Supporting information

Potential Switchable Circularly Polarized Luminescence from Chiral Cyclometalated Platinum(II) Complexes

Xiao-Peng Zhang^a, Victoria Y. Chang^b, Jian Liu^a, Xiao-Liang Yang^a, Wei Huang^a, Yizhi Li^a, Cheng-Hui Li^{a,*}, Gilles Muller^{b,*}, Xiao-Zeng You^{a,*}

^aState Key laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, P. R. China

^bDepartment of Chemistry, San José State University, One Washington Square, San José, California 95192-0101, United States

E-mail: <u>chli@nju.edu.cn;</u> <u>gilles.muller@sjsu.edu;</u> <u>youxz@nju.edu</u>

Synthesis and characterization of complexes (+)-1, (+)-2 and (+)-3

 $[Pt((+)-L_1)(Dmpi)]Cl ((+)-1)$. To a vigorously stirred solution of $Pt((+)-L_1)Cl (1 \text{ mmol},$ 560 mg) in 20 mL dichloromethane pre-covered by 40 mL water, a small excess of 2,6dimethylphenylisocyanide (1.05 mmol, 138 mg) dissolved in 8 mL dichloromethane was added. After reaction for 1 hour at room temperature, the aqueous phase was separated and the solvents were evaporated and red powders were obtained (95%). The pure product was obtained after several recrystallizations in MeOH/H₂O solution. MS (ESI) (m/z): $[M]^+$ calcd for C₃₂H₃₀N₃Pt, 651.2; found, 651.3. Anal. Calcd for C₃₂H₃₀ClN₃Pt ((+)-1): C, 55.93; H, 4.40; N, 6.12%. Found: C, 55.89; H, 4.38; N, 6.08%. ¹H NMR (600 MHz, MeOD-d4, RT): δ 7.83 [s, 1H], 7.68 [t, J = 7.8 Hz, 1H], 7.60 [s, 1H], 7.59 [d, J =7.8 Hz, 1H], 7.26 [d, J = 7.8 Hz, 1H], 7.13 [d, J = 7.2 Hz, 1H], 6.94 [d, J = 7.2 Hz, 2H], $6.90 \text{ [d, } J = 7.2 \text{ Hz, } 1\text{H}, 6.76 \text{ [d, } J = 6.6 \text{ Hz, } 1\text{H}, 6.65 \text{ [t, } J = 6.6 \text{ Hz, } 1\text{H}, 6.43 \text{ [t, } J = 6.6 \text{ Hz}, 1\text{H}, 6.43 \text{ [t, } J = 6.6 \text{ [t,$ Hz, 1H], 3.14 [d, J = 18.0 Hz, 2H], 2.85-2.89 [m, 1H], 2.60 [t, J = 5.4 Hz, 1H], 2.38-2.41 [m, 1H], 1.95 [s, 6H], 1.46 [s, 3H], 1.22 [d, J = 10.8 Hz, 1H], 0.64 [s, 3H]. ¹³C NMR (151 MHz, MeOD-d4, RT): δ 165.0, 156.0, 155.7, 153.3, 150.1, 148.0, 147.8, 144.1, 139.7, 137.9, 136.4, 136.0, 132.5, 132.0, 130.0, 127.3, 127.1, 127.0, 125.9, 121.3, 121.1, 46.0, 40.7, 40.1, 34.4, 32.2, 25.9, 22.1, 19.8.

 $[Pt((+)-L_2)(Dmpi)]Cl ((+)-2)$. To a vigorously stirred solution of $Pt((+)-L_2)Cl (1 \text{ mmol}, 650 \text{ mg})$ in 50 mL dichloromethane, an equivalent amount of 2,6dimethylphenylisocyanide (1 mmol, 131 mg) dissolved in 30 mL dichloromethane was slowly added over 1 hour. After the reaction mixture was stirred at room temperature for 4 hours, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography on Al₂O₃ column with DCM/MeOH (20/1, v/v) as eluent to give a yellow solid (70%). MS (ESI) (m/z): $[M]^+$ calcd for C₃₉H₄₀N₃Pt, 745.3; found, 745.5. Anal. Calcd for C₃₉H₄₀ClN₃Pt ((+)-**2**): C, 59.95; H, 5.16; N, 5.38%. Found: C, 59.93; H, 5.13; N, 5.35%. ¹H NMR (600 MHz, CD₂Cl₂-d2, RT): δ 8.25 [s, 2H], 7.67 [s, 2H], 7.55 [d, *J* = 7.8 Hz, 2H], 7.45 [t, *J* = 7.8 Hz, 1H], 7.36 [t, *J* = 7.8 Hz, 1H], 7.32 [d, *J* = 7.8 Hz, 2H], 3.18-3.21 [m, 4H], 2.81-2.83 [m, 2H], 2.77-2.80 [m, 2H], 2.60 [s, 6H], 2.38-2.41 [m, 2H], 1.44 [s, 6H], 1.28 [d, *J* = 10.2 Hz, 2H], 0.71 [s, 6H]. ¹³C NMR (151 MHz, CD₂Cl₂-d2, RT): δ 168.5, 166.3, 152.1, 150.2, 145.6, 144.7, 136.2, 131.3, 129.1, 127.2, 126.1, 124.1, 121.0, 45.0, 39.9, 39.6, 33.9, 31.8, 25.8, 21.6, 19.5. The compound (+)-**2**-OTf was obtained by replacement Cl with OTf anion. An aqueous solution (10 mL) of silver trifluoromethanesulfonate (0.22 mmol, 56.5 mg) was added into a 20 mL dichloromethane solution of (+)-**2** (0.2 mmol, 156.2 mg). After vigorously stirring for 15 minutes, the organic phase was separated and evaporated under vacuum.

