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1. Fundamental Kirkwood-

Buff equations1

In Kirkwood-Buff Theory, the information on the
structure of the solution is summarized in the ma-
trix B with elements Bij

Bij = ciδij + cicjGij = Cov(Ni, Nj)/V, (S1)

where δij is the Kronecker delta. Chemical poten-
tial derivatives can be calculated using the deter-
minant |B| with cofactors |B|ij

(

∂µi

∂Nj

)

T,V,Nk 6=j

= RT
|B|ij
V |B|

. (S2)

The isochoric ensemble is readily transformed to
an isobaric one
(

∂µi

∂Nj

)

T,p,Nk 6=j

=

(

∂µi

∂Nj

)

T,V,Nk 6=j

−
v̄iv̄j
κV

. (S3)

Also obtained from B are the partial molar volume

v̄i =
∑

k

ck|B|ik

/

∑

j,k

cjck|B|jk (S4)

and compression coefficient

κRT = |B|/
∑

j,k

cjck|B|jk. (S5)

Another very handy volumetric equation is2,3

v̄k = RTκ−
n
∑

i=1

v̄iciGik, (S6)
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which can be proven in a straightforward manner.
Eq. S6 becomes a true statement after inserting
Eqs. S4 and S5, using Eq. S1, and taking into ac-
count the cofactor expansion (

∑

i Bik|B|ij = |B|
for j = k and 0 otherwise).

2. Derivation of Eqs. 6 and

8

To calculate m-values we need to know how much
the chemical activity of a protein state changes
upon addition of an osmolyte (Eq. 4). The de-
pendence of the chemical activity ak of component
k on component j is

−γkj =
∑

i

Gikciγij −
δjk
cj

+
δ1kv̄j
c1v̄1

(S7)

This can be proven using Eqs. S1 and S21 along
with the cofactor expansion. The m-value is given
according to Eq. 4 by the difference between the na-
tive and denatured states’ version of Eq. S7. How-
ever, Eq. S7 has γkj on both sides of the equation.
We solve for γkj in two alternative ways. The vari-
ant containing preferential interactions is obtained
by first subtracting G1k times the Gibbs-Duhem re-
lation (Eq. S24) on the right hand side. Solving for
γkj yields

−γkj =
∑

i 6=1,k

Γik

1 + Γkk

γij. for k 6= {1, j} (S8)

Eq. S7 may also be solved directly to obtain γki as
a function of GiP . Forming the difference between
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N and D state gives

−
mj

RT
=

∑

i 6=1,P

γij∆
ΓiP

1 + ΓPP

=
∑

i 6=P

γij∆
ciGiP

1 + cPGPP

,

(S9)
remembering the definitions for mj and γij in
Eqs. 4 and 7. When the protein concentration is
low, ΓPP and cPGPP vanish, so that Eq. 6 is ob-
tained.
We show now that

GkP = RTκ−
v̄P + γPk

cP γPP

−
∑

i 6=1,P

γPici (Gki −RTκ)

cP γPP

,

(S10)
holds, which also (using Eq. 3) leads to

ΓkP = −
γPkck
γPP cP

−
∑

i 6=1,P

γPici
γPP cP

Γki. (S11)

For a proof, we first consider two sums. The first
one is

∑

i

γPici =
vP
κRT

−
|B|P1

v1|B|
(S12)

where we first used Eq. S21, and then Eqs. S4 and
S5. The other sum is treated similarly with the
initial use of the definition in Eq. S1, and then of
Eq. S6:

∑

i

γPiciGki = −γPk −
|B|P1

v1|B|
. (S13)

The difference between Eq. S13 and κRT times
Eq. S12 is then solved for GPk to result in Eq. S10.
The sum can be written to exclude water (i=1),
because γP1 is zero (see Eq. S23).
Note that for low concentrations of protein (P )

the term cP γPP becomes unity – a simplification
of Eqs. S10 and S11 that we use in the main text.

