Air-Stable Chiral Primary Phosphines: A Gateway to MOP Ligands with Previously Inaccessible Stereoelectronic Profiles

Arne Ficks, William Clegg, Ross W. Harrington and Lee J. Higham*
School of Chemistry, Bedson Building, Newcastle University,
Newcastle upon Tyne, NE1 7RU, UK; *Email: lee.higham@newcastle.ac.uk

1 Experimental Procedures and Analytic Data

1.1 General Considerations

All air- and/or water-sensitive reactions were performed under a nitrogen atmosphere using standard Schlenk line techniques. THF (Na /benzophenone ketyl), toluene (Na) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{CaH})$ were dried and distilled prior to use. Flash chromatography was performed on silica gel from Fluorochem (silica gel, 40-63 $\mu \mathrm{m}, 60 \mathrm{~A}, \mathrm{LC} 301$) or alumina media from Acros (aluminum oxide, neutral, Brockmann I, $50-200 \mu \mathrm{~m}, 60 \mathrm{~A})$. Thin-layer chromatography was performed on Merck aluminum-based plates with silica gel and fluorescent indicator $254 \mathrm{~nm} .{ }^{1} \mathrm{H},{ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a JEOL Lambda $500\left({ }^{1} \mathrm{H} 500.16 \mathrm{MHz}\right)$ or JEOL ECS-400 (${ }^{1} \mathrm{H} 399.78 \mathrm{MHz}$) spectrometer at room temperature $\left(21^{\circ} \mathrm{C}\right)$ if not otherwise stated, using the indicated solvent as internal reference. ${ }^{195} \mathrm{Pt}$ chemical shifts are given relative to $\Xi\left({ }^{195} \mathrm{Pt}\right)=21.49689 \mathrm{MHz}$. If necessary, the assignment of signals was done by using two-dimensional NMR experiments (COSY, NOESY, HSQC, HMBC). Infrared spectra were recorded on a Varian 800 FT-IR spectrometer. Mass spectrometry was carried out by the EPSRC National Mass Spectrometry Service Centre Swansea. Analytical high-performance liquid chromatography (HPLC) was performed on a Varian Pro Star HPLC or a Shimadzu Prominence HPLC equipped with diode-array detectors. Compounds 1a,b, ${ }^{1}$ $\mathbf{2 a}, \mathbf{b},{ }^{2}$ and trans- $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right]_{2}{ }^{3}$ were synthesised according to literature procedures. All other chemicals were used as purchased without further purification.

Quantum Chemical Calculations: All calculations used density functional theory as implemented in the Spartan 10 software and the B3LYP functional. ${ }^{4}$ Full geometry optimisations of the studied compounds were performed using the standard $6-31 G^{*}$ basis set. A vibrational analysis was performed at the same level to characterize calculated structures as minima.

X-ray Diffraction

Table 1: Summary of X-ray crystallographic data for cis-7b, trans-8b and trans-9b.

	cis-7b	trans-8b	trans-9b
formula	$\mathrm{C}_{46} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P} 2 \mathrm{Pt} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	$\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}$	$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{OP}_{2} \mathrm{Pt}$
formula wt	1102.96	1070.90	726.49
cryst syst	orthorhombic	orthorhombic	triclinic
space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	P1
a, \AA; α, deg	11.1244(5); 90	8.3489(4); 90	8.3743(3); 65.118(3)
$b, \AA ; \beta$ deg	20.0436(7); 90	18.6947(8); 90	9.5312(3); 71.277(3)
$c, \AA ; \gamma, \operatorname{deg}$	23.8540(12); 90	29.0468(16); 90	10.9589(4); 69.349(3)
V, \AA^{3}	5318.8(4)	4533.6(4)	727.02(5)
Z	4	4	1
$\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.377	1.569	1.659
μ, mm^{-1}	2.840	3.329	5.139
$F(000)$	2240	2160	358
$T_{\text {min }} / T_{\text {max }}$	0.40/0.49	0.44/0.56	0.51/0.63
$h k /$ range	$\begin{aligned} & -10 \text { to } 13,-21 \text { to } 24, \\ & -24 \text { to } 29 \end{aligned}$	$\begin{aligned} & -11 \text { to } 10,-25 \text { to } 24, \\ & -38 \text { to } 37 \end{aligned}$	$\begin{aligned} & -10 \text { to } 11,-12 \text { to } 12, \\ & -13 \text { to } 14 \end{aligned}$
θ range, deg	2.9 to 26.4	3.0 to 28.6	3.0 to 28.6
no. of measd rflns	25923	29323	11181
no. of unique rflns ($R_{\text {int }}$)	10440 (0.0403)	9858 (0.0419)	5955 (0.0235)
no. of obsd rflns, $I>2 \sigma(I)$	8558	8759	5953
refined params/restraints	484/360	560/0	320/3
goodness of fit	1.120	1.179	1.034
Abs. structure param.	-0.012(4)	0.006(4)	-0.001(3)
R1/wR2 ($/$ > $2 \sigma(1)$)	0.0569/0.1179	0.0590/0.0971	0.0185/0.0415
R1/wR2 (all data)	0.0757/0.1263	0.0694/0.1010	0.0186/0.0415
resid electron dens, e \AA^{-3}	3.11/-1.68	4.26/-3.72	0.78/-0.80

Table 2: Summary of X-ray crystallographic data for trans-11a, 14b and 18b.

	trans-11a	14b	18b
formula	$\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pt}$	$\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ClOPPd} \cdot \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{OPPd}^{+} \cdot \mathrm{C}_{32} \mathrm{H}_{12} \mathrm{~B}$ $\mathrm{F}_{24} \cdot \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
formula wt	756.57	615.43	1501.29
cryst syst	orthorhombic	monoclinic	orthorhombic
space group	$\mathrm{P} 21_{1} 1_{2}{ }_{1}$	$\mathrm{P} 2_{1}$	$\mathrm{P} 21_{1}$ 2 1
a, \AA; α, deg	7.8976(3); 90	10.5937(4); 90	12.5151(3); 90
$b, \AA ; \beta$ deg	12.9784(4); 90	14.2040(5); 100.385(4)	13.7875(4); 90
$c, ~ \AA \AA^{\prime} \gamma, \operatorname{deg}$	29.8031(10); 90	18.3113(8); 90	37.1072(15); 90
V, \AA^{3}	3054.76(18)	2710.22(18)	6402.9(4)
Z	4	4	4
$\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.645	1.508	1.557
μ, mm^{-1}	4.895	0.870	0.431
$F(000)$	1504	1272	3032
$T_{\text {min }} / T_{\text {max }}$	0.29/0.32	0.72/0.96	0.5/0.88
$h k /$ range	$\begin{aligned} & -10 \text { to } 10,-17 \text { to } 13, \\ & -37 \text { to } 38 \end{aligned}$	$\begin{aligned} & -14 \text { to } 13,-18 \text { to } 18, \\ & -24 \text { to } 19 \end{aligned}$	$\begin{aligned} & -16 \text { to } 16,-17 \text { to } 18, \\ & -37 \text { to } 50 \end{aligned}$
θ range, deg	2.9 to 28.6	3.1 to 28.6	3.0 to 28.7
no. of measd rflns	15460	26914	34956
no. of unique rflns ($R_{\text {int }}$)	6419 (0.0391)	11398 (0.0305)	13681 (0.0295)
no. of obsd rflns, $I>2 \sigma(I)$	6158	10517	12571
refined params/restraints	342/0	591/29	1142/5065
goodness of fit	1.035	1.031	1.092
Abs. structure param.	-0.012(5)	-0.031(13)	-0.012(9)
R1/wR2 ($/$ > $2 \sigma(1)$)	0.0296/0.0506	0.0313/0.0720	0.0419/0.0891
R1/wR2 (all data)	0.0323/0.0520	0.0373/0.0757	0.0477/0.0921
resid electron dens, e \AA^{-3}	1.31/-1.08	0.47/-0.37	0.56/-0.59

1.2 (S)-[1,1'-Binaphthalen]-2-yldimethylphosphine (3a)

