | 8 |
| 9 | 1542 | 69 | 8 | 9 |
| 10 | 2072 | 66 | 10 | 10 |
| 11 | 2753 | 60 | 11 | 14 |
| 12 | 3318 | 58 | 12 | 16 |
| 13 | 4035 | 55 | 14 | 17 |
| 14 | 4651 | 53 | 15 | 19 |
| 15 | 5233 | 50 | 16 | 20 |
| 16 | 5898 | 48 | 17 | 20 |
| 17 | 6557 | 46 | 18 | 21 |
| 18 | 7146 | 44 | 18 | 24 |
| 19 | 7931 | 40 | 21 | 25 |
| 20 | 9131 | 39 | 22 | 25 |
| 21 | 10875 | 34 | 24 | 28 |
| 22 | 13449 | 30 | 26 | 30 |
| 23 | 15543 | 27 | 28 | 31 |
| 24 | 16927 | 22 | 27 | 36 |
| 25 | 18313 | 23 | 30 | 33 |
| 26 | 20131 | 20 | 29 | 36 |
| 27 | 22450 | 17 | 29 | 40 |
| 28 | 61648 | 8 | 34 | 44 |

* Conditions: 0.086 M solution of $\mathbf{2} \cdot \mathbf{H B F}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$

Table S6. Concentrations of $3 \cdot \mathrm{HBF}_{4}(\mathrm{~mol} / \mathrm{l})$ and $9 \cdot \mathrm{HBF}_{4}$ vs time during the hydrolysis.*

| $\mathbf{N r}$ | Time, <br> $\mathbf{s}$ | $\mathbf{[ 3 . H B F 4}$ <br> $\mathbf{1 , ~ \mathbf { m m o l } / \mathbf { l }}$ | $[\mathbf{9} \cdot \mathbf{H B F} \mathbf{4}]$ <br> $\mathbf{m m o l} / \mathbf{l}$ |
| :--- | :---: | :---: | :---: |
| 1 | 0 | 86 | 0 |
| 2 | 26 | 74 | 12 |
| 3 | 49 | 70 | 16 |
| 4 | 81 | 65 | 21 |
| 5 | 146 | 61 | 25 |
| 6 | 213 | 56 | 30 |
| 7 | 332 | 50 | 36 |
| 8 | 452 | 45 | 41 |
| 9 | 629 | 37 | 49 |
| 10 | 810 | 32 | 54 |
| 11 | 998 | 25 | 61 |
| 12 | 1297 | 21 | 65 |
| 13 | 1567 | 16 | 70 |
| 14 | 1843 | 14 | 72 |
| 15 | 2105 | 12 | 74 |
| 16 | 2377 | 10 | 76 |
| 17 | 2806 | 8 | 78 |
| 18 | 3421 | 5 | 81 |
| 19 | 3918 | 4 | 82 |
| 20 | 6063 | 2 | 84 |
| 21 | 10106 | 0 | 86 |

* Conditions: 0.086 M solution of $\mathbf{3 \cdot H B F} 4$ in $\mathrm{CD}_{3} \mathrm{CN}, 5$ equivalents of $\mathrm{D}_{2} \mathrm{O}, 23{ }^{\circ} \mathrm{C}$


## S3. Methods

## S3.1 General procedures

Starting materials were purchased from Merck, Acros, ABCR, Fisher, Enamine. Solvents were purified according to the standard procedures [S1]. Analytical reversed-phase high-performance liquid chromatography (RP-HPLC) was done on an Agilent 1100 HPLC instrument using a Zorbax Eclipse ${ }^{\circledR}$ XDB-C $_{8}$ column ( $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$ ) and $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (60:40 v/v) as the isocratic eluent. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 300 spectrometer as specified below and referenced to TMS. Mass spectra were recorded either on an Agilent 1100 LC/MSD SL instrument by chemical ionization (CI) or on a GCMS instrument with electron impact ionization (EI). CHN-analysis was done on an Elementar VarioMICRO Cube analyzer. High resolution mass spectra were determined on a Bruker APEX III FTMS (7 T magnet). Infrared spectra were measured on a Perkin Elmer Spectrum 100 FTIR and are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Melting points were measured on an automated melting point system and are uncorrected. Analytical TLC was performed using Polychrom SI F254 plates. Column chromatography was performed using silica gel (230-400 mesh) as the stationary phase. Compound 1 (3,5,7-Trimethyl-1-azatricyclo[3.3.1.13,7]decan-2one) was prepared using the procedures described in [S2] or by sublimation of the corresponding NBoc-protected amino acid, see the procedure below. Synthesis of $\mathbf{8}$ (exo-3-(tert-butoxycarbonyl)-3-aza-bicyclo[3.3.1]nonane-7-carboxylic acid) is described in [S3].

The IUPAC numbering of the polycyclic systems encountered in this work is the following:


