SUPPORTING INFORMATION

Matching the decay half-life with the biological half-life: ImmunoPET imaging with ⁴⁴Sclabeled Cetuximab Fab fragment

Rubel Chakravarty,^{#1,2} Shreya Goel, ^{#3} Hector F. Valdovinos,⁴ Reinier Hernandez,⁴ Hao Hong,¹ Robert J. Nickles,⁴ and Weibo Cai *^{1,4,5}

¹ Department of Radiology, University of Wisconsin - Madison, WI, USA

² Isotope Production and Applications Division, Bhabha Atomic Research Centre, Mumbai, India

³ Materials Science Program, University of Wisconsin-Madison, WI, USA

⁴ Department of Medical Physics, University of Wisconsin - Madison, WI, USA

⁵ University of Wisconsin Carbone Cancer Center, Madison, WI, USA

[#]Both the authors contributed equally

***Requests for reprints:**

Weibo Cai, PhD, Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI 53705-2275, USA.
Email: <u>wcai@uwhealth.org</u>; Phone: 608-262-1749; Fax: 608-265-0614

Experimental Section

Optimization of radiolabeling condition

The pH of the reaction medium plays a crucial role in affecting the radiolabeling yield and specific activity of the radiolabeled agent. In order to determine the optimum pH, the radiolabeling of CHX-A"-DTPA with ⁴⁴Sc was carried out under different pH conditions. For this purpose, ⁴⁴Sc (74 MBq) was diluted in 500 μ L of 0.5 M sodium acetate buffer and added to 20 μ g of CHX-A"-DTPA. The pH of the reaction mixture was carefully adjusted to the desired values (3.0, 4.5, 6.5, and 8.0) and incubated for 30 min at room temperature (25 °C) with constant shaking. The radiolabeling yield was determined by thin layer chromatography (TLC), adopting the reported procedure.¹ The chromatogram was developed using 50% aqueous acetonitrile as the eluent and it was observed that ⁴⁴Sc-CHX-A"-DTPA migrated towards the solvent front (R_f = 0.8-0.9), while under identical conditions unlabeled ⁴⁴Sc³⁺ remained at the point of application (R_f = 0). The radiolabeling yield of ⁴⁴Sc-CHX-A"-DTPA was found to be maximum (> 80%) when the reaction was carried out at pH ~4.5 (*Figure S2*). Therefore, all subsequent ⁴⁴Sc-labeling reactions using CHX-A"-DTPA-Cetuximab-Fab was carried out at this pH to maximize the radiolabeling yield and specific activity of the radiolabeled agent.

Histology

To further validate that tumor uptake of ⁴⁴Sc-CHX-A"-DTPA-Cetuximab-Fab was indeed EGFR specific, U87MG (high EGFR expression) and Caco-2 (low EGFR expression) tumorbearing mice were each injected with a larger dose of Alexafluor350-Cetuximab-Fab (5 mg/kg of mouse body weight) and euthanized at 4 h p.i. The tissues (tumor, liver, kidney and muscle) were dissected and frozen in the Tissue-TEK embedding medium to prevent the tissues from degradation. The frozen tissue samples were sectioned to obtain slices of 7 μ m thickness. The frozen tissue slices were then fixed with cold acetone for 10 min and dried in the air for 30 min. After rinsing with PBS and blocking with 10 % donkey serum for 30 min at room temperature, the slices were incubated with Cetuximab ($0.5 \mu g/mL$) for 1 h at 4 °C and visualized using FITC-labeled donkey anti-rat IgG. After washing with PBS, all images were acquired with a Nikon Eclipse Ti microscope.

In tissues from U87MG tumor bearing mice, accumulation of Alexafluor350-Cetuximab-Fab (blue fluorescence) co-localized with the expression of EGFR in tumor tissues (green fluorescence) (*Figure S5*). The excellent overlay of blue and green signals in U87MG tumors suggested that Alexafluor350-Cetuximab-Fab binds specifically to EGFR. Very faint signals were observed in muscles which serve as the control. The absence of blue signal from Caco-2 tumors further confirms the EGFR specificity of Cetuximab-Fab.