$\mathrm{PCl}_{5}(458 \mathrm{mg}, 2.20 \mathrm{mmol})$ was dissolved in toluene $(8 \mathrm{~mL}) .1 \mathbf{1 a}(286 \mathrm{mg}, 1.00 \mathrm{mmol})$ was added and the reaction mixture was stirred for 45 minutes. The volatiles were removed in vacuo, THF (8 mL) was added and the resulting solution was cooled to $-78^{\circ} \mathrm{C} . \mathrm{MeMgCl}(0.70 \mathrm{~mL}, 3.0 \mathrm{M}$ in THF , 2.10 mmol) was added and stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes. The solution was allowed to warm up to ambient temperature and stirred for 1.5 hours. The reaction was slowly quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} to give the fairly pure crude product as a pale yellow solid. Purification was performed by column chromatography (hexane/EtOAc, 10:1, $R_{\mathrm{f}}=0.4$) on a silica media ($\mathrm{w}=2 \mathrm{~cm}, \mathrm{~h}=10 \mathrm{~cm}$) to yield the intended product as a white solid ($238 \mathrm{mg}, 0.36 \mathrm{mmol}, 76 \%$). MP (uncorrected): $112{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\left.\delta=7.99\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 4\right), 7.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 4\right)^{\prime}\right), 7.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 5\right)$, $7.91\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 5^{\prime}\right), 7.78\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, H 3\right), 7.62$ (dd, $\left.{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\prime}\right)$, 7.48-7.43 (m, $\left.3 \mathrm{H}, H 6 / H 6^{\prime} / H 2^{\prime}\right), 7.28-7.22\left(\mathrm{~m}, 2 \mathrm{H}, H 7^{\prime} / H 7\right)$, 7.19-7.14 (m, 2H, H8/ H8'), $1.22\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=3.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 1.02\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=3.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} H^{\prime}\right) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=143.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=29.7 \mathrm{~Hz}, C 1\right), 138.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=14.4 \mathrm{~Hz}, C 2\right)$, 137.7 ($\left.\mathrm{d},{ }^{3} J_{\mathrm{CP}}=7.8 \mathrm{~Hz}, C 1^{\prime}\right), 133.5$ (C10), $133.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.4 \mathrm{~Hz}, C 9{ }^{\prime}\right), 133.3$ (C10'), 133.1 (d, $\left.{ }^{3} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}, C 9\right), 128.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=3.3 \mathrm{~Hz}, C 2^{\prime}\right), 128.4$ (C5), 128.2 (C4), 128.2 (C4'), 127.9 (C5'), 127.0 ($\mathrm{d},{ }^{4} J_{\mathrm{CP}}=2.3 \mathrm{~Hz}, C 8$), 126.5 (C8'), 126.4 (C7'), 126.3 (C7), 126.1 ($\left.C 6^{\prime}\right), 125.9$ (C6), 125.7 (d, $\left.{ }^{2} J_{\mathrm{CP}}=1.4 \mathrm{~Hz}, C 3\right), 125.3\left(C 3^{\prime}\right), 15.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=14.0 \mathrm{~Hz}, C H_{3}\right), 14.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=14.0 \mathrm{~Hz}, C H_{3}{ }^{\prime}\right) \mathrm{ppm}$. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-54.0 \mathrm{ppm}$. IR (neat): $v=3052.2(\mathrm{w}), 2893.6(\mathrm{w}), 1591.9(\mathrm{w})$, 1501.4 (w), 1428.8 (w), 1360.6 (w), 1154.7 (w), 1013.4 (w), 938.9 (m), 894.3 (m), 869.4 (w), 781.6 (s), 749.5 (s), $708.0\left(\mathrm{~m}\right.$), 685.7 (w), 627.5 (w) $578.5(\mathrm{w}) \mathrm{cm}^{-1}$. HRMS (ESI): Found: $m / z=315.1294$. Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: m / z=315.1297$. OR $\left(\mathrm{CHCl}_{3}, c=1.0 \mathrm{mg} / \mathrm{ml}\right):[\alpha]_{\mathrm{D}}{ }^{20}=-44^{\circ}$. TLC (silica gel; hexane/EtOAc, 10:1): $R_{\mathrm{f}}=0.4$.

1.3 (R)-(2'-Methoxy-[1,1'-binaphthalen]-2-yl)dimethylphosphine (3b)

The same procedure was followed as for $\mathbf{3 a}$, except for using $\mathbf{1 b}$ as the substrate. Purification was performed by column chromatography (hexane/EtOAc, 10:1, $R_{\mathrm{f}}=0.4$) on a silica media ($\mathrm{w}=2 \mathrm{~cm}$, $\mathrm{h}=10 \mathrm{~cm}$) to yield the intended product as a white solid ($125 \mathrm{mg}, 0.36 \mathrm{mmol}, 73 \%$). MP (uncorrected): $128{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.03$ ($\mathrm{d},{ }^{3} J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, H 4^{\prime}$), 8.00 (d, $\left.{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 4\right), 7.91\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 5\right), 7.87\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 55^{\prime}\right), 7.81(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, H 3\right), 7.45\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H 6\right)$, $7.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\prime}\right), 7.31\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H 6^{\prime}\right), 7.24$ (ddd, $\left.{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H 7\right), 7.20\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 8\right), 7.19$ (ddd, $\left.{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H 7^{\prime}\right), 6.93\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\prime}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.21\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=3.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3}\right), 1.05\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=4.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}{ }^{\prime}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ $\left.\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}, C 2\right)^{\prime}\right), 140.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=31.7 \mathrm{~Hz}, C 1\right), 139.1(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=13.1 \mathrm{~Hz}, C 2\right), 134.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}, C 9\right.$ '), $133.6(\mathrm{C} 10), 132.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6.8 \mathrm{~Hz}, C 9\right), 129.9$ (C4'), 128.9 ($\left.C 10^{\prime}\right)$, 128.1 (C4), 128.0 (C5/C5'), 126.5 (C8/C7'), 126.3 ($(6 / C 7)$, 125.7 (d, $\left.{ }^{2} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}, C 3\right), 125.4\left(C 8^{\prime}\right), 123.6\left(C 6^{\prime}\right), 122.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.7 \mathrm{~Hz}, C 1^{\prime}\right), 113.3\left(C 3^{\prime}\right), 56.4\left(\mathrm{OCH}_{3}\right)$, $14.7\left(\mathrm{~d}^{1}{ }^{1} J_{\mathrm{CP}}=14.4 \mathrm{~Hz}, C H_{3}\right), 14.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=13.9 \mathrm{~Hz}, C \mathrm{H}_{3}{ }^{\prime}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=-54.0 \mathrm{ppm}$. IR (neat): $v=3060.9(\mathrm{w}), 1620.3(\mathrm{~m}), 1592.8(\mathrm{~m}), 1505.0(\mathrm{~m}), 1457.8(\mathrm{w}), 1428.1$ (w), $1344.2(\mathrm{~m}), 1251.4(\mathrm{~s}), 1178.1(\mathrm{w}), 1147.4(\mathrm{w}), 1119.2(\mathrm{w}), 1077.7(\mathrm{~s}), 1051.3(\mathrm{~m}), 1020.7(\mathrm{~m})$, $937.9(\mathrm{~m}), 895.5(\mathrm{~m}), 870.5(\mathrm{w}), 810.3(\mathrm{~s}), 746.9(\mathrm{~s}), 709.1(\mathrm{~m}), 679.9(\mathrm{~m}), 627.9(\mathrm{w}) \mathrm{cm}^{-1}$. HRMS (ESI ${ }^{+}$): Found: $m / z=345.1404$. Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: m / z=345.1403$. $\mathbf{O R}\left(\mathrm{CHCl}_{3}, c=1.0 \mathrm{mg} / \mathrm{ml}\right)$: $[\alpha]_{\mathrm{D}}{ }^{20}=-14^{\circ}$. TLC (silica gel; hexane/EtOAc, 10:1): $R_{\mathrm{f}}=0.4$.

1.4 (S)-N,N,N', N^{\prime}-Tetramethyl-1-(1,1'-binaphthalen-2-yl)phosphinediamine (4a)

$\mathrm{PCl}_{5}(687 \mathrm{mg}, 3.30 \mathrm{mmol})$ was dissolved in toluene (12 mL). $\mathbf{1 a}(429 \mathrm{mg}, 1.50 \mathrm{mmol})$ was added and the reaction mixture was stirred for 45 minutes after which time the volatiles were removed in vacuo.

The resulting solid was dissolved in THF (12 mL) . $\mathrm{NEt}_{3}(0.92 \mathrm{~mL}, 6.60 \mathrm{mmol})$ and $\mathrm{HNMe}_{2}(1.60 \mathrm{~mL}$, 2.0 M in THF, 3.15 mmol) were added subsequently and the solution was stirred overnight. The volatiles were removed in vacuo and the crude product was filtrated through a small plug of alumina media in a $1: 1$ mixture of cyclohexane and $\mathrm{Et}_{2} \mathrm{O}\left(R_{\mathrm{f}}=0.8\right)$. The title product was obtained, after removal of the solvent, as a white solid ($519 \mathrm{mg}, 0.93 \mathrm{mmol}, 93 \%$). MP (uncorrected): $105^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.97\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 4\right), 7.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 5\right)$, 7.93-7.89 (m, 3H, H5'/H4'/H3), $7.60\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\prime}\right), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}$, $\left.H 6^{\prime} / H 6\right), 7.41\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, H 2^{\prime}\right), 7.25-7.19\left(\mathrm{~m}, 3 \mathrm{H}, H 7^{\prime} / H 7 / H 8^{\prime}\right), 7.16\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H8), $2.42\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=9.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.26\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=9.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\prime}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=141.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=26.0 \mathrm{~Hz}, C 1\right), 138.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=11.0 \mathrm{~Hz}, C 2\right), 137.5(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=4.7 \mathrm{~Hz}, C 1 '\right), 133.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}, C 9\right), 133.7(C 10), 133.5(C 10 '), 132.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=1.4 \mathrm{~Hz}\right.$, $\left.C 9^{\prime}\right), 128.1$ (C5), 128.0 (C2'), 128.0 (C3), 127.8 ($C 4$ '), 127.5 ($\left.C 5^{\prime}\right), 127.1$ (d, ${ }^{3} J_{\mathrm{CP}}=1.3 \mathrm{~Hz}, C 4$), 127.0 (d, $\left.{ }^{5} J_{\mathrm{CP}}=1.3 \mathrm{~Hz}, C 7\right), 126.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.5 \mathrm{~Hz}, C 8\right), 126.0(C 7), 125.8(C 6 / C 6$ '), 125.6 (C8'), 125.4 (C7'), $125.2\left(C 3^{\prime}\right), 41.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=18.0 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=18.6 \mathrm{~Hz}, \mathrm{~N}\left(C \mathrm{H}_{3}\right)_{2}{ }^{\prime}\right) \mathrm{ppm}$. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (202 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=99.9 \mathrm{ppm}$. IR (neat): $v=3059.0(\mathrm{w}), 2979.2(\mathrm{w}), 2872.0(\mathrm{w})$, 2827.9 (w), 2783.3 (w), 1497.3 (w), 1355.6 (w), 1261.8 (w), 1189.7 (m), 1061.4 (w), 1022.2 (w), 949.1 (s), 869.2 (w), 824.0 (m), 804.6 (m), 781.5 (s), 748.2 (s), 667.4 (s), 640.9 (m) cm ${ }^{-1}$. HRMS $\left(\mathrm{ESI}^{+}\right)$: Found: $m / z=373.1827$. Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: m / z=373.1828 . \mathbf{O R}\left(\mathrm{CHCl}_{3}, c=1.0 \mathrm{mg} / \mathrm{ml}\right)$: $[\alpha]_{\mathrm{D}}{ }^{20}=-32^{\circ}$. TLC (alumina; cyclohexane $/ \mathrm{Et}_{2} \mathrm{O}, 1: 1$): $R_{\mathrm{f}}=0.8$.