 $[Pt_3((+)-L_2)_2(Dmpi)_4](ClO_4)_4$ ((+)-3). A mixture of (+)-2 (1 mmol, 781 mg) and excess 2,6-dimethylphenylisocyanide (2 mmol, 262 mg) was stirred in 40 mL dichloromethane at room temperature. After stirring vigorously for 24 hours, an aqueous solution of AgClO₄ (2 mmol, 414 mg) was added and reacted for another 24 hours. The organic layer was separated, and the aqueous phase was extracted twice with dichloromethane (20 mL×2). The organic layer was combined and washed twice with water, then dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was washed with n-hexane twice, and green-yellow crystals were isolated by recrystallization in chloroform at 273K (50%). MS (ESI) (m/z): $[M]^{4+}$ calcd for C₉₆H₉₈N₈Pt₃, 487.0; found, 487.5. Anal. Calcd for C₉₆H₉₈Cl₄N₈O₁₆Pt₃ ((+)-3): C, 49.13; H, 4.21; N, 4.77%.

Found: C, 49.10; H, 4.17; N, 4.75%. ¹H NMR (400 MHz, CD₂Cl₂-d2, 273.15 K): δ 9.29 [s, 2H], 7.79 [s, 2H], 7.73 [d, *J* = 7.6 Hz, 2H], 7.39-7.44 [m, 8H], 7.25 [d, *J* = 7.6 Hz, 4H], 7.21 [t, *J* = 7.6 Hz, 2H], 7.04 [d, *J* = 7.6 Hz, 4H], 6.52 [d, *J* = 7.2 Hz, 2H], 3.36-3.41 [m, 2H], 3.20-3.25 [m, 2H], 2.71-2.75 [m, 6H], 2.46 [s, 12H], 2.42-2.44 [m, 2H], 2.22-2.32 [m, 6H], 2.17 [s, 12H], 1.98-2.02 [m, 2H], 1.33 [s, 6H], 1.11 [s, 6H], 1.06-1.09 [m, 2H], 0.57 [s, 6H], 0.33 [s, 6H], -0.53 [m, 2H]. ¹³C NMR (100 MHz, CD₂Cl₂-d2, 273.15 K): δ 164.2, 160.0, 152.6, 149.5, 148.2, 148.0, 147.7, 147.2, 145.0, 144.5, 143.0, 142.8, 136.6, 136.0, 131.9, 131.5, 131.1, 129.1, 128.7, 127.9, 127.1, 125.2, 124.7, 123.4, 122.3, 119.4, 44.5, 43.9, 39.6, 39.2, 39.0, 38.8, 34.0, 33.1, 32.0, 30.1, 25.6, 25.2, 22.1, 21.4, 19.2, 18.8.

Figure S1. The ¹H NMR spectrum of (–)-1 (Bruker DRX-600, RT).

Figure S2. The ¹³C NMR spectrum of (–)-1 (Bruker DRX-600, RT).

Figure S3. The ¹³C/DEPT 135° NMR spectrum of (-)-1 (Bruker DRX-600, RT).

Figure S4. The ¹³C/DEPT 90° NMR spectrum of (–)-1 (Bruker DRX-600, RT).

Figure S5. The ${}^{1}\text{H} - {}^{1}\text{H}$ COSY NMR spectrum of (-)-1 (Bruker DRX-600, RT).

Figure S6. The HSQC NMR spectrum of (-)-1 (Bruker DRX-600, RT).

Figure S7. The HMBC NMR spectrum of (-)-1 (Bruker DRX-600, RT).