## S3.2 3-Benzoyl-7-methyl-3-azabicyclo[3.3.1]nonane-7-carboxylic acid ethyl ester (16)



17
16

A solution of $\operatorname{BuLi}(17.6 \mathrm{ml}$ of $1.6 \mathrm{M}(\sim 15 \%)$ in hexanes, 28.2 mmol$)$ was added to a solution of i- $\mathrm{Pr}_{2} \mathrm{NH}\left(3.67 \mathrm{ml}, 2.64 \mathrm{~g}, 26.1 \mathrm{mmol}\right.$ in 200 ml of dry $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ at $0^{\circ} \mathrm{C}$ (ice-water bath) under an argon atmosphere. After stirring at $0^{\circ} \mathrm{C}$ for $\sim 1 \mathrm{~h}$, a solution of the amide-ester $\mathbf{1 7}$ [S4] (3.9 g, 12.9 mmol in 100 ml of dry $\mathrm{Et}_{2} \mathrm{O}$ ) was added dropwise, the ice bath was removed, and the solution was stirred for another hour at room temperature. Freshly distilled dimethylsulfate ( $2.65 \mathrm{ml}, 3.52 \mathrm{~g}, 27.9 \mathrm{mmol}$ ) was carefully added to the stirred reaction mixture. The reaction was exothermic, a white precipitate was formed immediately. The stirring continued overnight, the precipitate was filtered off. The filtrate was washed with water, $5 \%$ ammonia, 1 N HCl , brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The colorless viscous oil obtained ( $3.5 \mathrm{~g}, 11.1 \mathrm{mmol}$, $86 \%$ yield) was subjected to the HBr hydrolysis without further purification. An analytical sample was prepared by column chromatography (Silica gel Merck 60, ethyl acetate - hexane, 1:1 mixture as an eluent). Colorless crystals, $\mathrm{R}_{\mathrm{f}}=0.34\left(\mathrm{SiO}_{2}\right.$, ethyl acetate - hexane, $\left.1: 1\right) .{ }^{1} \mathrm{H}-$ NMR ( $\delta, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ ): 7.48 (dd, $\mathrm{J}=7.0$ and $1.7 \mathrm{~Hz}, \mathrm{o}-\mathrm{Ph}, 2 \mathrm{H}$ ), 7.36 (m, m,p-Ph, 3H), 4.47 $(\mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}, 2 \mathrm{e}-\mathrm{H} 1 \mathrm{H}), 4.23\left(\mathrm{dq}, \mathrm{J}=7.07\right.$ and $\left.3.42 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}, 1 \mathrm{H}\right), 4.13(\mathrm{dq}, \mathrm{J}=7.07$ and $\left.3.42 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}, 1 \mathrm{H}\right), 3.63(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 4 \mathrm{e}-\mathrm{H}, 1 \mathrm{H}), 3.04(\mathrm{dd}, \mathrm{J}=12.4$ and $3.3 \mathrm{~Hz}, 4 \mathrm{a}-\mathrm{H}, 1 \mathrm{H})$, $3.02(\mathrm{dd}, \mathrm{J}=13.7$ and $4.1 \mathrm{~Hz}, 2 \mathrm{a}-\mathrm{H}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=14.1$ and $1.3 \mathrm{~Hz}, 6 \mathrm{e}-\mathrm{H}, 1 \mathrm{H}), 2.63(\mathrm{dd}$, $\mathrm{J}=14.2$ and $1.3 \mathrm{~Hz}, 8 \mathrm{e}-\mathrm{H}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 1-\mathrm{H}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 5-\mathrm{H}, 1 \mathrm{H}), 1.61\left(\mathrm{~m}, 9-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 1.47$
(dd, J=3.3 and $14.7 \mathrm{~Hz}, 6 \mathrm{a}-\mathrm{H}, 1 \mathrm{H}), 1.38(\mathrm{dd}, \mathrm{J}=14.2$ and $4.1 \mathrm{~Hz}, 8 \mathrm{a}-\mathrm{H}, 1 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.08 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.15\left(\mathrm{~s}, 7-\mathrm{CH}_{3}, 3 \mathrm{H}\right)$; Assignments were made with DQF-COSY spectrum. ${ }^{13} \mathrm{C}$ NMR ( $\left.\delta, \mathrm{CDCl}_{3}, 124.9 \mathrm{MHz}\right): 171.7,173.3,137.4,128.8,128.2,126.7,61.1,52.5,46.9,40.8$, 39.2, 38.6, 32.9, 32.3, 28.3, 27.6, 14.0; IR $\left(\mathrm{cm}^{-1}, \mathrm{CDCl}_{3}\right): 2912,2857(\mathrm{CH}), 1710(\mathrm{C}=\mathrm{O}), 1621$ (C=O), 1453 (Ph), 1416; MS (EI): 315 ( $\mathrm{M}^{+}, 27 \%$ ), 286 (4\%), 242 (6\%), 211 (14\%), 210 (100\%), 182 (5\%), 136 (10\%), 105 ( $85 \%$ ); HRMS: Calc. For $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3} 315.1834305$, found: 315.18333. 1-D NOE experiment $\left\{7-\mathrm{CH}_{3}\right\}: 6.8 \mathrm{a}-\mathrm{H}-11 \%, 6.8 \mathrm{e}-\mathrm{H}-5 \%$; No NOE was observed between $7-\mathrm{CH}_{3}$ and $9-\mathrm{CH}_{2}$ protons.

## S3.3 3-Methyl-1-azatricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-2-one (2)



Concentrated aq. HBr solution $(\sim 45 \%, 20 \mathrm{ml})$, was added to the amide-ester $16(3.5 \mathrm{~g}, 11.1$ mmol ) and the mixture was set up for a 6 days reflux under stirring. At the end of this period, all the starting material was dissolved. Then the mixture was evaporated, the product was extracted from the residue with water and after evaporation to $\sim 10 \mathrm{ml}, \mathrm{pH}$ of the water extract was adjusted to 7.45 . Water was evaporated, methanol $(5 \mathrm{ml})$ was added and the solution transferred to a sublimer and carefully evaporated in vacuum without heating (water pump). The residue was then sublimed ( $60-120^{\circ} \mathrm{C}$, oil pump). The sublimed product was resublimed again $\left(60^{\circ} \mathrm{C}\right.$, oil pump) to obtain white crystals of $\mathbf{2}$ possessing strong camphor-like smell ( $0.75 \mathrm{~g}, 4.5 \mathrm{mmol}$, $41 \%$ yield), m.p. $89-90{ }^{\circ} \mathrm{C}$. Compound 2 can also be recrystallized from toluene or from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane mixture (1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$ ): 3.43 (ddd, $\mathrm{J}=13.5,2.2$ and 2.2

Hz, 8,9e-H, 2H), 3.23 (d, J=13.5 H z, 8,9a-H, 2H), 2.12 (dm, J=12.7 Hz, 6e-H, 1H), 2.03 (dm, $\mathrm{J}=13.0 \mathrm{~Hz}, 4,10 \mathrm{e}-\mathrm{H}, 2 \mathrm{H}), 1.93(\mathrm{dm}, \mathrm{J}=13.0 \mathrm{~Hz}, 4.10 \mathrm{a}-\mathrm{H}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 6 \mathrm{a}-\mathrm{H}, 1 \mathrm{H}), 1.84(\mathrm{br} \mathrm{s}$, 5,7-H, 2H), $1.05\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right)$ (Assignments proven by COSY); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{CDCl}_{3}, 124.9\right.$ $\mathrm{MHz}): 200.2,61.4,46.5,44.5,34.3,28.0,23.9$; $\mathrm{IR}\left(\mathrm{cm}^{-1}, \mathrm{CDCl}_{3}\right): 2923,2857$ (CH), 1732 $(\mathrm{C}=\mathrm{O}), 1456,1297$, 1056; Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 72.69$; H, 9.15; N, 8.48. Found: C, 71.84, H, 9.16, N, 8.46; Crystals suitable for X-ray analysis were obtained by slow sublimation $\left(30-40^{\circ} \mathrm{C}, 0.1 \mathrm{~mm} \mathrm{Hg}\right)$.