$1.5(R)-N, N, N^{\prime}, N^{\prime}$-Tetramethyl-1-(2'-methoxy-[1,1'-binaphthalen]-2yl)phosphinediamine (4b)

The same procedure was followed as for $\mathbf{4 a}$, except for using $\mathbf{1 b}$ as the substrate. The title product was obtained as a white solid ($536 \mathrm{mg}, 1.33 \mathrm{mmol}, 89 \%$). MP (uncorrected): $122{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.97\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, H 4{ }^{\prime}\right), 7.96\left(\mathrm{~d},{ }^{3,4} J_{\mathrm{HP}}=2.0 \mathrm{~Hz}, 2 \mathrm{H}, H 3 / H 4\right), 7.92(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 5\right), 7.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 5^{\prime}\right), 7.47-7.43\left(\mathrm{~m}, 2 \mathrm{H}, H 3^{\prime} / H 6\right), 7.29(\mathrm{ddd}$, ${ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H 6$ ' $), 7.21 \quad\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H 7\right), 7.18-7.14\left(\mathrm{~m}, 2 \mathrm{H}, H 8 / H 7{ }^{\prime}\right), 6.93\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\prime}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.36\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=9.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.21\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=9.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\prime}\right) \mathrm{ppm}$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=154.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=1.6 \mathrm{~Hz}, C 2{ }^{\prime}\right), 139.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13.9 \mathrm{~Hz}, C 1\right)$, $\left.139.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=29.0 \mathrm{~Hz}, C 2\right), 134.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}, C 10\right), 133.7(C 9)^{\prime}\right), 133.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}, C 9\right)$, 129.2 (C4'), 128.9 (C10'), 127.9 (C5), $127.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.2 \mathrm{~Hz}, C 3\right), 127.7$ (C5'), 126.8 (d, $\left.{ }^{3} J_{\mathrm{CP}}=1.2 \mathrm{~Hz}, C 4\right), 126.1$ (C6), $\left.126.0\left(\mathrm{~d},{ }^{5} J_{\mathrm{CP}}=2.5 \mathrm{~Hz}, C 7\right), 125.9(C 7)^{\prime}\right), 125.8\left(C 8^{\prime}\right), 125.8(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{CP}}=1.3 \mathrm{~Hz}, C 8\right), 123.2(C 6 '), 121.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6.1 \mathrm{~Hz}, C 1 '\right), 113.0(C 3 '), 56.0\left(\mathrm{OCH}_{3}\right), 40.5(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=19.2 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=19.2 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\prime}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=101.0 \mathrm{ppm}$. IR (neat): $v=3060.3(\mathrm{w}), 2965.9(\mathrm{w}), 2825.5(\mathrm{w}), 2780.6(\mathrm{w}), 1621.8(\mathrm{w}), 1593.3(\mathrm{w})$, $1510.4(\mathrm{~m}), 1461.1(\mathrm{~m}), 1340.5(\mathrm{w}), 1263.7(\mathrm{~s}), 1194.5(\mathrm{~m}), 1078.1(\mathrm{~m}), 1053.4(\mathrm{w}), 1021.3(\mathrm{w}), 978.2$
(m), $955.4(\mathrm{~s}), 910.2(\mathrm{w}), 822.3(\mathrm{w}), 802.7(\mathrm{~s}), 742.1(\mathrm{~s}), 674.2(\mathrm{~m}), 638.3(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS $^{2}\left(\mathrm{ESI}^{+}\right)$: Found: $m / z=403.1939$. Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: m / z=403.1934$. OR $\left(\mathrm{CHCl}_{3}, c=1.0 \mathrm{mg} / \mathrm{ml}\right)$: $[\alpha]_{\mathrm{D}}{ }^{20}=-60^{\circ}$. TLC (alumina; cyclohexane/Et $\mathrm{t}_{2} \mathrm{O}, 1: 1$): $R_{\mathrm{f}}=0.8$.

1.6 Dimethyl [1,1'-binaphthalen]-2-ylphosphonite (5a)

$\mathrm{PCl}_{5}(458 \mathrm{mg}, 2.20 \mathrm{mmol})$ was dissolved in toluene $(5 \mathrm{~mL}) .1 \mathbf{a}(286 \mathrm{mg}, 1.00 \mathrm{mmol})$ was added and the reaction mixture was stirred for 45 minutes after which time the volatiles were removed in vacuo. The resulting solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}) . \mathrm{NEt}_{3}(0.61 \mathrm{~mL}, 4.40 \mathrm{mmol})$ and $\mathrm{MeOH}(0.09 \mathrm{~mL}$, 2.20 mmol) were added subsequently and the solution was left for 2 hours. The volatiles were removed in vacuo and a toluene suspension of the crude product was filtered through a small plug of celite. The title product was obtained after removal of the solvent as a pale yellow oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.04\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H 3\right), 8.02-8.00\left(\mathrm{~m}, 2 \mathrm{H}, H 4 / H 4^{\prime}\right)$, 7.98-7.94 (m, 2H, H5/H5'), $7.62\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, H 3\right.$ '), 7.52-7.46 (m, 3 H , $\left.H 6 / H 6^{\prime} / H 2^{\prime}\right), 7.29-7.24\left(\mathrm{~m}, 2 \mathrm{H}, H 7 / H 7^{\prime}\right), 7.19-7.13\left(\mathrm{~m}, 2 \mathrm{H}, H 8 / H 8^{\prime}\right), 3.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=10.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{POCH}_{3}\right), 3.00\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=11.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{POCH}_{3}{ }^{\prime}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=142.8(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=32.6 \mathrm{~Hz}, C 1\right), 137.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=21.4 \mathrm{~Hz}, C 2\right), 135.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.8 \mathrm{~Hz}, C 1 '\right), 134.3(C 10), 133.5(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}, C 9^{\prime}\right), 133.3\left(C 10^{\prime}\right), 132.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=5.0 \mathrm{~Hz}, C 9\right), 129.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=3.4 \mathrm{~Hz}, C 2^{\prime}\right), 128.4$ (C5), 128.2 (C5'), 128.0 (C4'), 127.3 (d, ${ }^{3} J_{\mathrm{CP}}=1.4 \mathrm{~Hz}, C 4$), 127.0 ($\left.C 6^{\prime}\right), 126.6$ (C8'), 126.6 (C8), 126.2 (C7'), 126.1 (C7), 125.9 (C6), $125.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.4 \mathrm{~Hz}, C 3\right), 125.0(C 3 '), 53.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=15.8 \mathrm{~Hz}\right.$, $\left.\mathrm{POCH}_{3}{ }^{\prime}\right), 53.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10.0 \mathrm{~Hz}, \mathrm{POCH}_{3}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=157.5 \mathrm{ppm}$. IR (neat): $v=3052.1(\mathrm{w}), 2933.4(\mathrm{w}), 2831.1(\mathrm{w}), 1591.7(\mathrm{w}), 1557.6(\mathrm{w}), 1505.7(\mathrm{w}), 1454.6(\mathrm{w})$, 1361.8 (w), 1231.7 (w), 1163.4 (w), 1037.0 (s), 1015.7 (s), 879.9 (w), 828.9 (m) cm ${ }^{-1}$. HRMS $\left(\mathrm{APCI}^{+}\right)$: Found: $m / z=347.1193$. Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: m / z=347.1195$. OR $\left(\mathrm{CHCl}_{3}\right.$, $c=1.0 \mathrm{mg} / \mathrm{ml}):[\alpha]_{\mathrm{D}}{ }^{20}=-44^{\circ}$.

