Sequential Sonagashira and Larock Indole Synthesis Reactions in a General Strategy To Prepare Biologically Active β -Carboline-Containing Alkaloids

Xiaohong Pan and Thomas D. Bannister*
The Scripps Research Institute, Translational Research Institute and Department of Chemistry, Jupiter, Florida 33458, United States

Supporting Information

Table of Contents
General Information S-2
Synthesis and Characterization of Compounds S-3
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra S-18

General Information

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Brüker Ultrashield 400 at 400 MHz . Chemical shifts are reported in parts per million (ppm) using an internal standard, $\mathrm{CHCl}_{3}(\delta 7.26)$, $\mathrm{MeOH}(\delta 3.34)$ or DMSO ($\delta 2.54) .{ }^{13} \mathrm{C}$ NMR spectra were record on a Brüker Ultrashield 400 at 100 MHz . Chemical shifts are reported in parts per million (ppm) using an internal standard, $\mathrm{CHCl}_{3}(\delta 77.36)$, MeOH ($\delta 49.86$) or DMSO ($\delta 40.45$). High resolution mass spectra were recorded on an Agilent 6230 TOF LC/MS spectrometer. Infrared (IR) spectra were collected on a Perkin Elmer Spectrum One FT-IR spectrometer. Reagents and anhydrous solvents were used as obtained from commercial vendors.

Experimental Procedures

General procedure for Sonagashira coupling reactions: preparation of compound

8. A solution of 2-bromopyridine ($3.16 \mathrm{~g}, 20 \mathrm{mmol}$), 3-butyn-1-ol ($1.68 \mathrm{~g}, 24 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(421 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{CuI}(228 \mathrm{mg}, 1.2 \mathrm{mmol})$ in dry $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{~mL})$ was stirred at room temperature for 2 h . Silica gel was added, and the resulting mixture was evaporated and separated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $/ \mathrm{EtOAc}=1 / 2$), providing compound $\mathbf{8}(2.87 \mathrm{~g}, 98 \%)$ as an oil: IR (neat $\left.\mathrm{cm}^{-1}\right) 3271,1585,1464,1047$, $775 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=8.0$ and 1.2 Hz , $1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=6.8$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{br}, 1 \mathrm{H}), 3.84(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.62, 143.43, 136.68, 127.07, 122.86, 88.92, 81.45, 60.68, 24.00; HRMS (ES) m / e calc'd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}$ $(\mathrm{M}+\mathrm{H})^{+} 148.0757$, found 148.0761 .

General procedure for Larock indole synthesis reactions: preparation of

 compound 10. 2-bromoaniline ($35 \mathrm{mg}, 0.2 \mathrm{mmol}$), alkyne 8 ($30 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 0.005 \mathrm{mmol}), 1,1$ '-bis(diphenylphosphino)ferrocene $(5.6 \mathrm{mg}, 0.01$ $\mathrm{mmol})$, and $\mathrm{KHCO}_{3}\left(60 \mathrm{mg}, 0.6 \mathrm{mmol}\right.$; note, in some later examples $\mathrm{K}_{2} \mathrm{CO}_{3}$ was instead used) were added to dry and degassed DMF (1 mL). The solution was heated for 4 h at $110{ }^{\circ} \mathrm{C}$, after which time the reaction was complete, as determined by LCMS analysis. Water was added and the mixture was extracted with ethyl acetate. The organic extracts were combined, dried and purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $=$ $1 / 1)$, providing compound $\mathbf{1 0}(44.8 \mathrm{mg}, 95 \%)$ as a solid: IR (neat $\left.\mathrm{cm}^{-1}\right) 3174,2849,1596$, 1066, 788; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~m}$,$1 \mathrm{H}), 7.74(\mathrm{td}, J=8.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.33(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.67,148.89,137.62$, 136.48, 133.71, 129.58, 123.9, 122.26, 121.64, 120.11, 119.51, 113.07, 111.77, 63.5, 28.01; HRMS (ES) m/e calc'd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$239.1179, found 239.1180.