## S3.4 7-benzyl 3-tert-butyl 7-methyl-3-aza-bicyclo[3.3.1]nonane-3,7-dicarboxylate



18
A solution of $\mathrm{BuLi}(3.74 \mathrm{ml}$ of 2.46 M in hexanes, 9.2 mmol$)$ was added to a solution of i- $\mathrm{Pr}_{2} \mathrm{NH}\left(1.27 \mathrm{ml}, 0.923 \mathrm{~g}, 9.2 \mathrm{mmol}\right.$ in 10 ml of dry THF) at $-40 \div-20^{\circ} \mathrm{C}$ (propan-2-ol $\backslash$ liquid nitrogen bath) under an argon atmosphere. After stirring at $-20^{\circ} \mathrm{C}$ for 30 min , the bath was cooled to $-78{ }^{\circ} \mathrm{C}$ and the mixture of Boc-aminoacid benzyl ester $\mathbf{1 8}$ [S3] ( $3 \mathrm{~g}, 8.3 \mathrm{mmol}$ in 30 ml of dry THF) with HMPA ( 2.5 ml ) was added dropwise. The solution was stirred for 30 min after the addition at $-78{ }^{\circ} \mathrm{C}$ and then the cooling bath was removed. Freshly distilled methyl iodide ( $1.3 \mathrm{~g}, 0.57 \mathrm{~mL}, 9.2 \mathrm{mmol}$ ) was carefully added to the stirred reaction mixture at $-78{ }^{\circ} \mathrm{C}$. The stirring continued for 8 h . Citric acid ( $10 \mathrm{ml}, 10 \%$ solution in water) was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$ under stirring. The mixture was extracted with MTBE ( 3 x 50 mL ). Combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was purified by flash column chromatography (gradient EtOAc in hexane) to obtain the pure
product ( $1.674 \mathrm{~g}, 54 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{\delta}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): 7.25-7.45(\mathrm{~m}, \mathrm{Ph}, 5 \mathrm{H}), 5.12$ (broad s, CHHPh, 1H), 4.98 (broad s, CHHPh, 1H), 3.91 (broad s, 2,4-H, 2H), 2.88 (d, J = 10 Hz, 6,8-CH, 2H), 2.68 (d, J = $14 \mathrm{~Hz}, 6,8-\mathrm{CH}, 2 \mathrm{H}$ ), 1.94 (broad s, 2,4-H, 2H), 1.54 (broad s, 1,5$\mathrm{H}, 2 \mathrm{H}), 1.48(\mathrm{~s}, \mathrm{t}-\mathrm{Bu}, 9 \mathrm{H}), 1.39-1.36\left(\mathrm{AB}\right.$ system, $\left.9-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 1.10\left(\mathrm{~s}, 7-\mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\delta, \mathrm{CDCl}_{3}, 124.9 \mathrm{MHz}\right): 175.9,155.2,136.5,128.0,127.9,127.4,79.0,65.8,48.3$ (broad), 40.8, 38.8, 32.2, 31.9, 28.2, 27.5. GC-MS (EI, m/z): $316\left(\mathrm{M}^{+}-\mathrm{t}-\mathrm{Bu}\right), 212\left(\mathrm{M}^{+}-\mathrm{COOtBu}\right), 182,166$, 137, 108, 91, 79, 57, 44.

## S3.5 3-(tert-butoxycarbonyl)-7-methyl-3-aza-bicyclo[3.3.1]nonane-7-carboxylic acid (20)



19


20

The Boc-protected aminoacid benzyl ester 19 ( 4 mmol ) was dissolved in THF ( 50 mL ) under an argon atmosphere. Palladium on charcoal $(10 \%, 2 \mathrm{~g})$ was added, the flask was charged with hydrogen gas and the content was shaken under the hydrogen (1 atm) for 8 h . After no starting material was left in the mixture (TLC control, eluent - hexane-EtOAc, 1:1) the catalyst was filtered off and the filtrate was evaporated on a rotary evaporator (with the bath temperature maintained below $80^{\circ} \mathrm{C}$; the Boc protection might cleave off at higher temperatures). The product ( $1.1 \mathrm{~g}, 98 \%$ yields) was sufficiently pure for further transformations. It was recrystallised from methanol for analytical purpose (m.p. 103-104 ${ }^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{CDCl}_{3}, 500\right.$ MHz): 6.65 (very broad s, COOH, 1H), 3.93 (broad s, 2,4-H, 2H), $2.86(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 2,4-\mathrm{H}$, $2 \mathrm{H}), 2.61(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, 6,8-\mathrm{CH}, 2 \mathrm{H}), 1.93($ broad $\mathrm{s}, 5,1-\mathrm{H}, 2 \mathrm{H}), 1.55-1.66\left(\mathrm{AB}\right.$ system, $9-\mathrm{CH}_{2}$, $2 \mathrm{H}), 1.47(\mathrm{~s}, \mathrm{t}-\mathrm{Bu}, 9 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, 6,8-\mathrm{CH}, 2 \mathrm{H}), 1.31\left(\mathrm{~s}, 7-\mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta$,
$\mathrm{CDCl}_{3}, 124.9 \mathrm{MHz}$ ): 176.6, 155.6, 79.1, 47.8 (broad), 40.1, 38.8, 32.2, 32.1, 28.1, 27.5. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{4}$ : C, 63.58; H, 8.89; N, 4.94. Found: C, 63.55, H, 8.92, N, 4.98;