1.7 Dimethyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)phosphonite (5b)

The same procedure was followed as for $\mathbf{5 a}$, except for using $\mathbf{1 b}$ as the substrate. The title product was obtained as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, H 4{ }^{\prime}\right), 8.04$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H 3\right), 7.99\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 4\right), 7.95\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H5), $7.89\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 5^{\prime}\right), 7.51\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H 6\right)$, $7.47\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, H 3\right.$ '), $7.32\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, H 6{ }^{\prime}\right), 7.28-$ $7.18\left(\mathrm{~m}, 3 \mathrm{H}, H 7 / H 7^{\prime} / H 8\right), 6.91\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\prime}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} H_{3}\right), 3.43(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HP}}=10.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{POCH}_{3}\right), 3.32\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=11.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{POCH}{ }_{3}\right.$) ppm. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(126 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=155.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.0 \mathrm{~Hz}, C 2^{\prime}\right), 139.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=33.8 \mathrm{~Hz}, C 1\right), 137.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=21.7 \mathrm{~Hz}, C 2\right)$, $134.6(C 9 '), 134.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.2 \mathrm{~Hz}, C 10\right), 132.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=5.2 \mathrm{~Hz}, C 9\right), 130.2\left(C 4^{\prime}\right), 128.6\left(C 10^{\prime}\right)$, 128.1 (C5), $127.9(C 5 '), 127.1(C 4), 127.0(C 6), 126.5(C 7 '), 126.2(C 7), 126.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.4 \mathrm{~Hz}, C 8\right)$,
$125.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.3 \mathrm{~Hz}, C 3\right), 125.3\left(C 8^{\prime}\right), 123.5\left(C 6^{\prime}\right), 119.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.1 \mathrm{~Hz}, C 1^{\prime}\right), 112.9\left(C 3^{\prime}\right), 56.1$ $\left(\mathrm{OCH}_{3}\right), 53.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=15.1 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 52.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8.5 \mathrm{~Hz}, \mathrm{POCH}_{3}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=155.8 \mathrm{ppm}$. IR (neat): $v=3053.8(\mathrm{w}), 2933.5(\mathrm{w}), 2828.0(\mathrm{w}), 1621.2(\mathrm{w})$, $1592.6(\mathrm{w}), 1507.8(\mathrm{~m}), 1461.7$ (w), 1332.7 (w), 1268.9 (s), 1248.9 (s), 1147.3 (w), 1079.4 (m), 1035.7 (s), 1011.6 (s), $907.8(\mathrm{w}), 868.1(\mathrm{w}) \mathrm{cm}^{-1}$. HRMS (APCI ${ }^{+}$): Found: $m / z=376.1218$. Calculated for $[\mathrm{M}]^{+}: m / z=376.1223$. OR $\left(\mathrm{CHCl}_{3}, c=1.0 \mathrm{mg} / \mathrm{ml}\right):[\alpha]_{\mathrm{D}}{ }^{20}=-20^{\circ}$.

$1.8 \quad$ cis- $\left[\mathrm{Pt}(\mathbf{3 b})_{2} \mathrm{Cl}_{2}\right]($ cis-7b $)$

$\left[\mathrm{Pt}(\operatorname{cod}) \mathrm{Cl}_{2}\right](6.7 \mathrm{mg}, 17.5 \mu \mathrm{~mol})$ and $\mathbf{3 b}(11.0 \mathrm{mg}, 35.0 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred at room temperature for 15 minutes. The volatiles were removed in vacuo to give the intended product as a colorless solid (quantitative conversion). Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the reaction mixture yielded colorless crystals overnight which were suitable for X-ray diffraction analysis. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.66\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=13.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, H 3\right), 7.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.H 4^{\prime}\right), 7.87-7.81\left(\mathrm{~m}, 6 \mathrm{H}, H 5 / H 4 / H 5^{\prime}\right), 7.48\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, H 6\right)$, $7.35-7.28\left(\mathrm{~m}, 4 \mathrm{H}, H 3^{\prime} / H 6^{\prime}\right), 7.20\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, H 7\right), 7.03$ $\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, H 7\right.$ '), $6.96\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, H 8\right), 6.72(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, H 8^{\prime}\right), 3.57\left(\mathrm{~s}, 6 \mathrm{H}, ~ \mathrm{OCH} H_{3}\right), 1.26\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=10.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}\right), 1.11(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{HP}}=10.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}_{3}\right) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.9\left(C 2^{\prime}\right), 138.5(\mathrm{C} 1), 134.5$ (C10), 134.5 (C9'), 133.2 (C9), 132.3 ($\mathrm{m}, ~ C 3$), 131.2 ($\left.C 4^{\prime}\right), 128.8$ ($\left.C^{\prime}\right)$, 128.7 (C10'), 128.1 (C4), 128.1 (C5), 127.8 (C6), 127.3 (C7'), 127.1 (C7), 126.5 (C8), 125.7 (C8'), 124.1 (C6'), 119.6 (C1'), $112.8\left(C 3^{\prime}\right), 55.8\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 7.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=44.6 \mathrm{~Hz}, C H_{3}\right), 7.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=43.1 \mathrm{~Hz}, C H_{3}\right) \mathrm{ppm}$. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=-6.1 \quad\left(\mathrm{~s} \quad\right.$ with ${ }^{195} \mathrm{Pt}$ satellites, $\left.{ }^{1} J_{\mathrm{PtP}}=3647 \mathrm{~Hz}\right) \quad$ ppm. ${ }^{195} \mathbf{P t}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(108 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=-4362\left(\mathrm{t},{ }^{1} J_{\mathrm{PtP}}=3647 \mathrm{~Hz}\right) \mathrm{ppm}$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{MeOH}\right):$ Found: $m / z=917.1960$. Calculated for $[\mathrm{M}-\mathrm{Cl}]^{+}: m / z=917.1975$.

1.9 trans-[Pt(4b) $\left.)_{2} \mathrm{Cl}_{2}\right]$ (trans- $\mathbf{8 b}$)

$\left[\mathrm{Pt}(\mathrm{cod}) \mathrm{Cl}_{2}\right](6.7 \mathrm{mg}, 17.5 \mu \mathrm{~mol})$ and $\mathbf{4 b}(11.0 \mathrm{mg}, 35.0 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred at room temperature for 15 minutes. The volatiles were removed in vacuo to give the intended product as a colorless solid (quantitative conversion). Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the reaction mixture yielded colorless crystals overnight which were suitable for X-ray diffraction analysis. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.02\left(\mathrm{~m},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}} \approx 12.9 \mathrm{~Hz}, 2 \mathrm{H}, H 3\right), 7.96\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.H 4^{\prime}\right), 7.85\left(\mathrm{~m}, 6 \mathrm{H}, H 5^{\prime} / H 5 / H 4\right), 7.44\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 2 \mathrm{H}, H 3^{\prime}\right), 7.41$ (ddd, ${ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}$, $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=0.9 \mathrm{~Hz}, 2 \mathrm{H}, H 6\right), 7.39\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, H 8\right.$) , 7.27 (ddd, ${ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}$, $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=0.9 \mathrm{~Hz}, 2 \mathrm{H}, H 6 '\right), 7.11\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, H 7\right)$, $7.05\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, H 7^{\prime}\right), 6.79\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, H 8\right) 3.72$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.77\left(\mathrm{pt},{ }^{3} J_{\mathrm{HP}} \approx 9.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.84\left(\mathrm{pt},{ }^{3} J_{\mathrm{HP}} \approx 10.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\prime}\right) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=154.2\left(C 2^{\prime}\right), 137.6\left(\mathrm{pt},{ }^{2} J_{\mathrm{CP}}{ }^{4} J_{\mathrm{CP}} \approx 6.3 \mathrm{~Hz}, C 1\right), 134.6$ (C9'), $134.3\left(\mathrm{pt},{ }^{1} J_{\mathrm{CP}}+^{3} J_{\mathrm{CP}} \approx 74.0 \mathrm{~Hz}, C 2\right), 133.9$ (C10), $133.2\left(\mathrm{pt},{ }^{3} J_{\mathrm{CP}} \approx 9.3 \mathrm{~Hz}, C 9\right), 131.9(\mathrm{pt}$, $\left.{ }^{2} J_{\mathrm{CP}}{ }^{4} J_{\mathrm{CP}} \approx 20.8 \mathrm{~Hz}, C 3\right), 129.0\left(C 4^{\prime}\right), 128.9$ (C10'), 127.7 (C5), 127.4 (C5'), 126.9 (C6), 126.7 (C8'), 126.4 (C7'), 126.3 (C8), 125.8 (C7), 125.0 ($\mathrm{pt},{ }^{3} J_{\mathrm{CP}}{ }^{5} J_{\mathrm{CP}} \approx 13.7 \mathrm{~Hz}, C 4$), 123.6 ($\left(6^{\prime}\right), 122.0$ ($\left.C 1^{\prime}\right)$, $112.5\left(C 3^{\prime}\right), 55.7\left(\mathrm{OCH}_{3}\right), 41.8\left(\mathrm{pt},{ }^{2} J_{\mathrm{CP}}+^{4} J_{\mathrm{CP}} \approx 6.7 \mathrm{~Hz}, \mathrm{~N}\left(C H_{3}\right)_{2}\right), 39.6\left(\mathrm{pt},{ }^{2} J_{\mathrm{CP}}+^{4} J_{\mathrm{CP}} \approx 8.6 \mathrm{~Hz}\right.$, $\left.\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)\right)_{2}^{\prime}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\{\mathbf{H} \mathbf{H}\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=87.8\left(\mathrm{~s}\right.$ with ${ }^{195} \mathrm{Pt}$ satellites, ${ }^{1} J_{\mathrm{PtP}}=2955 \mathrm{~Hz}$) ppm. ${ }^{195} \mathbf{P t}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($108 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=-3747\left(\mathrm{t},{ }^{1} J_{\mathrm{PtP}}=2955 \mathrm{~Hz}\right) \mathrm{ppm}$. HRMS ($\left.\mathrm{ESI}^{+}, \mathrm{MeOH}\right)$: Found: $m / z=1093.2626$. Calculated for $[\mathrm{M}+\mathrm{Na}]^{+}: m / z=1093.2636$.

