Perylene as an Organic Photocatalyst for the Radical Polymerization of Functionalized Vinyl Monomers through Oxidative Quenching with Alkyl Bromides and Visible Light

Garret M. Miyake and Jordan C. Theriot

Figure SI 1. Structures of dyes and initiators examined in this study.

Table SI 1. Results of the Polymerization of Methyl Methacrylate.^[a]

Run No	[MMA]:[I]:[Dye]	Dye	Ι	Yield (%) ^[b]	<i>M</i> _w (kDa) ^[c]	<i>M</i> n (kDa) ^[c]	$m{ heta}{(M_{w}/M_{n})}^{[c]}$	Theo. <i>M</i> n (kDa) ^[d]	/* (EBP) (%) ^[e]	/* (1) (%) ^[f]										
S1	875:9:1	Eosin Y	MBI	Trace																
S2	875:9:1	Fluorescein	MBI	0																
S3	875:9:1	<i>N,N</i> -bis(3-Pentyl) Perylene-3,4,9,10- bis(dicarboximide)	MBI	12.9	163	125	1.38	1.26 (11.3)	1.0	9.0										
S4	875:9:1	Perylene	MBI	43.8	78.1	61.5	1.27	4.26 (38.4)	6.9	62										
S5	875:9:1	Perylene	EBP	47.9	50.1	35.0	1.43	4.66 (41.9)	13	120										
S6	875:9:1	Perylene	EBF	48.1	67.7	48.7	1.39	4.68 (42.1)	9.6	87										
S7	875:9:1	Perylene	DBM	51.8	135	78.0	1.73	5.04 (45.4)	6.5	58										
S8	875:9:1	Perylene	DMM	41.9	51.4	34.9	1.47	4.08 (36.7)	12	105										

^[a]Performed in 4.00 mL of DMF and with 1.00 mL (9.35 mmol, 875 equiv) of MMA, 2.7 mg (10.7 µmol, 1 equiv) and 96.3 µmol of the initiator specified in Table SI 1. Samples were irradiated by a white LED for 24 hours before work-up. Initiators (I) used were ethyl α -bromophenylacetate (EBP), methyl α -bromoisobutyrate (MBI), ethyl bromodifluoracetate (EBF), diethyl bromomalonate (DBM), and diethyl 2-bromo-2-methylmalonate (DMM). ^[b]Isolated yield. ^[c]Determined by light-scattering. ^[d]Theoretical M_n calculated by [MMA]/[I] or [MMA]/[dye] (in parenthesis) * polymer yield. Initiator efficiency (I^*) = theoretical M_n / experimental M_n * 100 calculated using the theoretical M_n based on [MMA]/[I]^[e] or [MMA]/[dye]^[f].

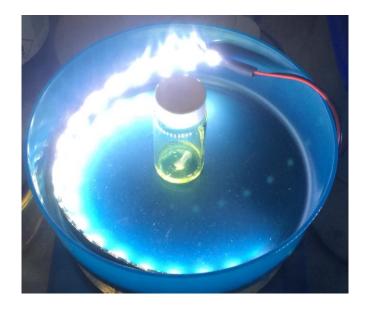
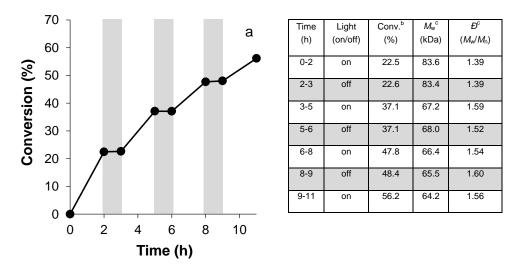
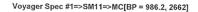




Figure SI 2. Photograph of experimental setup for polymerizations conducted using LED irradiation.

Figure SI 3. A plot of monomer conversion vs time (left) for the polymerization of MMA using a pulsed light sequence. A table (right) of the molecular weight properties of the polymer at each time point. Performed in 1.00 mL of DMF and 1.00 mL (0.935 mmol) MMA. [MMA]:[EBP]:[1] = 875:9:1.

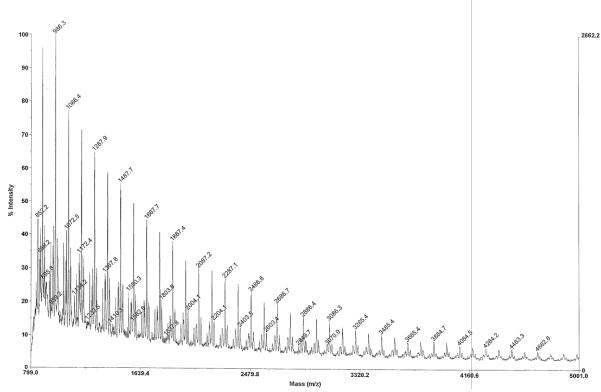
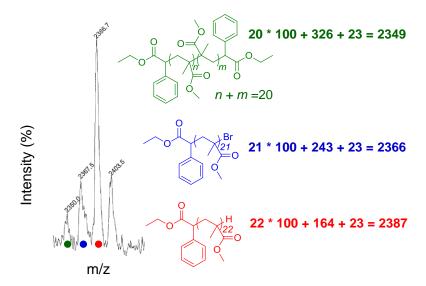



Figure SI 4. Spectrum from MALDI-TOF analysis of a poly(MMA) oligomer.

Figure SI 5. A portion of the MALDI-TOF spectrum with the assignment of the peaks to an oligomer with the specified number of MMA repeat units, the identified chain-end groups, and sodium (ionizing agent).

Table SI 2. Polymerization Results of the Chain-Extension Polymerization from a Poly(MMA) Macroinitiator.^[a]

Run No	Co-Monomer	Yield (%) ^[b]	M _w (kDa) ^[c]	<i>M</i> _n (kDa) ^[c]	$ \frac{1}{(M_w/M_p)^{[c]}} $
S9	MMA	35.5	343	237	1.45
S10	BMA	23.1	523	205	2.55
S11	BA	18.1	219	130	1.68
S12	S	9.2	165	119	1.39

^[a]Performed using the conditions described in the Experimental Section. ^[b]Isolated yield. ^[c]Determined by light-scattering.

Styrene Polymerization

The polymerization used the general conditions described in the Experimental Section. A 20 mL was loaded with a stir bar, 2.7 (10.7 μ mol, 1 equivalent) mg of perylene, 1.00 mL DMF, and 1.07 mL (9.31 mmol, 870 equivalents) of styrene. 16.4 μ L (93.7 μ mol, 9 equivalents) EPB was added by syringe. The polymerization was irradiated by a white LED for 23 hours before the reaction was terminated and 167 mg (17.2 %) of polystyrene was isolated as mentioned above. $M_w = 84.5$ kDa, D = 1.39.