In optimizing this procedure, the crude reaction mixtures were analyzed with LCMS. Bases such as $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{KHCO}_{3}, \mathrm{NaHCO}_{3}, \mathrm{Et}_{3} \mathrm{~N}$ were studied, but only KHCO_{3} and $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave the best and similar results. Catalysts such as $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ and $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{DPPF}$ were tested, $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{DPPF}$ was much better. The addition of LiCl lowered the yield probably due to the moisture in LiCl . The catalyst $\left(\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{DPPF}\right)$ loading was lowered to 1%, and the yield was 90% after 12 h .

General procedure for triflate cyclization reactions: preparation of compound 11. To a solution of compound $\mathbf{1 0}(36 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(24 \mathrm{mg}, 0.225 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(1.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added trifluoromethanesulfonic anhydride ($34 \mu \mathrm{~L}$, 0.18 mmol). After stirring for an additional 5 min the resulting yellow precipitate was collected by filtration, the solid was washed with CHCl_{3}, and then was identified as compound 11 ($52.2 \mathrm{mg}, 94 \%$): IR (neat cm^{-1}) $3281,1557,1256,1149,746 ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{td}, J=8.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{td}, J=7.6$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) δ 146.45, $146.35,143.95,140.31,127.29,126.07,125.61,124.27,123.22,121.74,121.63,118.62$,
113.59, 56.66, 19.76; HRMS (ES) m / e calc'd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2}$ (M-OTf) ${ }^{+}$221.1079, found 221.1080.

Indolopyridocoline triflate 12. A solution of $\mathbf{1 1}(100 \mathrm{mg}, 0.27 \mathrm{mmol})$ and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone ($92 \mathrm{mg}, 0.405 \mathrm{mmol}$) in acetic acid (1 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature the resulting precipitate was filtered and washed with acetic acid and acetone to provide $\mathbf{1 2}(90 \mathrm{mg}, 90 \%)$ as a brown solid: IR (neat cm^{-1}) 3185, 1245, 1153, 1029, 751; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 13.54$ $(\mathrm{s}, 1 \mathrm{H}), 9.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.93$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.53-8.49(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ 142.17, 137.96, 136.87, 133.20, 131.44, 130.45, 128.44, 123.86, 123.04, 122.84, 122.59, 122.39, 121.47, 117.66, 113.68; HRMS (ES) m / e calc'd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2}$ (M-OTf) $^{+} 219.0922$, found 219.0929.

Norketoyobyrine 13. A solution of $22(105 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(165 \mathrm{mg}, 0.5$ $\mathrm{mmol})$ and $\mathrm{NaOH}(300 \mathrm{mg}, 7.5 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was stirred at room temperature for 12 h and extracted with ethyl acetate. The extracts were combined, dried and purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $\left.=4 / 1\right)$ to provide $\mathbf{1 3}$ ($36 \mathrm{mg}, 51 \%$) as a solid. All data for this compound matched that previously reported (Grigg, R.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron, 1990, 46, 4003).

Rutaecarpine 14. A solution of $26(40 \mathrm{mg}, 0.125 \mathrm{mmol})$ and $\mathrm{HCl}(6 \mathrm{M}, 0.05 \mathrm{~mL})$ in $n-\mathrm{BuOH}(1 \mathrm{~mL})$ was stirred at 120 C for 7 d and then was cooled to room temperature. Saturated NaHCO_{3} was added to adjust the solution pH to 8 . Silica gel was added, and
the resulting mixture was dried and separated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $/ E t O A c=1 / 1)$ to provide $14(29 \mathrm{mg}, 81 \%)$ as a solid. All data for this compound matched that previously reported (Tseng, M.-C.; Cheng, H.-T.; Shen, M.-J.; Chu, Y.-H. Org. Lett., 2011, 13, 4434).