1.10 General Procedure for the Preparation of LP(Se)

The phosphorus ligand ($\mathrm{L}_{\mathrm{P}}, 50.0 \mu \mathrm{~mol}$) and $\mathrm{KSeCN}(14.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$ were dissolved in THF $(1 \mathrm{~mL})$ and heated to $50^{\circ} \mathrm{C}$ for 2 hours. The solvent was removed and the residue dissolved in CDCl_{3}. After filtration through celite the product was analysed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(202 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=\mathbf{3 a}(\mathrm{Se}): 19.6\left({ }^{1} J_{\mathrm{PSe}}=685 \mathrm{~Hz}\right) ; \mathbf{3 b}(\mathrm{Se}): 22.0\left({ }^{1}{ }_{\mathrm{PSe}}=683 \mathrm{~Hz}\right) ; \mathbf{4 a}(\mathrm{Se}): 80.1\left({ }^{1} J_{\mathrm{PSe}}=770 \mathrm{~Hz}\right)$; $\mathbf{4 b}(\mathrm{Se}): 79.8\left({ }^{1} J_{\mathrm{PSe}}=765 \mathrm{~Hz}\right) ; \mathbf{5 a}(\mathrm{Se}): 95.8\left({ }^{1} J_{\mathrm{PSe}}=858 \mathrm{~Hz}\right) ; \mathbf{5 b}(\mathrm{Se}): 97.4\left({ }^{1} J_{\mathrm{PSe}}=860 \mathrm{~Hz}\right) \mathrm{ppm}$.

1.11 General Procedure for the Preparation of trans-[Rh $\left.\left(\mathrm{L}_{\mathrm{P}}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]$

$\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(1.2 \mathrm{mg}, 3.125 \mu \mathrm{~mol})$ and the phosphorus ligand ($\left.\mathrm{L}_{\mathrm{P}}, 12.5 \mu \mathrm{~mol}\right)$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and left to react for 10 minutes. The solvent was removed in vacuo and the product analysed by IR spectroscopy. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v\left[\mathrm{Rh}(\mathbf{2 a})_{2}(\mathrm{CO}) \mathrm{Cl}\right]: 1983 ;\left[\mathrm{Rh}(\mathbf{2 b})_{2}(\mathrm{CO}) \mathrm{Cl}\right]: 1985$; $\left[\mathrm{Rh}(\mathbf{3 a})_{2}(\mathrm{CO}) \mathrm{Cl}\right]: 1965 ;\left[\mathrm{Rh}(\mathbf{3 b})_{2}(\mathrm{CO}) \mathrm{Cl}\right]: 1963 ;\left[\mathrm{Rh}(\mathbf{4 a})_{2}(\mathrm{CO}) \mathrm{Cl}\right]: 1972 ;\left[\mathrm{Rh}(\mathbf{4 b})_{2}(\mathrm{CO}) \mathrm{Cl}\right]: 1969 ;$ $\left[\mathrm{Rh}(\mathbf{5 a})_{2}(\mathrm{CO}) \mathrm{Cl}\right]: 1999 ;\left[\mathrm{Rh}(\mathbf{5 b})_{2}(\mathrm{CO}) \mathrm{Cl}\right]: 1996 \mathrm{~cm}^{-1}$.

1.11.1 General Procedure for the Preparation of trans-[$\left.\mathrm{Pt}\left(\mathrm{LPP}_{\mathrm{P}}\right)\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right]$

$\left[\mathrm{Pt}^{(}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right]_{2}(19.2 \mathrm{mg}, 25.0 \mu \mathrm{~mol})$ and the phosphorus ligand $\left(\mathrm{L}_{\mathrm{P}}, 50.0 \mu \mathrm{~mol}\right)$ were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.55 \mathrm{~mL})$ and left to react for 30 minutes. The products were analysed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=\mathbf{9 a}$ (trans, 51%): 15.5 $\left({ }^{1} J_{\mathrm{PPt}}=2871 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=573 \mathrm{~Hz}, \mathrm{PEt}_{3}\right),-149.6\left({ }^{1} J_{\mathrm{PPt}}=2570 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=573 \mathrm{~Hz}, 2 \mathrm{a}\right) ;($ cis, $49 \%): 10.4$ $\left({ }^{1} J_{\mathrm{PPt}}=3281 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=23 \mathrm{~Hz}, \mathrm{PEt}_{3}\right),-144.1\left({ }^{1} J_{\mathrm{PPt}}=4381 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=23 \mathrm{~Hz}, \mathbf{2 a}\right) ; 9 \mathrm{~g}$ (trans, $\left.65 \%\right): 13.8$ $\left({ }^{1} J_{\mathrm{PPt}}=2886 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=575 \mathrm{~Hz}, \mathrm{PEt}_{3}\right),-151.9\left({ }^{1} J_{\mathrm{PPt}}=2566 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=575 \mathrm{~Hz}, \mathbf{2 b}\right) ;(c i s, 35 \%): 9.8$ $\left({ }^{1} J_{\mathrm{PPt}}=3282 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=24 \mathrm{~Hz}, \mathrm{PEt}_{3}\right),-144.1\left({ }^{1} J_{\mathrm{PPt}}=4377 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=24 \mathrm{~Hz}, \mathbf{2 b}\right) ; 10 \mathrm{a}($ trans, $32 \%)$: $12.5\left({ }^{1} J_{\mathrm{PPt}}=2479 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=484 \mathrm{~Hz}, \mathrm{PEt}_{3}\right),-4.5\left({ }^{1} J_{\mathrm{PPt}}=2364 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=484 \mathrm{~Hz}, 3 \mathrm{3a}\right) ;($ cis, $68 \%): 7.1$ $\left({ }^{1} J_{\mathrm{PPt}}=3412 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=18 \mathrm{~Hz}, \mathrm{PEt}_{3}\right.$), $-5.1\left({ }^{1} J_{\mathrm{PPt}}=3725 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=18 \mathrm{~Hz}, \mathbf{3 a}\right.$); 10b (trans, 36\%): 12.0 $\left({ }^{1} J_{\mathrm{PPt}}=2464 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=482 \mathrm{~Hz}, \mathrm{PEt}_{3}\right),-1.3\left({ }^{1} J_{\mathrm{PPt}}=2402 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=482 \mathrm{~Hz}, \mathbf{3 b}\right) ;(c i s, 64 \%): 7.2$ $\left({ }^{1} J_{\mathrm{PPt}}=3404 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=18 \mathrm{~Hz}, \mathrm{PEt}_{3}\right),-2.9\left({ }^{1} J_{\mathrm{PPt}}=3737 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=18 \mathrm{~Hz}, \mathbf{3 b}\right) ; \mathbf{1 1 a}$ (trans, $\left.100 \%\right): 90.4$ $\left({ }^{1} J_{\mathrm{PPt}}=3030 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=545 \mathrm{~Hz}, 4 \mathbf{4}\right), 10.7\left({ }^{1} J_{\mathrm{PPt}}=2365 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=545 \mathrm{~Hz}, \mathrm{PEt}_{3}\right) ; \mathbf{1 1 b}$ (trans, 100%):
$90.4\left({ }^{1} J_{\mathrm{PPt}}=3049 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=543 \mathrm{~Hz}, 4 \mathrm{~b}\right), 10.4\left({ }^{1} J_{\mathrm{PPt}}=2332 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=543 \mathrm{~Hz}, \mathrm{PEt}_{3}\right) ;$ 12a (trans, $100 \%)$: $119.8\left({ }^{1} J_{\mathrm{PPt}}=3428 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=604 \mathrm{~Hz}, \mathbf{5 a}\right), 10.4\left({ }^{1} J_{\mathrm{PPt}}=2402 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=604 \mathrm{~Hz}, \mathrm{PEt}_{3}\right) ; \mathbf{1 2 b}$ (trans, 100\%): $117.3\left({ }^{1} J_{\mathrm{PPt}}=3454 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=604 \mathrm{~Hz}, \mathbf{5 b}\right), 8.9\left({ }^{1} J_{\mathrm{PPt}}=2407 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=604 \mathrm{~Hz}, \mathrm{PEt}_{3}\right)$ ppm. ${ }^{195} \mathbf{P t}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($108 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=\mathbf{9 a}:-3941\left(\mathrm{dd},{ }^{1} J_{\mathrm{PtP}}=2871 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=2570 \mathrm{~Hz}\right.$, trans $)$, -4493 (dd, ${ }^{1} J_{\mathrm{PtP}}=4381 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=3281 \mathrm{~Hz}$, cis); 9b: -3921 (dd, ${ }^{1} J_{\mathrm{PtP}}=2886 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=2566 \mathrm{~Hz}$, trans), $-4501 \quad\left(\mathrm{dd},{ }^{1} J_{\mathrm{PtP}}=4377 \mathrm{~Hz}, \quad{ }^{1} J_{\mathrm{PtP}}=3282 \mathrm{~Hz}\right.$, cis); 10a: $\quad-3914 \quad\left(\mathrm{dd},{ }^{1} J_{\mathrm{PtP}}=2479 \mathrm{~Hz}\right.$, ${ }^{1} J_{\mathrm{PtP}}=2364 \mathrm{~Hz}$, trans), -4401 (dd, ${ }^{1} J_{\mathrm{PtP}}=3412 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=3725 \mathrm{~Hz}$, cis); 10b: -3917 (dd, ${ }^{1} J_{\mathrm{PtP}}=2464 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=2402 \mathrm{~Hz}$, trans $),-4412\left(\mathrm{dd},{ }^{1} J_{\mathrm{PtP}}=3404 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=3737 \mathrm{~Hz}\right.$, cis $)$; 11a: -3869 (dd, ${ }^{1} J_{\mathrm{PtP}}=3030 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=2365 \mathrm{~Hz}$, trans); 11b: $-3839\left(\mathrm{dd},{ }^{1} J_{\mathrm{PtP}}=3049 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=2332 \mathrm{~Hz}\right.$, trans $)$; 12a: - 3881 (dd, ${ }^{1} J_{\mathrm{PtP}}=3428 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=2402 \mathrm{~Hz}$, trans); 12b: $-3859 \quad\left(\mathrm{dd},{ }^{1} J_{\mathrm{PtP}}=3454 \mathrm{~Hz}\right.$, ${ }^{1} J_{\mathrm{PtP}}=2407 \mathrm{~Hz}$, trans $)$.

