Supporting Information for: Synergy in Protein-Osmolyte Mixtures

Jörg Rösgen*
Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA
E-mail: Jorg.Rosgen@psu.edu

1. Fundamental KirkwoodBuff equations ${ }^{1}$

In Kirkwood-Buff Theory, the information on the structure of the solution is summarized in the matrix B with elements $B_{i j}$

$$
\begin{equation*}
B_{i j}=c_{i} \delta_{i j}+c_{i} c_{j} \mathcal{G}_{i j}=\operatorname{Cov}\left(N_{i}, N_{j}\right) / V \tag{S1}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta. Chemical potential derivatives can be calculated using the determinant $|B|$ with cofactors $|B|_{i j}$

$$
\begin{equation*}
\left(\frac{\partial \mu_{i}}{\partial N_{j}}\right)_{T, V, N_{k \neq j}}=R T \frac{|B|_{i j}}{V|B|} \tag{S2}
\end{equation*}
$$

The isochoric ensemble is readily transformed to an isobaric one

$$
\begin{equation*}
\left(\frac{\partial \mu_{i}}{\partial N_{j}}\right)_{T, p, N_{k \neq j}}=\left(\frac{\partial \mu_{i}}{\partial N_{j}}\right)_{T, V, N_{k \neq j}}-\frac{\bar{v}_{i} \bar{v}_{j}}{\kappa V} . \tag{S3}
\end{equation*}
$$

Also obtained from B are the partial molar volume

$$
\begin{equation*}
\bar{v}_{i}=\sum_{k} c_{k}|B|_{i k} / \sum_{j, k} c_{j} c_{k}|B|_{j k} \tag{S4}
\end{equation*}
$$

and compression coefficient

$$
\begin{equation*}
\kappa R T=|B| / \sum_{j, k} c_{j} c_{k}|B|_{j k} . \tag{S5}
\end{equation*}
$$

Another very handy volumetric equation is ${ }^{2,3}$

$$
\begin{equation*}
\bar{v}_{k}=R T \kappa-\sum_{i=1}^{n} \bar{v}_{i} c_{i} \mathcal{G}_{i k}, \tag{S6}
\end{equation*}
$$

which can be proven in a straightforward manner. Eq. S 6 becomes a true statement after inserting Eqs. S4 and S5, using Eq. S1, and taking into account the cofactor expansion $\left(\sum_{i} B_{i k}|B|_{i j}=|B|\right.$ for $j=k$ and 0 otherwise).

2. Derivation of Eqs. 6 and

 8To calculate m-values we need to know how much the chemical activity of a protein state changes upon addition of an osmolyte (Eq. 4). The dependence of the chemical activity a_{k} of component k on component j is

$$
\begin{equation*}
-\gamma_{k j}=\sum_{i} \mathcal{G}_{i k} c_{i} \gamma_{i j}-\frac{\delta_{j k}}{c_{j}}+\frac{\delta_{1 k} \bar{v}_{j}}{c_{1} \bar{v}_{1}} \tag{S7}
\end{equation*}
$$

This can be proven using Eqs. S1 and S21 along with the cofactor expansion. The m-value is given according to Eq. 4 by the difference between the native and denatured states' version of Eq. S7. However, Eq. $S 7$ has $\gamma_{k j}$ on both sides of the equation. We solve for $\gamma_{k j}$ in two alternative ways. The variant containing preferential interactions is obtained by first subtracting $\mathcal{G}_{1 k}$ times the Gibbs-Duhem relation (Eq. S24) on the right hand side. Solving for $\gamma_{k j}$ yields

$$
\begin{equation*}
-\gamma_{k j}=\sum_{i \neq 1, k} \frac{\Gamma_{i k}}{1+\Gamma_{k k}} \gamma_{i j} . \quad \text { for } k \neq\{1, j\} \tag{S8}
\end{equation*}
$$

Eq. S7 may also be solved directly to obtain $\gamma_{k i}$ as a function of $\mathcal{G}_{i P}$. Forming the difference between

[^0]N and D state gives
$-\frac{m_{j}}{R T}=\sum_{i \neq 1, P} \gamma_{i j} \Delta \frac{\Gamma_{i P}}{1+\Gamma_{P P}}=\sum_{i \neq P} \gamma_{i j} \Delta \frac{c_{i} \mathcal{G}_{i P}}{1+c_{P} \mathcal{G}_{P P}}$,
remembering the definitions for m_{j} and $\gamma_{i j}$ in Eqs. 4 and 7. When the protein concentration is low, $\Gamma_{P P}$ and $c_{P} \mathcal{G}_{P P}$ vanish, so that Eq. 6 is obtained.