Compound 20. By the general Sonagashira coupling procedure, isoquinolin-3-yl triflate $19(368 \mathrm{mg}, 1.32 \mathrm{mmol}), 3$-butyn-1-ol $(112 \mathrm{mg}, 1.59 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(28$ $\mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{CuI}(15.2 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2 h provided 20 $(254 \mathrm{mg}, 98 \%)$ as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $\left./ \mathrm{EtOAc}=1 / 1\right)$: IR (neat cm^{-1}) 3207, 1623, 1580, 1053, 757 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.18(\mathrm{~s}, 1 \mathrm{H})$, $7.95(\mathrm{dd}, J=8.0$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=6.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=6.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.88,136.73,136.05$, 131.28, 128.13, 128.03, 127.85, 126.59, 124.08, 87.72, 82.44, 61.20, 24.32; HRMS (ES) m / e calc'd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$198.0913, found 198.0924.

Compound 21. By the general Larock indole synthesis procedure, 2-bromoaniline (35 $\mathrm{mg}, 0.2 \mathrm{mmol}$), alkyne $20(40 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 0.005 \mathrm{mmol}), 1,1 \mathrm{l}$ bis(diphenylphosphino)ferrocene ($5.6 \mathrm{mg}, 0.01 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(60 \mathrm{mg}, 0.6 \mathrm{mmol})$ in DMF (1 mL) for 4 h provided $21(53.5 \mathrm{mg}, 93 \%)$ as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $\left.=1 / 1\right):$ IR $\left(\right.$ neat $\left.\mathrm{cm}^{-1}\right) 3054,2843,1626,1333,739 ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.2$ and 1.2 $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.31,144.43,136.72,136.62,134.23,131.30$,
$129.25,128.02,127.28,127.24,126.98,123.36,119.78,118.84,117.62,112.54,111.63$, 63.62, 27.54; HRMS (ES) m / e calc'd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$289.1335, found 289.1336.

Compound 22. By the general triflate cyclization procedure, 21 ($44 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(24 \mathrm{mg}, 0.225 \mathrm{mmol}), \mathrm{Tf}_{2} \mathrm{O}(34 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.4 \mathrm{~mL})$ provided 22 ($60.8 \mathrm{mg}, 97 \%$) as a yellow solid: IR (neat cm^{-1}) 3306, 1645, 1251, 1160, 746; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 12.24(\mathrm{~s}, 1 \mathrm{H}), 10.10(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.26-8.20(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{td}, J=8.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=8.0$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) δ 152.60, 139.64, $138.91,138.13,135.91,131.58,131.08,127.99,126.70,126.26,126.18,126.02,121.38$, $121.00,117.65,115.77,113.25,57.81,19.98$; HRMS (ES) m/e calc'd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2}$ (MOTf^{+}271.1235, found 271.1243.

Demethoxycarbonyl dihydrogambirtannine 23. A solution of 22 ($42 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{PtO}_{2}(1.2 \mathrm{mg}, 0.005 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was stirred under $50 \mathrm{psi} \mathrm{H}_{2}$ for 1 h . Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ was added and the resulting mixture was then extracted with ethyl acetate. The organic extracts were combined, dried, and purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $\left./ \mathrm{EtOAc}=1 / 1\right)$ to provide $23(27.2 \mathrm{mg}, 100 \%)$ as a solid: IR (neat cm ${ }^{-1}$) 3407, 2927, 1450, 737, 725; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{br}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 6 \mathrm{H}), 4.14(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dt}, J=11.6$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=10.8$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=16.0$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.81(\mathrm{~m}$, $1 \mathrm{H}), 2.79(\mathrm{td}, J=11.2$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.62,134.81$, $134.65,133.45,128.98,127.47,126.77,126.71,126.46,121.96,119.86,118.59,111.16$,
$109.05,58.10,56.64,52.71,35.11,21.81$; HRMS (ES) m / e calc'd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 275.1543, found 275.1555 .

Compound 25. By the general Sonagashira coupling procedure, 2-chloro-4methoxyquinazoline 24 ($500 \mathrm{mg}, 2.58 \mathrm{mmol}$), 3-butyn-1-ol ($198 \mathrm{mg}, 2.84 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(54 \mathrm{mg}, 0.077 \mathrm{mmol}), \mathrm{CuI}(29 \mathrm{mg}, 0.155 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 13 h provided 25 ($541 \mathrm{mg}, 92 \%$) as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $=1 / 2$): IR $\left(\right.$ neat $\left.\mathrm{cm}^{-1}\right) 3186,1499,1355,1050,782 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{dd}, J=8.0$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{td}, J=6.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=6.8$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.39$ (br, 1H), $2.81(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.40,151.03,148.08$, $134.35,127.78,127.53,123.79,115.82,86.42,82.24,60.88,55.04,24.27$; HRMS (ES) m/e calc'd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$229.0972, found 229.0977.