3. Base transform to the mo-

lar scale

We would like to calculate (∂µm/∂ck)cl 6=1,k
and

need to convert Eq. S3 to be a function of molari-
ties ci, rather than particle numbersNi. One of the
Ni has to be excluded from this transformation to
retain a proper extensive property that defines the
size of the system. It is convenient to choose the
principal solvent water for this purpose. The base

transform from (T, p,N1, Ni 6=1) to (T, p,N1, ci 6=1)
is4

(

∂

∂ck

)

cl 6=1,k

=
∑

i 6=1

(

∂Ni

∂ck

)

cl 6=1,k

(

∂

∂Ni

)

Nl 6=i

.

(S14)

As indices, T , p, and N1 are omitted here and in
the following, because all partial derivatives have
(T, p,N1) as base elements, except for one case
where specifically V is used in place of p. The
primary unknown in Eq. S14 is

(

∂Ni

∂ck

)

cl 6=1,k

= V

(

δik +
civ̄k
c1v̄1

)

, (S15)

where the partial molar volumes are defined as v̄i =
(∂V/∂Ni)Nl 6=i

.
First, we prove Eq. S15 for i = k. For this pur-

pose we need the relation

(

∂Ni

∂Nk

)

cl 6=1,k,i 6=1,k

= ci

(

∂V

∂Nk

)

cl 6=1,k,i 6=1,k

(S16)

(where we used Ni = ciV ), and the base transform

(

∂

∂Nk

)

cl 6=1,k

=

(

∂

∂Nk

)

Nl 6=k

(S17)

+
∑

i 6=1,k

(

∂Ni

∂Nk

)

cl 6=1,k

(

∂

∂Ni

)

Nl 6=i

.

We apply Eq. S17 to V and use Eq. S16, which
results in

(

∂V

∂Nk

)

cl 6=1,k

=
v̄k

φ1 + φk

, (S18)

where we used the fact that the volume fractions
φi = civ̄i add up to unity. Inserting Eq. !S18 into
Eq. S16 and the result into Eq. S17 gives

(

∂ck
∂Nk

)

cl 6=1,k

=

(

∂ck
∂Nk

)

Nl 6=k

+
∑

i 6=1,k

civ̄k
φ1 + φk

(

∂ck
∂Ni

)

Nl 6=i

=
1

V

φ1

φ1 + φk

. (S19)

Upon inversion (exchanging ck and Nk as axes)
Eq. S19 yields Eq. S15 (for k = i).

SI-2



Now, we prove Eq. S15 for i 6= k. We get

(

∂ck
∂Ni

)

cl 6=1,k

=

(

∂ck
∂Ni

)

Nl 6=i

+

(

∂Nk

∂Ni

)

cl 6=1,k

(

∂ck
∂Nk

)

Nl 6=k

+
∑

n 6=1,i,k

(

∂Nn

∂Ni

)

cl 6=1,k

(

∂ck
∂Nn

)

Nl 6=n

=
1

V

c1v̄1
civ̄k

,

(S20)

using Eqs. S16 and S18, and recognizing that
(∂Nn/∂Ni)cn,ci = cn/ci. Again, inversion leads to
Eq. !S15 (i 6= k).
To finish up the transform we insert Eq. S15 into

Eq. S14, apply the derivative to the chemical po-
tential µm, and express it in terms of Kirkwood
Buff integrals by use of Eqs. S2 and S3. This ex-
pression is simplified using Eqs. S4 and S5. Noting
also

∑

i>1 civ̄i = (1− v̄1c1), yields

(

∂µm/RT

∂ck

)

cl 6=1,k

=
|B|mk

|B|
−

v̄k
v̄1

|B|m1

|B|
. (S21)

Using Eq. S2, this results in

(

∂µm

∂ck

)

cl 6=1,k

=

(

∂µm

∂ck

)

V,Nl 6=k

−
v̄k
v̄1

(

∂µm

∂c1

)

V,Nl

.

(S22)
Note that

(

∂µm

∂N1

)

cl 6=1

= 0 (S23)

holds, since the number of water molecules serves
as the one and only scaling factor for the size of the
system; and in the macroscopic limit no chemical
potential should depend on the size of the system.
Incidentally, Eq. S22 also implies that the Gibbs-

Duhem relation is valid in terms of molarities

∑

i≥1

ci

(

∂µi/RT

∂cj

)

T,p,N1,cl 6=1,j

= 0. (S24)
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