Figure S8. The ¹H NMR spectrum of (–)-2 (Bruker DRX-600, RT).

Figure S9. The ¹³C NMR spectrum of (–)-2 (Bruker DRX-600, RT).

Figure S10. The ¹³C/DEPT 135° NMR spectrum of (-)-2 (Bruker DRX-600, RT).

Figure S11. The ¹³C/DEPT 90° NMR spectrum of (-)-2 (Bruker DRX-600, RT).

Figure S12. The ${}^{1}H - {}^{1}H COSY NMR$ spectrum of (-)-2 (Bruker DRX-600, RT).

Figure S13. The HSQC NMR spectrum of (-)-2 (Bruker DRX-600, RT).

Figure S14. The HMBC NMR spectrum of (-)-2 (Bruker DRX-600, RT).

Figure S15. The ¹H NMR spectrum of (–)-**3** (Bruker DRX-400, 273.15 K).

Figure S16. The ¹³C NMR spectrum of (-)-3 (Bruker DRX-400, 273.15 K).

Figure S17. The ¹³C/DEPT 135° NMR spectrum of (-)-3 (Bruker DRX-400, 273.15 K).

Figure S18. The ¹³C/DEPT 90° NMR spectrum of (–)-**3** (Bruker DRX-400, 273.15 K).

Figure S19. The ${}^{1}H - {}^{1}H COSY NMR$ spectrum of (-)-3 (Bruker DRX-400, 273.15 K).

Figure S20. The HSQC NMR spectrum of (–)-3 (Bruker DRX-400, 273.15 K).

Figure S21. The HMBC NMR spectrum of (–)-3 (Bruker DRX-400, 273.15 K).

Figure S22. Pt $4f_{5/2}$ and $4f_{7/2}$ core levels of XPS for complexes (-)-1, (-)-2 and (-)-3.

Figure S23. Photograph of hydrogels of (–)-1.

Figure S24. SEM (left) and TEM (right) of hydrogels of (-)-1.

Figure S25. X-ray crystal structure of **2**-OTf. H atoms as well as anions are omitted for clarity, and the percentage of thermal ellipsoid probability is 30%.

Figure S26. Crystal packing diagram of complex **2-**OTf. H atoms and anions are omitted for clarity.

Figure S27. Crystal packing diagram of complex (–)-**3**. H atoms, solvent molecules and anions are omitted for clarity.

Figure S28. X-ray crystal structure (left) and crystal packing diagram (right) of (–)-**3'**. H atoms, solvent molecules as well as anions are omitted for clarity, and the percentage of thermal ellipsoid probability is 30%.

Figure S29. Excitation (dash line) and emission (solid line, $\lambda_{ex} = 420$ nm) spectra of (–)-1 (5×10⁻⁵ mol·L⁻¹) in mixed solution of MeOH and H₂O in the ratios shown. * indicates artifacts

Figure S30. Emission spectra of (-)-2 (5×10⁻⁵ mol·L⁻¹) and (-)-3 (2.5×10⁻⁵ mol·L⁻¹) in dichloromethane solution ($\lambda_{ex} = 370$ nm). * indicates artifacts.

Figure S31. UV-Vis absorption, ECD spectra and g_{abs} factor of (–)-1 with different concentrations in water.

Figure S32. Emission spectra of (-)-1 with different concentrations in water.

Figure S33. Resonance light scattering (RLS) spectra of (-)-1 (5×10⁻⁵ mol·L⁻¹) in mixed solution of MeOH and H₂O in the ratios shown.

Figure S34. Emission spectra of (–)-1 (5×10⁻⁵ mol·L⁻¹) in H₂O (λ_{ex} = 420 nm) with different temperatures. * indicates artifacts.

Figure S35. UV-Vis, ECD spectra and g_{abs} factor of (–)-3 in dichloromethane at 2.5×10⁻⁵ mol·L⁻¹ with different temperatures.

Figure S36. Emission spectra of (–)-3 ($2.5 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) in dichloromethane solution ($\lambda_{\text{ex}} = 370 \text{ nm}$) with different temperatures. * indicates artifacts.

Figure S37. (a) Circularly polarized luminescence (upper curves) and total luminescence (lower curves) spectra of (–)-1 and (+)-1 (left panel) in 1 mM aqueous solutions at 353K, and (b) (–)-3 and (+)-3 (right panel) in 1 mM MeOH solutions at 295 K.

Table S1. Structural parameters of complexes (-)-1, 2-OTf, (-)-3, (+)-3 and (-)-3' determined by X-ray single crystal diffraction.