Compounds 26 and 27. By the general Larock indole synthesis procedure, 2bromoaniline ($43 \mathrm{mg}, 0.25 \mathrm{mmol}$), alkyne $25(57 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(5.6 \mathrm{mg}$, 0.025 mmol), 1,1 '-bis(diphenylphosphino)ferrocene ($28 \mathrm{mg}, 0.05 \mathrm{mmol}$), KHCO_{3} (75 $\mathrm{mg}, 0.75 \mathrm{mmol}$) in DMF (1.5 mL) for 1 h provided $26(65 \mathrm{mg}, 82 \%)$ as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $\left.=1 / 1\right)$: IR $\left(\right.$ neat $\left.\mathrm{cm}^{-1}\right)$ 2943, 1563, 1375, 1041, $729 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.0$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{td}, J=6.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J$ $=7.6$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ $(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.35$, 155.57, 151.19, 136.23, 134.34, 132.29, $129.80,127.29,126.72,124.68,123.99,120.07,120.04,117.50,115.25,111.73,64.58$,
54.96, 28.29; HRMS (ES) m/e calc'd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$320.1394, found 320.1396; and $27(8 \mathrm{mg}, 10 \%)$ as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $\left./ \mathrm{EtOAc}=1 / 1\right)$: IR (neat cm ${ }^{-1}$) 2839, 1540, 1377, 768, 680; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.21(\mathrm{~s}, 1 \mathrm{H})$, $8.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=8.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ $(\mathrm{td}, J=6.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=8.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{t}, J$ $=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.17,159.69$, $150.94,141.85,135.80,134.04,127.80,126.47,125.92,123.90,122.58,121.97,121.30$, $114.59,113.37,111.23,63.35,54.93,31.10$; HRMS (ES) m/e calc'd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+} 320.1394$, found 320.1396 .

Compound 28. A solution of $26(25 \mathrm{mg}, 0.078 \mathrm{mmol})$, pyridine ($9.3 \mathrm{mg}, 0.117 \mathrm{mmol}$), DMAP ($0.5 \mathrm{mg}, 0.0039 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ was added a solution of 4toluenesulfonyl chloride ($19 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ slowly. After stirring for 4 h the resulting precipitate was filtered and washed with CHCl_{3} to provide 28 (26 mg , 99%) as a yellow solid: IR (neat cm^{-1}) $3191,1590,1545,1384,679 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 12.55(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 169.34,151.94,142.56,141.55,139.04$, $129.40,128.78,126.64,126.53,125.50,124.08,122.47,122.01,118.68,115.26,114.17$, 58.29, 47.98, 20.04; HRMS (ES) m/e calc'd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}-\mathrm{Cl})^{+}$302.1293, found 302.1295.

Compound 29. A solution of $\mathbf{2 8}(20 \mathrm{mg}, 0.059 \mathrm{mmol})$ in DMSO $1(\mathrm{~mL})$ was stirred at $120{ }^{\circ} \mathrm{C}$ for 10 min . Evaporation of DMSO under high vacuum provided $29(17 \mathrm{mg}$, 100%) as a solid: IR (neat cm^{-1}) $3148,1591,1514,736,685 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 12.08(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=8.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $(\mathrm{td}, J=6.8$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=6.8$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=$ 7.2 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) δ 168.54, 151.60, 142.13, 139.66, 134.84, 128.40, 127.89, 126.10, 125.93, 125.71, 121.24, 120.87, 120.79, 118.95, 116.67, 113.70, 45.40, 20.28; HRMS (ES) m / e calc'd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$288.1131, found 288.1135.