We show now that
$\mathcal{G}_{k P}=R T \kappa-\frac{\bar{v}_{P}+\gamma_{P k}}{c_{P} \gamma_{P P}}-\sum_{i \neq 1, P} \frac{\gamma_{P i} c_{i}\left(\mathcal{G}_{k i}-R T \kappa\right)}{c_{P} \gamma_{P P}}$,
holds, which also (using Eq. 3) leads to

$$
\begin{equation*}
\Gamma_{k P}=-\frac{\gamma_{P k} c_{k}}{\gamma_{P P} c_{P}}-\sum_{i \neq 1, P} \frac{\gamma_{P i} c_{i}}{\gamma_{P P} c_{P}} \Gamma_{k i} \tag{S11}
\end{equation*}
$$

For a proof, we first consider two sums. The first one is

$$
\begin{equation*}
\sum_{i} \gamma_{P i} c_{i}=\frac{v_{P}}{\kappa R T}-\frac{|B|_{P 1}}{v_{1}|B|} \tag{S12}
\end{equation*}
$$

where we first used Eq. S21, and then Eqs. S4 and S5. The other sum is treated similarly with the initial use of the definition in Eq. S1, and then of Eq. S6:

$$
\begin{equation*}
\sum_{i} \gamma_{P i} c_{i} \mathcal{G}_{k i}=-\gamma_{P k}-\frac{|B|_{P 1}}{v_{1}|B|} \tag{S13}
\end{equation*}
$$

The difference between Eq. S13 and $\kappa R T$ times Eq. S12 is then solved for $\mathcal{G}_{P k}$ to result in Eq. S10. The sum can be written to exclude water $(i=1)$, because $\gamma_{P 1}$ is zero (see Eq. S23).

Note that for low concentrations of protein (P) the term $c_{P} \gamma_{P P}$ becomes unity - a simplification of Eqs. S10 and S11 that we use in the main text.

3. Base transform to the molar scale

We would like to calculate $\left(\partial \mu_{m} / \partial c_{k}\right)_{c_{l \neq 1, k}}$ and need to convert Eq. S 3 to be a function of molarities c_{i}, rather than particle numbers N_{i}. One of the N_{i} has to be excluded from this transformation to retain a proper extensive property that defines the size of the system. It is convenient to choose the principal solvent water for this purpose. The base
transform from $\left(T, p, N_{1}, N_{i \neq 1}\right)$ to $\left(T, p, N_{1}, c_{i \neq 1}\right)$ is ${ }^{4}$

$$
\begin{equation*}
\left(\frac{\partial}{\partial c_{k}}\right)_{c_{l \neq 1, k}}=\sum_{i \neq 1}\left(\frac{\partial N_{i}}{\partial c_{k}}\right)_{c_{l \neq 1, k}}\left(\frac{\partial}{\partial N_{i}}\right)_{N_{l \neq i}} \tag{S14}
\end{equation*}
$$

As indices, T, p, and N_{1} are omitted here and in the following, because all partial derivatives have (T, p, N_{1}) as base elements, except for one case where specifically V is used in place of p. The primary unknown in Eq. S14 is

$$
\begin{equation*}
\left(\frac{\partial N_{i}}{\partial c_{k}}\right)_{c_{l \neq 1, k}}=V\left(\delta_{i k}+\frac{c_{i} \bar{v}_{k}}{c_{1} \bar{v}_{1}}\right) \tag{S15}
\end{equation*}
$$

where the partial molar volumes are defined as $\bar{v}_{i}=$ $\left(\partial V / \partial N_{i}\right)_{N_{l \neq i}}$.

First, we prove Eq. S15 for $i=k$. For this purpose we need the relation

$$
\begin{equation*}
\left(\frac{\partial N_{i}}{\partial N_{k}}\right)_{c_{l \neq 1, k}, i \neq 1, k}=c_{i}\left(\frac{\partial V}{\partial N_{k}}\right)_{c_{l \neq 1, k}, i \neq 1, k} \tag{S16}
\end{equation*}
$$

(where we used $N_{i}=c_{i} V$), and the base transform

$$
\begin{align*}
\left(\frac{\partial}{\partial N_{k}}\right)_{c_{l \neq 1, k}}= & \left(\frac{\partial}{\partial N_{k}}\right)_{N_{l \neq k}} \tag{S17}\\
& +\sum_{i \neq 1, k}\left(\frac{\partial N_{i}}{\partial N_{k}}\right)_{c_{l \neq 1, k}}\left(\frac{\partial}{\partial N_{i}}\right)_{N_{l \neq i}}
\end{align*}
$$