## S3.6 tert-butyl <br> 7-(hydroxymethyl)-1,5,7-trimethyl-3-aza-bicyclo[3.3.1]nonane-3carboxylate (21)



22
21
Compound 22 [S2] ( $2.35 \mathrm{~g}, 11.9 \mathrm{mmol}$ ) was dissolved in dichloromethane ( 25 mL ), and the solution was immersed in an ice water bath. Boc-anhydride ( $2.18 \mathrm{~g}, 10 \mathrm{mmol}$ ) and triethylamine $(1.01 \mathrm{~g}, 0.73 \mathrm{~mL}, 10 \mathrm{mmol})$ were added to the cooled solution under stirring. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , and then left overnight. Dichloromethane ( 100 mL ) was added, the resulting solution was washed with water $(25 \mathrm{~mL})$, saturated aq. citric acid solution $(25 \mathrm{~mL})$, brine ( $2 \times 25 \mathrm{~mL}$ ), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuum, and the residue (colourless oil, $1.88 \mathrm{~g}, 6.3 \mathrm{mmol}, 53 \%$ yield) was used in the next step without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): 3.62$ (broad s, 2,4-H, 2H), $3.21\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OH}\right.$, $2 \mathrm{H}), 2.33(\mathrm{broad} \mathrm{s}, 2,4-\mathrm{H}, 2 \mathrm{H}), 1.45(\mathrm{~m}, \mathrm{t}-\mathrm{Bu}+6,8-\mathrm{H}+9-\mathrm{H}, 12 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 6,8-\mathrm{H}, 2 \mathrm{H})$, $0.98\left(\mathrm{~s}, 7-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 0.93(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, 9-\mathrm{H}, 1 \mathrm{H}), 0.90\left(\mathrm{~s}, 1,5-\mathrm{CH}_{3}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{CDCl}_{3}\right.$, $124.9 \mathrm{MHz})$ : $155.1(\mathrm{C}=\mathrm{O}), 79.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 72.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.4$ (broad), 44.8, 42.5 (broad), 34.4, 30.8, 29.4, 28.1.

S3.7 tert-butyl 7-formyl-1,5,7-trimethyl-3-aza-bicyclo[3.3.1]nonane-3-carboxylate (23)


A solution of compound $21(1.88 \mathrm{~g}, 6.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added to a magnetically stirred solution of the freshly prepared $\mathrm{CrO}_{3} 2 \mathrm{Py}$ complex [prepared from 3.78 g ( 37.8 mmol ) of $\mathrm{CrO}_{3}$ and $6.14 \mathrm{~mL}(75.6 \mathrm{mmol})$ of pyridine in 160 mL of dichloromethane]. The mixture was stirred for 30 min at ambient temperature (a black deposit formed). The mixture was then diluted with diethyl ether $(400 \mathrm{~mL})$. The solution was decanted from the deposit, which was washed with ether $(3 \times 50 \mathrm{~mL})$ by decantation. The combined decanted solutions were transferred to a separating funnel and washed successively with $2 \% \mathrm{NaOH}(80 \mathrm{~mL})$, saturated aq. citric acid solution $(80 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$ and brine $(80 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation and column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}, 9: 1\right)$ yielded 1.32 g ( $4.5 \mathrm{mmol}, 71 \%$ yield) of aldehyde 23, as colourless crystals; m.p. $91-92{ }^{\circ} \mathrm{C}$. (cryst. from hexane). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): 9.17$ ( $\mathrm{s}, \mathrm{CHO}, 1 \mathrm{H}$ ), 3.57 (broad s, 2,4-H, $2 \mathrm{H}), 2.33(\mathrm{dd}, \mathrm{J}=12.5$ and $3 \mathrm{~Hz}, 2,4-\mathrm{H}, 2 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 6,8-\mathrm{H}, 2 \mathrm{H}), 1.46(\mathrm{~s}, \mathrm{t}-\mathrm{Bu}$, 9H), $1.09\left(\mathrm{~m}, 6,8-\mathrm{H}+9-\mathrm{CH}_{2}\right), 0.90\left(\mathrm{~s}, 1,5-\mathrm{CH}_{3}, 6 \mathrm{H}\right), 0.83\left(\mathrm{~s}, 7-\mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{CDCl}_{3}\right.$,
 28.7, 28.1, 27.9. IR ( $\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right): 2952$, $1706(\mathrm{C}=\mathrm{O}), 1695(\mathrm{C}=\mathrm{O}), 1401,1297,1165$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{3}$ : C, 69.12; H, 9.89; N, 4.74. Found: C, 69.14, H, 9.83, N, 4.78.

## S3.8 3-(tert-butoxycarbonyl)-1,5,7-trimethyl-3-aza-bicyclo[3.3.1]nonane-7-carboxylic

 acid (24)