Compound 31. By the general Sonagashira coupling procedure, 2-bromo-5methoxypyridine 30 ($301 \mathrm{mg}, 1.6 \mathrm{mmol}$), 3-butyn-1-ol ($124 \mathrm{mg}, 1.76 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(12 \mathrm{mg}, 0.016 \mathrm{mmol}), \mathrm{CuI}(6 \mathrm{mg}, 0.032 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$ for 12 h provided 31 ($270 \mathrm{mg}, 96 \%$) as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $=1 / 2$): IR (neat cm ${ }^{-1}$) 3232, 1567, 1221, 1031, $829 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.8$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{br}$, $1 \mathrm{H}), 3.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.04,137.50,135.58,127.51,120.93,86.83,81.08,60.80,55.82,23.94 ;$ HRMS (ES) m / e calc'd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$178.0863, found 178.0873.

Compound 32. By the general Larock indole synthesis procedure, 2-bromoaniline (35 $\mathrm{mg}, 0.2 \mathrm{mmol})$, alkyne $31(36 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}), 1,1 \mathrm{l}-$ bis(diphenylphosphino)ferrocene ($11 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(60 \mathrm{mg}, 0.6 \mathrm{mmol})$ in DMF (1 mL) for 2 h provided $32(51 \mathrm{mg}, 95 \%)$ as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $\left.=1 / 1\right)$: IR $\left(\right.$ neat $\left.\mathrm{cm}^{-1}\right) 3192,2839,1273,845,735 ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 154.96, 143.44, 136.25, 136.16, 133.69, 129.61, 123.38, 122.46, 122.27, 119.98, 119.21, 111.64, 111.29, 63.46, 56.06, 27.98; HRMS (ES) m/e calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$269.1285, found 269.1285.

Compound 33. By the general triflate cyclization procedure, $32(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(16 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{Tf}_{2} \mathrm{O}(22 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ provided 33 (38.4 $\mathrm{mg}, 96 \%$) as a yellow solid: IR (neat cm^{-1}) 3294, 1562, 1282, 1028, 749; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 12.22(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=9.2$ and 2.8 Hz , $1 \mathrm{H}), 8.22(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) δ 155.89, 139.72, 137.79, 133.47, 132.76, $126.46,126.08,125.75,122.43,121.55,121.17,116.09,113.39,58.27,57.33,19.72$; HRMS (ES) m / e calc'd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}-\mathrm{OTf})^{+}$251.1184, found 251.1188.

Compound 36. By the general Sonagashira coupling procedure, tert-butyl 6chloronicotinate 35 ($426 \mathrm{mg}, 2.0 \mathrm{mmol}$), 3-butyn-1-ol (154 mg, 2.2 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(42 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{CuI}(23 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 4 h provided 36 ($396 \mathrm{mg}, 80 \%$) as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $\left.=1 / 1\right)$: IR (neat cm^{-1}) 3253, 2227, 1592, 1118, 779; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H})$, $8.15(\mathrm{dd}, J=8.0$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{br}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 164.10, (ES) m / e calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$248.1281, found 248.1285.

Compound 37. By the general Larock indole synthesis procedure, 2-bromoaniline (35 $\mathrm{mg}, 0.2 \mathrm{mmol})$, alkyne $36(50 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}), 1,1^{\prime}-$ bis(diphenylphosphino)ferrocene ($11 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(60 \mathrm{mg}, 0.6 \mathrm{mmol})$ in DMF (1 mL) for 2 h provided $37(55 \mathrm{mg}, 82 \%)$ as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $\left.=2 / 1\right)$: IR $\left(\right.$ neat $\left.\mathrm{cm}^{-1}\right) 3259,1705,1284,1126,845 ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=8.4$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.63 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.37,153.36,150.34,138.23,136.68$, 132.94, 129.61, 125.62, 124.56, 120.33, 120.24, 119.77, 114.96, 111.95, 82.35, 63.66, 28.55, 28.24; HRMS (ES) m/e calc'd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 339.1703$, found 339.1704 .