$1.12 \quad\left[\mathrm{Pd}(\mathbf{2 b})\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{Cl}\right](\mathbf{1 3 b})$

$\left[\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{Cl}\right]_{2}(19.7 \mathrm{mg}, 50 \mu \mathrm{~mol})$ and 2b$(34.2 \mathrm{mg}, 100 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred for 15 minutes. The intended complex was formed quantitatively. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \quad-25^{\circ} \mathrm{C}\right): \quad \delta=$ isomer $\quad \mathbf{A}, \mathbf{B} \quad 8.14-8.10 \quad\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad H 4^{1 \mathrm{~B}} / H 4^{\mathrm{A}}\right), \quad 7.99-7.92 \quad(\mathrm{~m}, \quad 5 \mathrm{H}$, $\left.H 4^{\mathrm{A}} / H 4^{\mathrm{B}} / H 5^{\mathrm{AB}} / H 5^{\mathrm{B}}\right), 7.92-7.86\left(\mathrm{~m}, 2 \mathrm{H}, H 5^{\prime \mathrm{A}} / H 3^{\mathrm{A}}\right), 7.84\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\mathrm{B}}\right)$, 7.56-7.49 (m, $\left.4 \mathrm{H}, \quad H 3^{\mathrm{AB}} / H 6^{\mathrm{AB}}\right), 7.33-7.23 \quad\left(\mathrm{~m}, \quad 5 \mathrm{H}, \quad H 6^{\mathrm{AB}} / H 7^{\mathrm{AB}} / H 7^{\mathrm{A}}\right), 7.19-7.09 \quad(\mathrm{~m}, \quad 3 \mathrm{H}$, $\left.H 7^{1 \mathrm{~B}} / H 8^{\mathrm{A}} / H 8^{\mathrm{B}}\right), 6.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\mathrm{A}}\right), 6.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\mathrm{B}}\right), 4.19(\mathrm{dd}$, ${ }^{3} J_{\mathrm{HP}}=7.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 1 \mathrm{H}$, allyl- $\left.-\mathrm{t}_{\mathrm{syn}}{ }^{\mathrm{B}}\right), 4.12\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=7.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{t}_{\mathrm{syn}}{ }^{\mathrm{A}}\right)$, $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}{ }^{\mathrm{B}}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}{ }^{\mathrm{A}}\right), 3.14\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl $\left.-\mathrm{Hc}_{\mathrm{syn}}{ }^{\mathrm{B}}\right), 2.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl$\left.H \mathrm{t}_{\text {anti }}{ }^{\mathrm{B}}\right), 2.47\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl- $\left.H \mathrm{c}_{\text {syn }}{ }^{\mathrm{A}}\right), 2.75\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{t}_{\text {anti }}{ }^{\mathrm{A}}\right), 2.14\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl- $\left.H \mathrm{c}_{\text {anti }}{ }^{\mathrm{B}}\right)$, $1.71\left(\mathrm{~s}, 3 \mathrm{H}\right.$, allyl- $\left.\mathrm{CH}_{3}{ }^{\mathrm{B}}\right), 1.61\left(\mathrm{~s}, 3 \mathrm{H}\right.$, allyl $\left.-\mathrm{CH}_{3}{ }^{\mathrm{A}}\right), 1.59\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl- $\left.-\mathrm{c}_{\text {anti }}{ }^{\mathrm{A}}\right), 1.55-1.05(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)^{\mathrm{AB}}\right) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}\right): \delta=$ isomer $\mathbf{A}, \mathbf{B} 154.7\left(\mathrm{C}^{\mathrm{B}}\right), 154.6$ $\left(C 2^{\mathrm{AA}}\right), 140.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10.9 \mathrm{~Hz}, C 1^{\mathrm{AB}}\right), 134.1\left(C 9^{{ }^{\mathrm{B}}}\right), 134.0\left(C 9^{{ }^{\mathrm{A}}}\right), 133.6,133.5,132.6-132.4(\mathrm{~m})$, 132.0-131.7, (m) $131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=5.9 \mathrm{~Hz}\right), 130.9\left(C 4^{\mathrm{B}}\right), 130.8\left(C 4^{\prime \mathrm{A}}\right), 130.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10.2 \mathrm{~Hz}, C 3^{\mathrm{A}}\right)$, $129.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.1 \mathrm{~Hz}, C 3^{\mathrm{B}}\right), 129.0\left(C 10^{\prime \mathrm{B}}\right), 128.9\left(C 10^{\prime \mathrm{A}}\right), 128.4\left(C 5^{\mathrm{B}}\right), 128.3\left(C 5^{\mathrm{A}}\right), 128.3\left(C 5^{\prime \mathrm{B}}\right)$, $128.3\left(C 5^{1 \mathrm{~A}}\right), 128.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=9.0 \mathrm{~Hz}, C 4^{\mathrm{B}}\right), 128.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.5 \mathrm{~Hz}, C 4^{\mathrm{A}}\right), 127.6\left(C 7^{1 \mathrm{~A}}\right), 127.5\left(C 6^{\mathrm{AB}}\right)$, $127.2\left(C 7^{\mathrm{B}}\right), 127.1\left(C 7^{\mathrm{A}}\right), 127.0\left(C 7^{\mathrm{B}}\right), 126.2\left(C 8^{\mathrm{B}}\right), 126.1\left(C 8^{\mathrm{A}}\right), 125.6\left(C 8^{\mathrm{A}}\right), 125.2\left(C 8^{\mathrm{B}}\right), 124.0$ $\left(C 6^{\mathrm{B}}\right), 123.8\left(C 6^{\mathrm{A}}\right), 119.9\left(\mathrm{~m}, C 1^{\mathrm{AB}}\right), 113.2\left(C 3^{\mathrm{B}}\right), 113.0\left(C 3^{\mathrm{A}}\right), 75.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=40.6 \mathrm{~Hz}\right.$, allyl $\left.-C \mathrm{t}^{\mathrm{B}}\right)$, $75.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=40.6 \mathrm{~Hz}\right.$, allyl- $\left.\mathrm{Ct}^{\mathrm{A}}\right), 57.7\left(\right.$ allyl $\left.-\mathrm{Cc}^{\mathrm{A}}\right), 57.6\left(\right.$ allyl $\left.-\mathrm{Cc}^{\mathrm{B}}\right), 56.2\left(\mathrm{OCH}_{3}{ }^{\mathrm{B}}\right), 56.0\left(\mathrm{OCH}_{3}{ }^{\mathrm{A}}\right)$, $23.3\left(\right.$ allyl $\left.-\mathrm{CH}_{3}{ }^{\mathrm{B}}\right), 23.2\left(\right.$ allyl $\left.-\mathrm{CH}_{3}{ }^{\mathrm{A}}\right), 18.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=17.5 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)^{\mathrm{B}}\right), 7.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=16.5 \mathrm{~Hz}\right.$, $\left.\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)^{\mathrm{A}}\right)$, $7.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=16.5 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)^{\mathrm{B}}\right), 7.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=17.1 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2} C \mathrm{H}_{2}\right)^{\mathrm{A}}\right) \mathrm{ppm}$. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}$): $\delta=$ isomer $\mathbf{A}(63 \%)-164.9$; isomer $\mathbf{B}(37 \%)-165.8 \mathrm{ppm}$. HRMS (ESI ${ }^{+}$: Found: $m / z=503.0744$. Calculated for $[\mathrm{M}-\mathrm{Cl}]^{+}: m / z=503.0751$.