Bond Length	(-)-1	2- OTf	Bond Length	(-)-3	(+)-3	(-)-3′
Pt1-C1	2.018(15)	1.960(10)	Pt1-C1	2.004(8)	2.012(7)	2.062(8)
Pt1-C2	1.87(3)	2.035(10)	Pt1-C31	2.028(9)	2.033(7)	1.937(9)
Pt1-N1	1.915(15)	2.039(5)	Pt1-C40	1.976(9)	1.977(8)	2.007(9)
Pt1-N2 (N1A)	2.12(3)	2.039(5)	Pt1-N1	2.017(7)	2.033(6)	2.048(7)
Pt2-C3	2.016(10)		Pt2-N2	2.144(6)	2.157(6)	2.182(7)
Pt2-C4	1.86(3)		Pt1-Pt2	2.8862(3)	2.8909(3)	2.8749(3)
Pt2-N3	1.923(9)					
Pt1-N4	2.106(8)					
Bond Angles	(-)-1	2- OTf	Bond Angles	(-)-3	(+)-3	(-)-3′

C1-Pt1-C2	97.7(13)	180.000(1)	C1-Pt1-C31	94.7(2)	95.2(3)	94.8(4)
C1-Pt1-N1	81.5(9)	79.84(16)	C1-Pt1-C40	174.7(2)	174.1(2)	175.1(4)
C1-Pt1-N2	160.1(10)	79.84(16)	C1-Pt1-N1	79.9(2)	79.2(2)	80.5(3)
(NTA) C2-Pt1-N1	177.6(12)	100.16(16)	C1-Pt1-Pt2	69.00(18)	69.09(16)	69.5(2)
C2-Pt1-N2	102.1(15)	100.16(16)	C31-Pt1-C40	90.5(3)	90.4(2)	89.9(4)
N1-Pt1-N2	78.7(10)	159.7(3)	C31-Pt1-N1	171.4(3)	171.0(2)	169.9(3)
(NTA) C3-Pt2-C4	96.6(14)		C31-Pt1-Pt2	93.4(2)	93.78(18)	94.6(2)
C3-Pt2-N3	81.9(5)		C40-Pt1-N1	94.8(3)	95.0(2)	94.6(3)
C3-Pt2-N4	161.2(5)		C40-Pt1-Pt2	112.1(3)	112.2(2)	111.9(3)
C4-Pt2-N3	178.2(13)		N1-Pt1-Pt2	90.97(18)	90.79(16)	92.13(19)
C4-Pt2-N4	102.1(14)		N2-Pt2- Pt1	87.55(16)	87.22(14)	86.97(17)
N3-Pt2-N4	79.4(3)		N2-Pt2-N2'	176.8(4)	176.5(3)	173.2(4)
			Pt1-Pt2-Pt1'	158.47(2)	158.53(2)	160.74(2)

Table S2. Absorption and emission data of (-)-1, (-)-2 and (-)-3 in solution.

	294K	273K
Absorption $\lambda_{max}/nm (\varepsilon /Lmol^{-1}cm^{-1})$ of (-)-1 in methanol	248 (41800), 269 (36900), 336 (16000), 354 (17400), 410 (700)	
Absorption $\lambda_{max}/nm (\epsilon /Lmol^{-1}cm^{-1})$ of (-)-1 in water	242 (22100), 262(19200), 335 (7390), 450 (2570), 491(1910), 523 (1120)	
Absorption $\lambda_{max}/nm \ (\epsilon \ /Lmol^{-1}cm^{-1}) \ of \ (-)-2$ in CH_2Cl_2	263 (43300), 292 (28900), 330 (19100), 350 (7790), 371sh (5170), 404sh (1340)	
Absorption λ_{max}/nm (ε /Lmol ⁻¹ cm ⁻¹) of (-)-3 in CH ₂ Cl ₂	254 (121000), 291 (89300), 331 (45400), 350 (21500), 369sh (14200), 388sh (6270)	276 (92300), 293sh (78800), 330 (21300), 354 (19500), 390sh (12600)
Emission λ_{max} /nm of (–)-1 in methanol ^a	521, 550 (sh)	
Emission λ_{max} /nm of (–)-1 in water ^a	640	
Emission λ_{max} /nm of (–)-2 in CH ₂ Cl ₂ ^b	489, 524, 563 (sh)	
Emission λ_{max} /nm of (–)- 3 in CH ₂ Cl ₂ ^c	489, 524, 563 (sh)	499, 527
^a (-)-1: $\lambda_{ex} = 420$ nm. ^b (-)-2: $\lambda_{ex} = 370$ nm. ^c (-)-3: $\lambda_{ex} = 370$ nm.		