23
24
The aldehyde 23 ( $1.32 \mathrm{~g}, 4.5 \mathrm{mmol}$ ) was dissolved in aqueous acetone ( $1: 2,120 \mathrm{~mL}$ ), and finely ground $\mathrm{KMnO}_{4}(1.06 \mathrm{~g}, 6.7 \mathrm{mmol})$ was added in several portions to the stirred solution. The mixture was stirred for 30 min at ambient temperature, by which time no starting aldehyde could be detected by TLC $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}, 9: 1\right)$. The excess oxidant was destroyed with $\mathrm{Na}_{2} \mathrm{SO}_{3}$ ( $\sim 2 \mathrm{~mL}$ of saturated aqueous solution). The mixture was filtered through a Celite pad, which was then washed with methanol and the combined filtrate and washings evaporated. The residue was dissolved in water ( 80 mL ), carefully acidified to $\mathrm{pH} \sim 5$ with conc. HCl . The white precipitate formed was filtered and washed with cold water, then dried in a vacuum desiccator ( $239.6 \mathrm{mg}, 85 \%$ ). The crude product 24 was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}, 9: 1\right)$. White crystals, mp 232-235${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ : $6.32(\operatorname{broad} \mathrm{~s}, \mathrm{COOH}, 1 \mathrm{H}), 3.69(\operatorname{broad} \mathrm{~s}, 2,4-\mathrm{H}, 2 \mathrm{H}), 2.43(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, 6,8-\mathrm{H}, 2 \mathrm{H}), 2.35(\mathrm{~d}, \mathrm{~J}$ $=12 \mathrm{~Hz}, 2,4-\mathrm{H}, 2 \mathrm{H}), 1.45(\mathrm{~s}, \mathrm{t}-\mathrm{Bu}, 9 \mathrm{H}), 1.16\left(\mathrm{~s}, 7-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.11(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 9-\mathrm{H}, 1 \mathrm{H}), 1.05$ $(\mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}, 9-\mathrm{H}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, 6,8-\mathrm{H}, 2 \mathrm{H}), 0.88\left(\mathrm{~s}, 1,5-\mathrm{CH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta$, $\left.\mathrm{CDCl}_{3}, 124.9 \mathrm{MHz}\right): 176.4(\mathrm{COOH}), 155.4(\mathrm{C}=\mathrm{O}), 79.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 52.9,47.2,45.3,41.2,32.5,}\right.$ 30.8, 29.3, 28.2, 28.1. IR ( $\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3528(\mathrm{OH}), 2930,1715(\mathrm{C}=\mathrm{O}), 1662(\mathrm{C}=\mathrm{O}), 1460,1408$, 1304, 1168. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{4}$ : C, 65.57; H, 9.39; N, 4.50. Found: C, 65.44, H, 9.41, N, 4.48.

S3.9 Synthesis of compounds $\mathbf{1 - 3}$ by pyrolysis of the corresponding NBoc-protected amino acids


8, $R_{1}=R_{2}=R_{3}=H$
20, $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
24, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH}_{3}$

3, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, 43 \%$
2, $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, 51 \%$
1, $R_{1}=R_{2}=R_{3}=\mathrm{CH}_{3}, 63 \%$

## General procedure

The pyrolysis/sublimation was carried out in an apparatus consisting of a 50 mL roundbottom flask (standard joint 14.5 mm ) attached to a condenser equipped with a central coldfinger. The N -Boc amino-acid $(\mathbf{2 4}, \mathbf{2 0}$, or $\mathbf{8})(0.93 \mathrm{mmol})$ was dissolved in dry methanol $(6 \mathrm{~mL})$ in the 50 mL round-bottom flask. Silica gel (Kieselgel Merck 60, 5 -fold amount calculating on the N -Boc amino acid) was added to the solution, and methanol was evaporated on a rotary evaporator (water vacuum pump, $40^{\circ} \mathrm{C}$ bath temperature), then the residue dried in vacuum (water vacuum pump, $40^{\circ} \mathrm{C}$ bath temperature) for $\sim 30 \mathrm{~min}$. Then the flask was connected to the cold-finger and a vacuum oil pump $(\sim 0.5 \mathrm{~mm} \mathrm{Hg})$. Connection to vacuum had to be done with great care, because the mixture may produce volatile dust. The flask was immersed completely (up to the upper rim) in an oil bath, and the oil bath heated. Sublimation of the product started at $115^{\circ} \mathrm{C}$ (bath temperature). The temperature of the bath increased to $150^{\circ} \mathrm{C}$ within 1 h , and then the products were collected on the cold-finger within 4 h , while keeping the bath temperature at $150 \pm 5^{\circ} \mathrm{C}$.

Compound 1 (3,5,7-Trimethyl-1-azatricyclo[3.3.1.1 ${ }^{\text {3,7 }}$ ]decan-2-one) was obtained in $63 \%$ yield. Its ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra in $\mathrm{CDCl}_{3}$, IR and analytical data were identical to those described in [S2]. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): 2.90(\mathrm{dd}, \mathrm{J}=3.5$ and $13.5 \mathrm{~Hz}, 8,9-\mathrm{H}, 2 \mathrm{H})$, $2.87(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 8,9-\mathrm{H}, 2 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 4,10-\mathrm{H}, 2 \mathrm{H}), 1.64(\mathrm{dt}, \mathrm{J}=2.5$ and 12.5 $\mathrm{Hz}, 6-\mathrm{H}, 1 \mathrm{H}), 1.56(\mathrm{dd}, \mathrm{J}=3.5$ and $12.5 \mathrm{~Hz}, 4,10-\mathrm{H}, 2 \mathrm{H}), 1.53(\mathrm{dt}, \mathrm{J}=2.5$ and $12.5 \mathrm{~Hz}, 6-\mathrm{H}$,
$1 \mathrm{H}), 0.97\left(\mathrm{~s}, 3-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 0.81\left(\mathrm{~s}, 5,7-\mathrm{CH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{CN}, 124.9 \mathrm{MHz}\right): 199.5$ $(C=O), 65.0,51.3,47.5,42.8,29.7,24.1,22.3$.