$1.13 \quad\left[\mathrm{Pd}(\mathbf{3 b})\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{Cl}\right](\mathbf{1 4 b})$

$\left[\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{Cl}\right]_{2}(19.7 \mathrm{mg}, 50 \mu \mathrm{~mol})$ and $\mathbf{3 b}(34.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred for 15 minutes. The intended complex was formed quantitatively. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the reaction mixture yielded colorless crystals overnight, which were suitable for X-ray diffraction analysis. $\quad{ }^{1} \mathbf{H}$ NMR $\quad\left(500 \mathrm{MHz}, \quad \mathrm{CD}_{2} \mathrm{Cl}_{2}, \quad-25^{\circ} \mathrm{C}\right)$: $\delta=$ isomer $\quad \mathbf{A , B} \quad 8.07-8.03 \quad(\mathrm{~m}, \quad 4 \mathrm{H}$, $\left.H 4^{\mathrm{A}} / H 4^{\mathrm{A}} / H 4^{\mathrm{B}} / H 4^{\mathrm{B}}\right), 7.96-7.93\left(\mathrm{~m}, 2 \mathrm{H}, H 5^{\mathrm{AB}}\right), 7.91\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\mathrm{B}}\right), 7.85$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 5^{1 \mathrm{~B}}\right), 7.83\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\mathrm{A}}\right), 7.81\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, H 5^{1 \mathrm{~A}}\right), 7.52-7.48\left(\mathrm{~m}, 3 \mathrm{H}, H 3^{\mathrm{B}} / H 6^{\mathrm{AB}}\right), 7.47\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\prime \mathrm{A}}\right), 7.29-7.18(\mathrm{~m}, 5 \mathrm{H}$, $\left.H 6^{\mathrm{A}} / H 7^{\mathrm{AB}} / H 6^{\mathrm{B}} / H 7^{\mathrm{AA}}\right), 7.15\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H 7^{\mathrm{B}}\right), 7.12(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\mathrm{A}}\right), 7.03-6.99\left(\mathrm{~m}, 2 \mathrm{H}, H 8^{\mathrm{AB}}\right), 6.79\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\cdot \mathrm{B}}\right), 3.92(\mathrm{dd}$, ${ }^{3} J_{\mathrm{HP}}=7.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}$, allyl $\left.-H \mathrm{t}_{\text {syn }}{ }^{\mathrm{B}}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC} H_{3}^{\mathrm{B}}\right), 3.82\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=7.1 \mathrm{~Hz}\right.$, ${ }^{4} J_{\mathrm{HH}}=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, allyl- $\left.-\mathrm{tt}_{\text {syn }}{ }^{\mathrm{A}}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}{ }^{\mathrm{A}}\right), 2.61\left(\mathrm{~m}, 1 \mathrm{H}\right.$, allyl- $\left.-\mathrm{Hc}_{\text {syn }}{ }^{\mathrm{B}}\right), 2.47(\mathrm{~m}, 1 \mathrm{H}$, allyl$\left.H \mathrm{c}_{\text {syn }}{ }^{\mathrm{A}}\right), 2.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=10.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl- $\left.-\mathrm{Htanti}^{\mathrm{B}}\right), 2.03\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=10.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl- $\left.H \mathrm{t}_{\mathrm{anti}}{ }^{\mathrm{A}}\right), 1.72(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{HP}}=8.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PC} H_{3}{ }^{\mathrm{A}}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}\right.$, allyl- $\left.\mathrm{CH}_{3}{ }^{\mathrm{A}}\right), 1.63\left(\mathrm{~s}, 3 \mathrm{H}\right.$, allyl $\left.-\mathrm{CH}_{3}{ }^{\mathrm{B}}\right), 1.53\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=7.7 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{PC} H_{3}{ }^{\mathrm{B}}\right), 1.50\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=9.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PC} H_{3}{ }^{\mathrm{B}}\right), 1.26\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=9.1 \mathrm{~Hz}, 3 \mathrm{H}, \operatorname{PC} H_{3}{ }^{\mathrm{A}}\right), 0.91(\mathrm{~s}, 1 \mathrm{H}$, allyl$\left.H \mathrm{c}_{\text {anti }}{ }^{\mathrm{B}}\right), 0.53\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl- $\left.H \mathrm{c}_{\text {anti }}{ }^{\mathrm{A}}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}\right): \delta=$ isomer \mathbf{A}, \mathbf{B} $155.5\left(C 2^{\mathrm{B}}\right), 155.1\left(C 2^{\mathrm{A}}\right), 139.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=14.5 \mathrm{~Hz}, C 1^{\mathrm{B}}\right), 138.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.3 \mathrm{~Hz}, C 1^{\mathrm{A}}\right), 134.4,134.0$, 133.8, 133.8, $133.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=56.2 \mathrm{~Hz}, C 2^{\mathrm{B}}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{CP}}=8.4 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d}, J_{\mathrm{CP}}=8.4 \mathrm{~Hz}\right), 132.6(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=56.2 \mathrm{~Hz}, C 2^{\mathrm{A}}\right), 131.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.4 \mathrm{~Hz}\right.$, allyl- $\left.-C^{\mathrm{B}}\right), 131.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.4 \mathrm{~Hz}\right.$, allyl-C $\left.{ }^{\mathrm{A}}\right), 130.9$, $129.9,128.8,128.4,128.3,128.2,128.2,128.1,127.8,127.7,127.7,127.5,127.3\left(C 6^{\mathrm{AB}}\right), 127.2,127.1$, $127.0\left(C 3^{\mathrm{A}}\right), 126.9\left(C 3^{\mathrm{B}}\right), 126.9\left(C 8^{\mathrm{B}}\right), 126.8\left(C 7^{\mathrm{AB}}\right), 126.7\left(C 7^{\mathrm{B}}\right), 125.7\left(C 8^{\mathrm{A}}\right), 123.4\left(C 8^{\mathrm{A}}\right), 119.8$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}, C 1^{1 \mathrm{~A}}\right), 119.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=6.7 \mathrm{~Hz}, C 1^{1 \mathrm{~B}}\right), 113.8\left(C 3^{1 \mathrm{~B}}\right), 112.6\left(C 3^{1 \mathrm{~A}}\right), 76.8(\mathrm{~d}$, ${ }^{2} J_{\mathrm{CP}}=35.4 \mathrm{~Hz}$, allyl- $\left.-\mathrm{C}^{\mathrm{B}}\right), 75.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=35.1 \mathrm{~Hz}\right.$, allyl-Ct $\left.{ }^{\mathrm{A}}\right)$, $55.8\left(\mathrm{OCH}_{3}{ }^{\mathrm{A}}\right), 55.8\left(\mathrm{OCH}_{3}{ }^{\mathrm{B}}\right)$, 55.1 (allyl$\left.C \mathrm{c}^{\mathrm{B}}\right), 53.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=1.8 \mathrm{~Hz}\right.$, allyl-Cc $\left.{ }^{\mathrm{A}}\right), 23.6\left(\right.$ allyl $\left.-C \mathrm{H}_{3}{ }^{\mathrm{B}}\right), 23.6\left(\right.$ allyl $\left.-\mathrm{CH}_{3}{ }^{\mathrm{A}}\right), 17.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=26.2 \mathrm{~Hz}\right.$, $\left.\mathrm{PCH}_{3}^{\mathrm{B}}\right), 16.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=25.8 \mathrm{~Hz}, \mathrm{PCH}_{3}{ }^{\mathrm{A}}\right), 15.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=26.4 \mathrm{~Hz}, \mathrm{PCH}_{3}{ }^{\mathrm{B}}\right), 14.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=28.7 \mathrm{~Hz}\right.$, $\left.\mathbf{P C H}_{3}{ }^{\mathrm{A}}\right)$ ppm. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}\right): \delta=$ isomer $\mathbf{A}(67 \%)-6.1$; isomer $\mathbf{B}(33 \%)$ 8.7 ppm . HRMS ($\mathrm{NSI}^{+}, \mathrm{MeOH}$): Found: $m / z=505.0906$. Calculated for $[\mathrm{M}-\mathrm{Cl}]^{+}: m / z=505.0918$.