Compound 38. By the general triflate cyclization procedure, 37 ($52 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(24 \mathrm{mg}, 0.225 \mathrm{mmol}), \mathrm{Tf}_{2} \mathrm{O}(34 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.4 \mathrm{~mL})$ provided 38 ($64.2 \mathrm{mg}, 91 \%$) as a yellow solid: IR (neat cm^{-1}) $3281,1720,1256,1135,748 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 12.50(\mathrm{~s}, 1 \mathrm{H}), 9.42(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 162.04,147.95,146.06,145.26,141.11,128.30,126.59$, 125.94, 125.53, 122.09, 122.05, 121.46, 121.24, 113.76, 84.44, 56.93, 28.61, 19.77; HRMS (ES) m / e calc'd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}-\mathrm{OTf})^{+}$321.1603, found 321.1609.

Isonauclefidine triflate 39. A solution of $\mathbf{3 8}(33 \mathrm{mg}, 0.7 \mathrm{mmol})$ in trifluoroacetic acid $(0.5 \mathrm{~mL})$ was stirred at room temperature for 1 h . Evaporation of trifluoroacetic acid provided 39 ($29 \mathrm{mg}, 100 \%$) as a yellow solid: IR (neat cm^{-1}) $3070,1550,1225,1028$, 751; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 14.36(\mathrm{br}, 1 \mathrm{H}), 12.51(\mathrm{~s}, 1 \mathrm{H}), 9.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.94(\mathrm{dd}, J=8.8$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=8.0$ and 0.8 Hz , $1 \mathrm{H}), 5.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) δ 164.48, 148.20, 146.06, 145.61, 141.08, 128.26, 126.48, 126.00, 125.55, 122.06, 122.05, 121.52, 121.12, 113.79, 56.84, 19.79; HRMS (ES) m/e calc'd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}-\mathrm{OTf})^{+}$ 265.0977, found 265.0980.

Compound 42. By the general Sonagashira coupling procedure, 2-bromopyridine (158 $\mathrm{mg}, 1.0 \mathrm{mmol})$, ethyl 2-hydroxypent-4-ynoate $41(157 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7$ $\mathrm{mg}, 0.01 \mathrm{mmol})$, $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ for 12 h provided $42(201 \mathrm{mg}$, $92 \%)$ as an oil after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $\left.=1 / 2\right)$: IR $\left(\right.$ neat $\left.\mathrm{cm}^{-1}\right)$ 3223, 1732, 1195, 1094, 777; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{td}, J=8.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ $(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{br}, 1 \mathrm{H}), 2.97(\mathrm{qd}, J=17.2$ and $5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 173.2, 149.91, 143.32, 136.42, 127.28, 122.94, 85.65, 82.82, 67.85, 62.21, 26.13, 14.41; HRMS (ES) m / e calc'd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 220.0968$, found 220.0979 .

Compound 43. By the general Larock indole synthesis procedure, 2-bromoaniline (26 $\mathrm{mg}, 0.15 \mathrm{mmol})$, alkyne $42(33 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mg}, 0.0075 \mathrm{mmol}), 1,1^{\prime}-$ bis(diphenylphosphino)ferrocene ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(30 \mathrm{mg}, 0.3 \mathrm{mmol})$ in

DMF (1 mL) for 4 h provided $\mathbf{4 3}(38 \mathrm{mg}, 82 \%)$ as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $\left.=1 / 1\right)$: IR $\left(\right.$ neat $\left.\mathrm{cm}^{-1}\right) 3277,1729,1204,1156,745 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 3 \mathrm{H}), 4.74(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.36-4.30(m, 1H), 4.24-4.16(m, 1H), $3.47(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.62,149.86,147.93,137.68,136.93,134.14,128.68$, 123.71, 122.40, 122.17, 119.67, 118.72, 112.03, 110.76, 72.55, 61.51, 29.28, 14.55; HRMS (ES) m/e calc'd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 311.1390$, found 311.1393.