Compound 2 (3-methyl-1-azatricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-2-one) was obtained in $51 \%$ yield. Its ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra in $\mathrm{CDCl}_{3}$, IR and analytical data were identical to those described above. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): 3.39(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 8,9-\mathrm{H}, 2 \mathrm{H}), 3.12(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 8,9-\mathrm{H}, 2 \mathrm{H})$, $2.13(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 6-\mathrm{H}, 1 \mathrm{H}), 1.70-2.00(\mathrm{~m}, 4,10-\mathrm{H}+6-\mathrm{H}), 1.81(\operatorname{broad} \mathrm{~s}, 1,5-\mathrm{H}, 2 \mathrm{H}), 1.00(\mathrm{~s}$, $\left.\mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{CN}, 124.9 \mathrm{MHz}\right): 199.8(\mathrm{C}=\mathrm{O}), 60.6,45.8,43.9,33.6,27.7,23.1$. Compound 3 (1-azatricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-2-one) was obtained in $43 \%$ yield. White crystals, ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): 3.43(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 9,10-\mathrm{H}, 2 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 9,10-\mathrm{H}$, $2 \mathrm{H}), 2.61(\operatorname{broad} \mathrm{~s}, 3-\mathrm{H}, 1 \mathrm{H}), 2.21\left(\operatorname{broad} \mathrm{~s}, 4,8-\mathrm{CH}_{2}, 4 \mathrm{H}\right), 2.17(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 6-\mathrm{H}, 1 \mathrm{H}), 2.04$ $(\mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, 6-\mathrm{H}, 1 \mathrm{H}), 1.72$ (broad s, 5,7-H, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{CN}, 124.9 \mathrm{MHz}\right): 198.6$ $(\mathrm{C}=\mathrm{O}), 60.6,43.0,38.5,34.2,26.3$. IR $\left(\mathrm{cm}^{-1}\right.$, powder, Attenuated Total Reflectance (ATR) mode, run under argon; measurements in KBr or in solvents failed because of the fast hydrolysis of $\mathbf{3}$ by traces of water): 2906, $2856(\mathrm{CH}), 1734(\mathrm{C}=\mathrm{O}), 1452,1301,1063,1020$; Anal. Calc. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 71.49$; H, 8.67; N, 9.26. Found: C, $71.46, \mathrm{H}, 8.65, \mathrm{~N}, 9.24$; Crystals for X-ray analysis were obtained by pyrolysis of $\mathbf{8}$ on silica gel as described above, using the oil bath temperature regime shown in Fig. S1.

## S3.10 Preparation of $\mathbf{1} \cdot \mathbf{H B F}_{4}, 2 \cdot \mathbf{H B F}_{4}$ and $\mathbf{3} \cdot \mathbf{H B F}_{4}$

## General procedure

Freshly prepared twisted amide (compound 1, $\mathbf{2}$ or $\mathbf{3}, 0.2-0.3 \mathrm{mmol}$ ) was dissolved in acetonitrile (distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ before use, $\sim 0.5 \mathrm{~mL}$ ) in a flame-dried Schlenk flask under argon. One equivalent of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ complex was added to the solution by a micro-syringe. After being shaken for 1 min , the mixture was diluted with dry diethyl ether $(\sim 5 \mathrm{~mL})$. The white
precipitate formed was filtered under an argon atmosphere and purified by dissolving in dry acetonitrile $(\sim 0.5 \mathrm{~mL})$ followed by precipitation from the solution with dry diethyl ether. The purification procedure was repeated twice; the product was finally filtered and dried in vacuum (oil pump) without heating for 5 h . All the three salts obtained (white powders, 30-45\% yield) melted above $250{ }^{\circ} \mathrm{C}$ with decomposition. Crystals for the X-Ray analysis were grown from concentrated solutions in acetonitrile-diethyl ether mixture ( $\sim 5: 1$ ) by freezing the solutions to $-30^{\circ} \mathrm{C}$.

3,5,7-Trimethyl-1-azatricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-2-one, tetrafluoroboric acid salt $\left(1 \cdot \mathrm{HBF}_{4}\right){ }^{1} \mathrm{H}$ NMR ( $\left.\delta, \mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): 8.36\left(\operatorname{broad} \mathrm{~s}, \mathrm{~N}^{+} \mathrm{H}, 1 \mathrm{H}\right), 3.65(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 9,10-\mathrm{H}, 2 \mathrm{H}), 3.40$ (dd, $\mathrm{J}=12$ and $2.5 \mathrm{~Hz}, 9,10-\mathrm{H}, 2 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 4,10-\mathrm{H}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 4,10-\mathrm{H}+6-\mathrm{H}$, $3 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 6-\mathrm{H}, 1 \mathrm{H}), 1.18\left(\mathrm{~s}, 3-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.03\left(\mathrm{~s}, 5,7-\mathrm{CH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta$, $\left.\mathrm{CD}_{3} \mathrm{CN}, 124.9 \mathrm{MHz}\right): 178.0(\mathrm{C}=\mathrm{O}), 62.3,48.0,44.3,43.5,29.9,22.8,20.5$.

3-methyl-1-azatricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-2-one, tetrafluoroboric acid salt (2. $\mathrm{HBF}_{4}$ ), ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\delta, \mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): 8.24\left(\operatorname{broad} \mathrm{~s}, \mathrm{~N}^{+} \mathrm{H}, 1 \mathrm{H}\right), 3.85(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 9,10-\mathrm{H}, 2 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=$ $12.5 \mathrm{~Hz}, 9,10-\mathrm{H}, 2 \mathrm{H}), 2.39(\operatorname{broad} \mathrm{~s}, 5,7-\mathrm{H}, 2 \mathrm{H}), 2.26(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 4,10-\mathrm{H}, 2 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=13$ $\mathrm{Hz}, 4,10-\mathrm{H}+6-\mathrm{H}, 3 \mathrm{H}), 1.96\left(\mathrm{~m}, 6-\mathrm{H}\right.$, overlapped with acetonitrile residual peak), $1.21\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{CN}, 124.9 \mathrm{MHz}\right): 176.3(\mathrm{C}=\mathrm{O}), 59.7,44.4,42.4,29.9,25.5,21.0$.

1-azatricyclo[3.3.1.1 ${ }^{3,7}$ ]decan-2-one, tetrafluoroboric acid salt $\left(\mathbf{3} \cdot \mathrm{HBF}_{4}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$, $\left.\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): 8.21\left(\operatorname{broad} \mathrm{~s}, \mathrm{~N}^{+} \mathrm{H}, 1 \mathrm{H}\right), 3.90(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 9,10-\mathrm{H}, 2 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=12$ Hz, $9,10-\mathrm{H}, 2 \mathrm{H}), 3.11$ (s, 3-H. 1H), 2.25-2.45 (m, 4,10-CH2+5,7-H, 6H), 2.15 (d, J = $12 \mathrm{~Hz}, 6-$ $\mathrm{H}, 1 \mathrm{H}), 2.06(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 6-\mathrm{H}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{CN}, 124.9 \mathrm{MHz}\right): 175.8(\mathrm{C}=\mathrm{O}), 59.8$, 40.9, 35.3, 30.5, 24.4.