We apply Eq. S17 to V and use Eq. S16, which results in

$$
\begin{equation*}
\left(\frac{\partial V}{\partial N_{k}}\right)_{c_{l \neq 1, k}}=\frac{\bar{v}_{k}}{\phi_{1}+\phi_{k}} \tag{S18}
\end{equation*}
$$

where we used the fact that the volume fractions $\phi_{i}=c_{i} \bar{v}_{i}$ add up to unity. Inserting Eq. !S18 into Eq. S16 and the result into Eq. S17 gives

$$
\begin{align*}
\left(\frac{\partial c_{k}}{\partial N_{k}}\right)_{c_{l \neq 1, k}} & =\left(\frac{\partial c_{k}}{\partial N_{k}}\right)_{N_{l \neq k}}+\sum_{i \neq 1, k} \frac{c_{i} \bar{v}_{k}}{\phi_{1}+\phi_{k}}\left(\frac{\partial c_{k}}{\partial N_{i}}\right)_{N_{l \neq i}} \\
& =\frac{1}{V} \frac{\phi_{1}}{\phi_{1}+\phi_{k}} . \tag{S19}
\end{align*}
$$

Upon inversion (exchanging c_{k} and N_{k} as axes)
Eq. S19 yields Eq. S15 (for $k=i$).

Now, we prove Eq. S15 for $i \neq k$. We get

$$
\begin{align*}
& \left(\frac{\partial c_{k}}{\partial N_{i}}\right)_{c_{l \neq 1, k}}=\left(\frac{\partial c_{k}}{\partial N_{i}}\right)_{N_{l \neq i}}+\left(\frac{\partial N_{k}}{\partial N_{i}}\right)_{c_{l \neq 1, k}}\left(\frac{\partial c_{k}}{\partial N_{k}}\right) \\
& +\sum_{n \neq 1, i, k}\left(\frac{\partial N_{n}}{\partial N_{i}}\right)_{c_{l \neq 1, k}}\left(\frac{\partial c_{k}}{\partial N_{n}}\right)_{N_{l \neq n}}=\frac{1}{V} \frac{c_{1} \bar{v}_{1}}{c_{i} \bar{v}_{k}}, \tag{S20}
\end{align*}
$$

using Eqs. S16 and S18, and recognizing that $\left(\partial N_{n} / \partial N_{i}\right)_{c_{n}, c_{i}}=c_{n} / c_{i}$. Again, inversion leads to Eq. !S15 $(i \neq k)$.
To finish up the transform we insert Eq. S15 into Eq. S14, apply the derivative to the chemical potential μ_{m}, and express it in terms of Kirkwood Buff integrals by use of Eqs. S2 and S3. This expression is simplified using Eqs. S4 and S5. Noting also $\sum_{i>1} c_{i} \bar{v}_{i}=\left(1-\bar{v}_{1} c_{1}\right)$, yields

$$
\begin{equation*}
\left(\frac{\partial \mu_{m} / R T}{\partial c_{k}}\right)_{c_{l \neq 1, k}}=\frac{|B|_{m k}}{|B|}-\frac{\bar{v}_{k}}{\bar{v}_{1}} \frac{|B|_{m 1}}{|B|} . \tag{S21}
\end{equation*}
$$

Using Eq. S2, this results in

$$
\begin{equation*}
\left(\frac{\partial \mu_{m}}{\partial c_{k}}\right)_{c_{l \neq 1, k}}=\left(\frac{\partial \mu_{m}}{\partial c_{k}}\right)_{V, N_{l \neq k}}-\frac{\bar{v}_{k}}{\bar{v}_{1}}\left(\frac{\partial \mu_{m}}{\partial c_{1}}\right)_{V, N_{l}} . \tag{S22}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left(\frac{\partial \mu_{m}}{\partial N_{1}}\right)_{c_{l \neq 1}}=0 \tag{S23}
\end{equation*}
$$

holds, since the number of water molecules serves as the one and only scaling factor for the size of the system; and in the macroscopic limit no chemical potential should depend on the size of the system.

Incidentally, Eq. S22 also implies that the GibbsDuhem relation is valid in terms of molarities

$$
\begin{equation*}
\sum_{i \geq 1} c_{i}\left(\frac{\partial \mu_{i} / R T}{\partial c_{j}}\right)_{T, p, N_{1}, c_{l \neq 1, j}}=0 \tag{S24}
\end{equation*}
$$

References

(1) Kirkwood JG, Buff FP (1951) The statistical mechanical theory of solutions. I. J. Chem. Phys. 19(6) 774-777.
(2) Ben-Naim A., (1992) in Statistical Themodynamics for Chemists and Biochemists, (Plenum, NewYork) Chapter 6.
(3) Chitra R, Smith PE (2002) Molecular association in solution: A kirkwood-buff analysis of sodium chloride, ammonium sulfate, guanidinium chloride, urea, and 2,2,2-
trifluoroethanol in water. J. Phys. Chem. B 106(6) 1491-1500.
$N_{l \neq k}$ (4) Warner FW, (1983) in Foundations of Differentiable Manifolds and Lie Groups, (Springer, New York) 292.

[^0]: *To whom correspondence should be addressed