Compound 44. By the general triflate cyclization procedure, $43(48 \mathrm{mg}, 0.15 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(24 \mathrm{mg}, 0.225 \mathrm{mmol}), \mathrm{Tf}_{2} \mathrm{O}(34 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.4 \mathrm{~mL})$ provided $44(52$ $\mathrm{mg}, 79 \%$) as a yellow solid: IR (neat cm^{-1}) $3238,1756,1555,1223,752 ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 12.48(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{td}, J=8.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{td}, J=7.6$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=8.0$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=17.6$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) δ 168.86, 147.97, $147.44,143.67,140.54,127.75,125.60,125.50,124.53,122.13,122.09,121.75,116.13$, 113.76, 67.57, 63.82, 23.19, 14.66; HRMS (ES) m/e calc'd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}-\mathrm{OTf})^{+}$ 293.1290, found 293.1289.

Compound 46. By the general Sonagashira coupling procedure, 2-bromo-5methylcarbonylpyridine 45 ($400 \mathrm{mg}, 2.0 \mathrm{mmol}$), 3-butyn-1-ol ($154 \mathrm{mg}, 2.2 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14 \mathrm{mg}, 0.02 \mathrm{mmol})$, $\mathrm{CuI}(7.6 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{~mL})$ for 12 h provided 46 ($360 \mathrm{mg}, 95 \%$) as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc
$=1 / 2$): IR (neat cm^{-1}) 3402, 1670, 1587, 1041, 849; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.06$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{dd}, J=8.0$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{q}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 196.31, 150.24, 147.38, 136.09, 130.99, 127.05, 92.01, 81.82, 60.91, 27.07, 24.26; HRMS (ES) m/e calc'd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$190.0863, found 190.0868.

Compound 47. By the general Larock indole synthesis procedure, 2-bromoaniline (26 $\mathrm{mg}, 0.15 \mathrm{mmol})$, alkyne $46(42.5 \mathrm{mg}, 0.225 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mg}, 0.0075 \mathrm{mmol})$, 1,1'-bis(diphenylphosphino)ferrocene ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(45 \mathrm{mg}, 0.45$ mmol) in DMF (1 mL) for 4 h provided $47(30 \mathrm{mg}, 71 \%)$ as a solid after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $\left.=1 / 1\right)$: IR (neat $\left.\mathrm{cm}^{-1}\right) 3358,1677,1589,1263$, $733 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=$ 8.0 and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 196.09, 153.72, 149.32, $136.90,136.88,132.68,130.02,129.44,124.79,120.80,120.41,119.79,115.60,112.07$, 63.70, 28.14, 26.90; HRMS (ES) m/e calc'd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$281.1285, found 281.1288.

Compound 48. By the general triflate cyclization procedure, $47(42 \mathrm{mg}, 0.15 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(24 \mathrm{mg}, 0.225 \mathrm{mmol}), \mathrm{Tf}_{2} \mathrm{O}(34 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.4 \mathrm{~mL})$ provided 48 ($57.4 \mathrm{mg}, 93 \%$) as a yellow solid: IR (neat cm^{-1}) $3267,1702,1245,1026,745 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 12.49(\mathrm{~s}, 1 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 194.73,147.67,145.84,144.41,141.17,131.34,128.35$, $125.97,125.55,122.09,122.07,121.39,121.29,113.78,56.92,27.86,19.82 ;$ HRMS (ES) m / e calc'd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}-\mathrm{OTf})^{+}$263.1184, found 263.1184.

Compound 52. To a solution of $46(136 \mathrm{mg}, 0.72 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(55 \mathrm{mg}, 1.44 \mathrm{mmol})$. After stirring for 3 h silica gel was added, and the resulting mixture was concentrated and the components were purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right)$ to provide $\mathbf{5 2}(136 \mathrm{mg}, 99 \%)$ as a solid: IR (neat cm^{-1}) $3151,1478,1044,850,765 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{br}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=$ 8.4 and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{q}, J=6.4 \mathrm{~Hz} 1 \mathrm{H}), 4.61(\mathrm{br}, 2 \mathrm{H}), 3.80$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.23,142.03,141.18,134.28,126.84,89.18,81.46,67.66,60.80$, 25.17, 24.23; HRMS (ES) m/e calc'd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$192.1019, found 192.1025.