S3.11 Kinetic measurements for hydrolysis reactions of $\mathbf{1 - 3}, 1 \cdot \mathbf{H B F}_{4}, 2 \cdot \mathrm{HBF}_{4}$ and $3 \cdot \mathrm{HBF}_{4}$

## General procedure.

Hydrolysis was carried out in NMR sample tubes, monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (recorded by repeated single scans at $23{ }^{\circ} \mathrm{C}$ ). The reactant concentration was exactly reproduced from [S5] for comparison. In a typical run, the twisted amides or their salts $\mathbf{( 1 - 3}, \mathbf{1} \cdot \mathbf{H B F} \mathbf{4}, \mathbf{2} \cdot \mathbf{H B F}_{4}$ or $\mathbf{3} \cdot \mathbf{H B F}_{4}$, around 0.1 mmol ) were weighed in a flame-dried NMR sample tube under argon. The solvent $\mathrm{CD}_{3} \mathrm{CN}$ (freshly distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ under argon) was added in the amount to obtain 0.086 M solution of the twisted amides or their salts. After recording the ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra deuterium oxide (5 equivalents) was added by a micro-syringe, the content of the tube was vigorously shaken, starting immediately the recording of the time. The first ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum was measured as quickly after the $\mathrm{D}_{2} \mathrm{O}$ addition as practical, then the spectra were measured in 3-10 min intervals, depending on the reaction progress. The spectra were run as single scans, in order to avoid integral-value distortions due to relaxation effects. Typical fragments of the NMR spectra sets for each compound are shown in Figures S2,4,6,8,10. The unambiguously assigned non-overlapping peaks (indicated in the Figures by the labels over the peaks) were carefully integrated; in the case of compound 3 the internal integration reference (carefully weighed amount of naphthalene) was added to the reaction mixture before water addition. The complete data sets (Tables S1-5) were used to build the kinetic curves (Figures S3,5,7,9,11) and calculate the half lives for each compound.

## Results

Compound 1 showed no signs of the hydrolysis under the above described conditions within 700 min .

Compound 2 hydrolysed with the formation of the corresponding zwitter-ionic amino acid:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ control of the reaction progress was done by integration of the $\mathrm{CH}_{2}$ group signals of the twisted amide and the amino acid; typical NMR spectra set are shown in Fig. S2. The reaction reached equilibrium: after 2 days the spectrum showed $\sim 70 \%$ of the twisted amide and $\sim 30 \%$ of the amino acid: the ratio did not change thereafter. The complete data set obtained by the integration of the spectra is shown in the Table S1. The graph (Fig. S3) was constructed using the data, and an exponential fit of the descending curve $\left(y=A_{1} * \exp \left(-x / t_{1}\right)+y_{0}(R-v a l u e\right.$ $\left.0,92) ; \mathrm{y}_{0}=59.26 \pm 0.82 ; \mathrm{A}_{1}=23.49 \pm 1.32 ; \mathrm{t}_{1}=2036.87 \pm 308.64\right)$ yielded the time of the halftransformation for compound 2, namely, 1019 s or $\sim 17 \mathrm{~min}$. Noticeable are synchronous counter-phase oscillations of the concentrations of both 2 and 7 . We observed these oscillations in several experiments and are confident that they are not measurement artifacts. The oscillation might indicate non-stationary nature of the processes leading to the equilibrium between $\mathbf{2}$ and its hydrolysis product.

Compound 3. This compound hydrolysed with formation of the corresponding amino acid 9 with intermediate formation of dimer and higher oligomers (14 and 15), as shown in the scheme below:


Disappearance of the twisted amide in the course of the hydrolysis was monitored by the integral values of the separately standing $\mathrm{N}-\mathrm{CH}_{2}$ doublet at 3.43 ppm relative to the integral value of the reference compound signals, naphthalene (Fig. S4). Signals from the oligomeric intermediates are visible in each spectrum; they are indicated in the Fig. S4 on the corresponding spectral set. However, as the ratio of different oligomeric intermediates is not known, it was not possible to quantify their concentration changes. The increasing amino acid concentration is also difficult to quantify because of severe NMR signal overlap. Results of the integration of all the measured spectra are shown in the Table S2 and Fig. S5. The half-life of compound 3 is 1011 s or $\sim 16.9 \mathrm{~min}$ (calculated using the exponential fit of the data, $\mathrm{y}=$ $\mathrm{A}_{1} * \exp \left(-\mathrm{x} / \mathrm{t}_{1}\right)+\mathrm{y}_{0}(\mathrm{R}$-value 0,984$\left.) ; \mathrm{y}_{0}=8,67 \pm 1,22 ; \mathrm{A}_{1}=82,32 \pm 2,31 ; \mathrm{t}_{1}=1156,27 \pm 77,38\right)$. As for the hydrolysis of compound 2, oscillations of the twisted amide concentration were observed, indicating the non-stationary nature of the hydrolysis.

Compound $\mathbf{1} \mathbf{H B F}_{4}$. This compound hydrolysed with the formation of the protonated tricyclic hemiaminal $\mathbf{1 2}$ as the sole product (identified by us previously, see [S2]).


Disappearance of $\mathbf{1} \cdot \mathbf{H B F}_{4}$ was monitored by the integral of the $\mathrm{N}^{+}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{AB}$ system (its downfield component) relatively to the corresponding $\mathrm{N}^{+}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{AB}$ system of the protonated hemiaminal, as shown on the spectra of Fig. S6. The hydrolysis proceeded to completion: only traces of the starting salt could be detected in the mixture after 1 month of the reaction. The integration results and corresponding concentrations are summarized in Table S3. The data were used to build the plot of Fig. S7 and thus calculate the half-life of the compound $\mathbf{1} \mathbf{H B F}_{\mathbf{4}}$ under the conditions described above: $3216 \mathrm{~s}(53.6 \mathrm{~min})$ (exponential fit of the data, $\mathrm{y}=\mathrm{A}_{1 *} \times \mathrm{exp}\left(-\mathrm{x} / \mathrm{t}_{1}\right)$ $+\mathrm{y}_{0}(\mathrm{R}$-value 0.96$\left.), \mathrm{y}_{0}=11,45 \pm 2.8 ; \mathrm{A}_{1}=62,80 \pm 3.6 ; \mathrm{t}_{1}=4671,64 \pm 720.4\right)$.