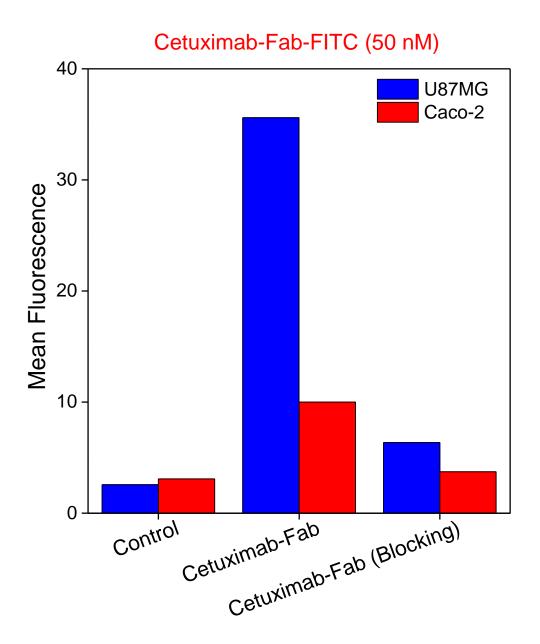
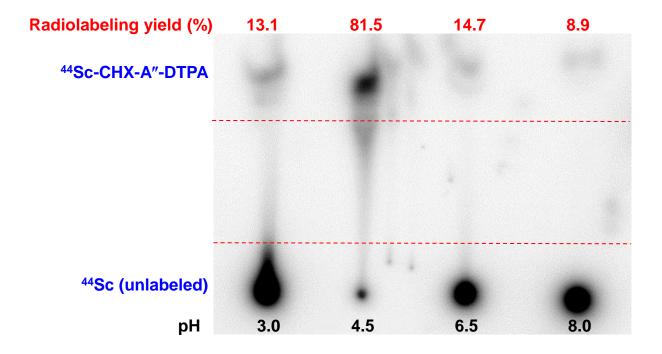
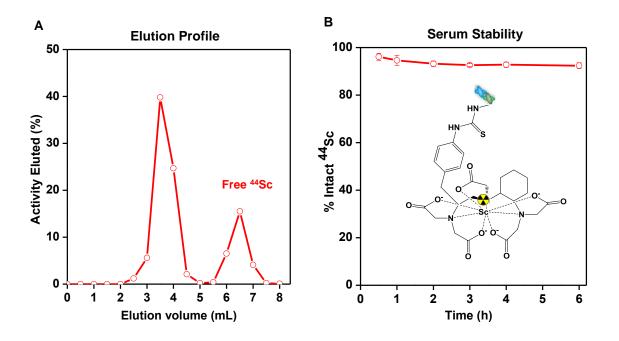

Supplementary Table

Table S1: Determination of ⁴⁴Sc labeling yields when different BFCs were conjugated with Cetuximab-Fab. All reactions were carried out at room temperature ($25 \degree$ C) for 30 min.


BFC used for	Radiolabeling yield	Theoretical stability	Reference
conjugation with	(%)	constant $(\log K_{ML})^{@}$	
Cetuximab-Fab			
DOTA	21±3	30.8	(2)
NOTA	14±1	16.5	(3, 4)
DTPA	68±2	27.4	(2)
CHX-A"-DTPA	66±5	#	#

[@]K_{ML}=[ML]/[M][L]; #not reported.


Supplementary Figures

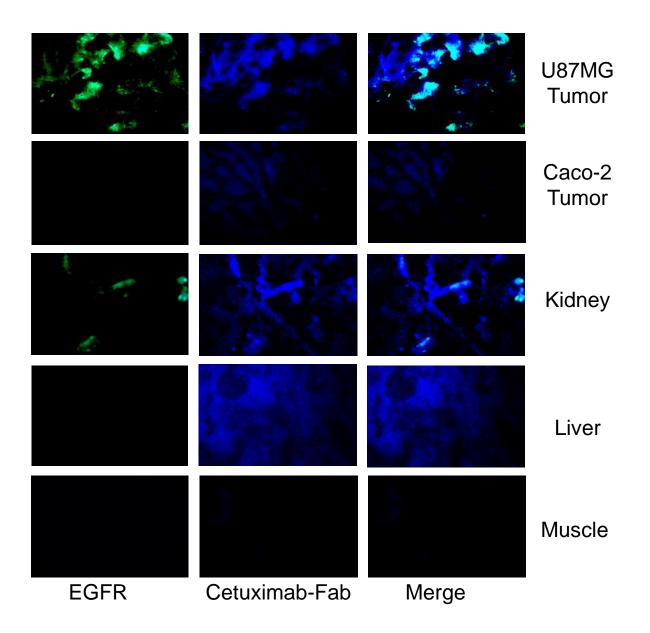

Figure S1: Mean fluorescence intensities of U87MG and Caco-2 cells for targeted and blocking groups in flow cytometry studies.

Figure S2: Determination of radiolabeling yields of ⁴⁴Sc-CHX-A"-DTPA when reaction was carried out under different pH conditions. The unlabeled ⁴⁴Sc remains at the point of application while ⁴⁴Sc- CHX-A"-DTPA migrates to the solvent front.

Figure S3: (**A**) Elution profile of ⁴⁴Sc-CHX-A"-DTPA-Cetuximab-Fab from PD-10 column. (**B**) Serum stability of ⁴⁴Sc-CHX-A"-DTPA-Cetuximab-Fab.

Figure S4: Immunofluorescence staining of U87MG tumor, Caco-2 tumor, kidney, liver, and muscle tissue sections.

References

- (1) Chakravarty, R., Chakraborty, S., and Dash, A. (2014) A systematic comparative evaluation of ⁹⁰Ylabeled bifunctional chelators for their use in targeted therapy. *Journal of labelled compounds & radiopharmaceuticals 57*, 65-74.
- (2) Pniok, M., Kubicek, V., Havlickova, J., Kotek, J., Sabatie-Gogova, A., Plutnar, J., Huclier-Markai, S., and Hermann, P. (2014) Thermodynamic and Kinetic Study of Scandium(III) Complexes of DTPA and DOTA: A Step Toward Scandium Radiopharmaceuticals. *Chemistry (Weinheim an der Bergstrasse, Germany) 20*, 7944-55.
- (3) Majkowska-Pilip, A., and Bilewicz, A. (2011) Macrocyclic complexes of scandium radionuclides as precursors for diagnostic and therapeutic radiopharmaceuticals. *Journal of inorganic biochemistry 105*, 313-20.
- (4) Price, E. W., and Orvig, C. (2014) Matching chelators to radiometals for radiopharmaceuticals. *Chemical Society reviews 43*, 260-90.