Compound 54. By the general Larock indole synthesis procedure, 2-bromo-3methoxyaniline 53 ($43 \mathrm{mg}, 0.21 \mathrm{mmol}$), alkyne 52 ($29 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{mg}$, 0.0225 mmol), 1,1'-bis(diphenylphosphino)ferrocene ($25 \mathrm{mg}, 0.045 \mathrm{mmol}$), KHCO_{3} (45 $\mathrm{mg}, 0.45 \mathrm{mmol})$ in DMF (1 mL) for 10 h provided $54(28 \mathrm{mg}, 60 \%)$ as a solid after flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right)$: IR (neat cm ${ }^{-1}$) 3237, 1358, 1250, 1105, 733; ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 8.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.4$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 157.50,152.33,148.22$, $142.14,140.50,136.82,134.32,125.68,123.70,120.82,114.52,106.62,101.10,69.22$,
65.74, 56.35, 30.55, 26.12; HRMS (ES) m/e calc'd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$313.1547, found 313.1549 .

Compound 55. A solution of $54(32 \mathrm{mg}, 0.102 \mathrm{mmol})$, pyridine ($12 \mathrm{mg}, 0.153 \mathrm{mmol}$), DMAP ($0.6 \mathrm{mg}, 0.005 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(0.6 \mathrm{~mL})$ was added a solution of 4toluenesulfonyl chloride ($22 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(0.6 \mathrm{~mL})$ slowly. After being stirred for 4 h , the resulting precipitate was filtered and washed with CHCl_{3} to provide $\mathbf{5 5}$ ($30.6 \mathrm{mg}, 91 \%$) as a yellow solid: IR (neat cm^{-1}) 2987, 1558, 1259, 1103, $740 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 12.91(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{br}, 1 \mathrm{H}), 4.97(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 155.94,143.36$, $143.28,143.14,142.50,141.60,128.25,124.86,121.56,117.64,116.54,106.41,101.18$, 66.06, 56.66, 56.32, 25.78, 21.50; HRMS (ES) m / e calc'd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}-\mathrm{Cl})^{+}$ 295.1447, found 295.1449.

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectrum of $8\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

|
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $10\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 11 (DMSO)

${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz)

${ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz)

DMSO

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 12 (DMSO)

${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz)

DMSO

(2nmm
${ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz)

(

DMSO

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $20\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectrum of $21\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

CDCl_{3}

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectrum of 22 (DMSO)

${ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{DMSO}, 400 \mathrm{MHz})$

(12.5
${ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz)
DMSO

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $23\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{2 5}\left(\mathrm{CDCl}_{3}\right)$

戸边\%	¢
Vim	\cdots

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

ili $i^{\text {cocs }}$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $26\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

＂动马気 88.

ViV Vivi

－

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectrum of $27\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 28 (DMSO)

${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz)

NOE NMR spectrum of 28 (DMSO)

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 29 (DMSO)
+

${ }^{1} \mathrm{H} \operatorname{NMR}$ (DMSO, 400 MHz)

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 2}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 33 (DMSO)
${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz)

${ }^{13} \mathrm{C} \operatorname{NMR}(\mathrm{DMSO}, 100 \mathrm{MHz})$
DMSO

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $36\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 38 (DMSO)

${ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{DMSO}, 400 \mathrm{MHz})$

-84.445

${ }^{13} \mathrm{C} \operatorname{NMR}$ (DMSO, 100 MHz)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 39 (DMSO)

${ }^{1} \mathrm{H} \operatorname{NMR}$ (DMSO , 400 MHz)

50

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $42\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

- - -

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectrum of $43\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 44 (DMSO)

E
$\stackrel{q}{2}$

${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz)

${ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz)

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $47\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 48 (DMSO)

${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz)

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

	\%\%	$8{ }^{8} 8$
-jiji	ข่\%	~~~
W1	V	V

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 54 (MeOD)

${ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{MeOD}, 400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR (MeOD, 100 MHz)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 55 (DMSO)
$\stackrel{\rightharpoonup}{a}$
$\stackrel{\text { d }}{2}$
1

${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz)