Compound $\mathbf{2} \cdot \mathbf{H B F}_{4}$. The hydrolysis proceeds with formation of two products $\mathbf{7} \cdot \mathbf{H B F}_{4}$ and $\mathbf{1 3}$, as shown in the scheme below:


The hydrolysis did not proceed to completion but reached equilibrium. The equilibrated mixture (after 2 days of reaction) contained $\sim 10 \%$ of the starting twisted amide salt. Characteristic signals from the $\mathrm{NCH}_{2}$ protons were used for integration and calculation of the compound concentrations (see Fig. S8 for a representative spectra set). The results of the integration of all the spectra are summarized in Table S4 and Fig. S9.

The half-transformation time of $\mathbf{2} \mathbf{H B F} \mathbf{4}$ calculated using the exponential fit of the data is 6211 s or $\sim 103.5 \min \left(y=A_{1 *} \exp \left(-x / t_{1}\right)+y_{0}(R\right.$-value 0.99$), y_{0}=11,29 \pm 1.6 ; A_{1}=69,61 \pm 1.6 ; t_{1}$ $=9305,84 \pm 535.3)$.

Compound $\mathbf{3} \cdot \mathbf{H B F}_{4}$. This compound hydrolysed rapidly to the protonated amino acid $\mathbf{9} \cdot \mathbf{H B F}_{4}$ only:


Concentrations of both the starting compound and its hydrolysis product can be determined from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra by the integration of the corresponding $\mathrm{NCH}_{2}$ proton signals (Fig. S10).

All the results are summarized in the Table S5 and Fig. S11. The half-life of $\mathbf{3} \cdot \mathbf{H B F}_{4}$ calculated using the exponential fit of the data is 506 s or $\sim 8.4 \min \left(y=A_{1} * \exp \left(-x / t_{1}\right)+y_{0}(R-\right.$ value 0.985$\left.), \mathrm{y}_{0}=4,03 \pm 1,5 ; \mathrm{A}_{1}=71,59 \pm 1,96 ; \mathrm{t}_{1}=831,21 \pm 65,81\right)$.

S3.12 Quenching of the reaction mixture of compound 3 with water by $\mathrm{LiAlH}_{4}$ in order to identify the intermediate dimers and oligomers


The hydrolysis of $\mathbf{3}$ was carried out in NMR sample tubes using THF- $\mathrm{d}_{8}$ as the solvent, to be able to monitor the progress of the reaction. After some experimentation we found that the dimer and higher oligomeric intermediates are formed efficiently in concentrated solutions of $\mathbf{3}$ in the presence of $\sim 0.6$ equiv of water. For example, monitoring the reaction mixture contained 48 mg of $\mathbf{3}(0.32 \mathrm{mmol})$ dissolved in 0.5 mL of THF- $\mathrm{d}_{8}$ (making a 0.64 M solution) and 0.5 equiv. of water $(3.4 \mu \mathrm{~L})$ revealed that a maximal concentration of the intermediates was reached after $\sim 75 \mathrm{~min}$ at $23{ }^{\circ} \mathrm{C}$. Characteristic signals of $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NC}=\mathrm{O}$ protons in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (broad singlets, 4.44 and 3.94 ppm ) and two $\mathrm{C}=\mathrm{O}$ peaks in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (at 179.2 and 178.6 ppm ) indicated the predominant formation of the dimer $\mathbf{1 4}$ under these conditions (see the
spectra in the Supplementary Data section). In order to prove this hypothesis further, the mixture (after 75 min of the hydrolysis) was transferred in a flame-dried Schlenk flask under argon and immediately treated with $\mathrm{LiAlH}_{4}(60.7 \mathrm{mg}, 1.6 \mathrm{mmol})$. The mixture was stirred under argon for 1 h , then one half of it was taken out, quenched with water $(2 \mathrm{~mL})$ and the products were extracted with diethyl ether ( 5 x 10 mL ). The other half of the reaction mixture was refluxed for 5 h , cooled, and quenched with water ( 2 mL ). The products formed were also extracted with diethyl ether ( $5 \times 10 \mathrm{~mL}$ ). The extracts from both portions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum. Both residues were analysed by HPLC. The results (Fig. S12-S13) confirmed the formation of the dimeric intermediate (MS peaks corresponding to partly reduced $\mathbf{2 5}$ or completely reduced $\mathbf{2 6}$ were detected). Traces of the reduction products formed from the trimeric $\mathbf{1 5}$ can also be detected in both cases. Our assignments of the HPLC peaks are shown in the Fig. S14.

Preparative isolation of the dimeric intermediate $\mathbf{1 4}$ failed in our hands. On standing in solution or during isolation, the compound either rapidly hydrolysed to the amino acid 9 (in the presence of water) or polymerized (in water-free solutions), forming highly insoluble material.

## S. 4 References

[S1] Perrin, D.D., Armarego, W.L.F. Purification of Laboratory Chemicals, Pergamon, Oxford, 3rd edn. (1988).
[S2] Kirby, A.J., Komarov, I.V. \& Feeder, N. Synthesis, structure and reactions of the most twisted amide. J. Chem. Soc., Perkin Trans. 2, 522-529 (2001).
[S3] Ishchenko, A.Yu., Yanik, S., Kirby, A.J \& Komarov, I.V. An Expedient and Practical Approach to Functionalised 3-Aza-, 3-Oxa- and 3-Thiabicyclo[3.3.1]nonane Systems. Synthesis, in the press. DOI: 10.1055/s-0034-1379456
[S4] Stetter, H. \& Reinartz, W. Ein Beitrag zur Chemie des 1-Aza-adamantans. Chem. Ber. 105, 2773-2779 (1972).
[S5] Tani, K. \& Stolz, B. M. Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate. Nature 441, 731-734 (2006).