$1.14 \quad\left[\mathrm{Pd}(\mathbf{4 b})\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{Cl}\right](\mathbf{1 5 b})$

$\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{Cl}\right]_{2}(19.7 \mathrm{mg}, 50 \mu \mathrm{~mol})$ and $\mathbf{4 b}(34.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred for 15 minutes. The intended complex was formed quantitatively. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}\right)$: $\delta=$ isomer $\mathbf{A}, \mathbf{B} 7.99-7.95\left(\mathrm{~m}, 4 \mathrm{H}, H 4^{\mathrm{AB}} / H 4^{\mathrm{AB}}\right), 7.90-7.87\left(\mathrm{~m}, 4 \mathrm{H}, H 5^{\mathrm{AB}} / H 5^{\mathrm{AB}}\right), 7.68$ $\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=12.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\mathrm{B}}\right), 7.68\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=12.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\mathrm{A}}\right), 7.50-$ $7.45\left(\mathrm{~m}, 4 \mathrm{H}, H 3^{\mathrm{AB}} / H 6^{\mathrm{AB}}\right), 7.31-7.26\left(\mathrm{~m}, 2 \mathrm{H}, H 6^{\mathrm{AB}}\right), 7.20-7.15\left(\mathrm{~m}, 4 \mathrm{H}, H 7^{\mathrm{AB}} / H 7^{\mathrm{AB}}\right), 7.00(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\text {'B }}\right), 6.99\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\text {A }}\right), 6.91\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\mathrm{B}}\right), 6.88(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad H 8^{\mathrm{A}}\right), 4.20\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=8.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \quad\right.$ allyl $\left.-H \mathrm{Ht}_{\mathrm{syn}}{ }^{\mathrm{B}}\right), 4.18(\mathrm{dd}$,
${ }^{3} J_{\mathrm{HP}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, allyl $\left.-\mathrm{Ht}_{\text {syn }}{ }^{\mathrm{A}}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}{ }^{\mathrm{B}}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}{ }_{3}^{\mathrm{A}}\right), 3.32(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HP}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}$, allyl- $\left.H \mathrm{t}_{\text {anti }}{ }^{\mathrm{B}}\right), 3.30\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{t}_{\text {anti }}{ }^{\mathrm{A}}\right), 2.78\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{c}_{\text {syn }}{ }^{\mathrm{B}}\right)$, $2.59\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{c}_{\text {syn }}{ }^{\mathrm{A}}\right), 2.49\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=9.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{A}}\right), 2.44\left(\mathrm{~s}, 2 \mathrm{H}\right.$, allyl-Hc $\left.\mathrm{c}_{\text {anti }}{ }^{\mathrm{AB}}\right), 2.30(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HP}}=9.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{B}}\right), 2.16\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=10.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{B}}\right), 2.04\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=9.4 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{A}}\right), 1.88\left(\mathrm{~s}, 3 \mathrm{H}\right.$, allyl- $\left.\mathrm{CH}_{3}{ }^{\mathrm{B}}\right), 1.85\left(\mathrm{~s}, 3 \mathrm{H}\right.$, allyl- $\left.\mathrm{CH}_{3}{ }^{\mathrm{A}}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.-25^{\circ} \mathrm{C}\right): \delta=$ isomer $\mathbf{A}, \mathbf{B} 153.9\left(C 2^{\mathrm{A}}\right), 153.9\left(C 2^{\mathrm{B}}\right), 138.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=20.3 \mathrm{~Hz}, C 2^{\mathrm{A}}\right), 138.3(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=22.3 \mathrm{~Hz}, C 2^{\mathrm{B}}\right), 135.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=6.6 \mathrm{~Hz}, C 1^{\mathrm{A}}\right), 135.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=6.2 \mathrm{~Hz}, C 1^{\mathrm{B}}\right), 134.0\left(C 9^{\mathrm{B}}\right), 133.9$ $\left(C 9^{\prime \mathrm{A}}\right), 133.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=1.5 \mathrm{~Hz}, C 10^{\mathrm{A}}\right), 133.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=1.5 \mathrm{~Hz}, C 10^{\mathrm{B}}\right), 133.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.1 \mathrm{~Hz}, C 9^{\mathrm{A}}\right)$, $132.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.1 \mathrm{~Hz}, C 9^{\mathrm{B}}\right), 132.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}\right.$, allyl- $\left.C^{\mathrm{A}}\right), 132.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}\right.$, allyl- $\left.C^{\mathrm{B}}\right)$, $129.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=23.0 \mathrm{~Hz}, C 3^{\mathrm{B}}\right), 129.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=21.9 \mathrm{~Hz}, C 3^{\mathrm{A}}\right), 129.2\left(C 4^{\mathrm{B}}\right), 129.2\left(C 4^{\mathrm{A}}\right), 128.9$ $\left(C 10^{B^{B}}\right), 128.8\left(C 10^{\prime \mathrm{A}}\right), 128.2\left(C 5^{\prime \mathrm{A}}\right), 128.2\left(C 5^{\mathrm{B}}\right), 128.0\left(C 5^{\mathrm{AB}}\right), 127.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=12.6 \mathrm{~Hz}, C 4^{\mathrm{B}}\right), 127.7$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=12.1 \mathrm{~Hz}, C 4^{\mathrm{A}}\right), 127.1\left(C 6^{\mathrm{B}}\right), 127.1\left(C 6^{\mathrm{A}}\right), 126.7\left(C 7^{\mathrm{AB}}\right), 126.7\left(C 7^{\mathrm{A}^{\mathrm{A}}}\right), 126.6\left(C 7^{\mathrm{B}}\right), 126.5$ $\left(C 8^{\mathrm{A}}\right), 126.5\left(C 8^{\mathrm{B}}\right), 125.2,123.6\left(C 6^{\mathrm{B}}\right), 123.5\left(C 6^{\mathrm{A}}\right), 121.0\left(C 1^{\mathrm{B}}\right), 120.8\left(C 1^{1 \mathrm{~A}}\right), 112.9\left(C 3^{{ }^{\mathrm{B}}}\right), 112.6$ $\left(C 3^{\prime \mathrm{A}}\right), 77.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=38.7 \mathrm{~Hz}\right.$, allyl- $\left.C \mathrm{t}^{\mathrm{B}}\right), 77.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=38.7 \mathrm{~Hz}\right.$, allyl- $\left.C \mathrm{t}^{\mathrm{A}}\right), 59.9$ (allyl- $\left.C \mathrm{c}^{\mathrm{A}}\right), 59.5$ (allyl- $\left.C \mathrm{c}^{\mathrm{B}}\right), 56.0\left(\mathrm{OCH}_{3}{ }^{\mathrm{B}}\right), 55.7\left(\mathrm{OCH}_{3}{ }^{\mathrm{A}}\right), 41.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=7.4 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{A}}\right), 40.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=7.9 \mathrm{~Hz}\right.$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{B}}\right), 40.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=7.9 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{B}}\right), 40.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=7.9 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{A}}\right), 23.2($ allyl-CH3$), 23.2$ (allyl- CH_{3}) ppm. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}\right.$): $\delta=$ isomer \mathbf{A} (61%) 105.0 ; isomer B (39\%) 105.4 ppm . HRMS $\left(\mathrm{ESI}^{+}\right)$: Found: $m / z=563.1446$. Calculated for $[\mathrm{M}-\mathrm{Cl}]^{+}: m / z=563.1449$.

$1.15 \quad\left[\mathrm{Pd}(\mathbf{5 b})\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{Cl}\right](\mathbf{1 6 b})$

$\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{Cl}\right]_{2}(9.8 \mathrm{mg}, 25 \mu \mathrm{~mol})$ and $\mathbf{5 b}(18.8 \mathrm{mg}, 50 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ and stirred for 15 minutes. The intended complex was formed quantitatively. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}\right): \delta=$ isomer $\mathbf{A} 8.15\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, H 3\right), 8.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, H 4), 7.99-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.54\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, H 6\right), 7.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\prime}\right), 7.30-7.21\left(\mathrm{~m}, 3 \mathrm{H}, H 6^{\prime} / H 7 / H 7^{\prime}\right), 7.18(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8$ '), $\left.7.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8\right), 3.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=14.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{POCH}\right)_{3}\right), 3.78(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~m}, 1 \mathrm{H}\right.$, allyl- $\left.\left.H \mathrm{t}_{\text {syn }}\right), 3.35\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=11.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{POCH}\right)_{3}\right), 2.73\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl- $\left.H \mathrm{c}_{\text {syn }}\right)$, $1.58\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{t}_{\mathrm{ant}}\right), 0.46\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl- $\left.-\mathrm{c}_{\mathrm{ant}}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}\right.$, allyl- $\left.\mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}\right): \delta=\operatorname{isomer} \mathbf{A} 156.1\left(C 2^{\prime}\right), 140.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=22.4 \mathrm{~Hz}, C 1\right)$, 133.9 (C10), $133.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=10.6 \mathrm{~Hz}, C 2\right), 132.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.4 \mathrm{~Hz}, C 9\right), 131.5$ (d, allyl-C), 130.6 ($C 44^{\prime}$), 128.3 (C8'), 128.3 (C5), 127.5 (C4), 127.9 (C6), 127.7 (C7'), 127.3 ($\left.C 55^{\prime}\right), 127.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.9\right.$ $\mathrm{Hz}, C 3$), 126.8 (C7), 126.1 (C8), 123.9 (C6'), 118.3 ($\left.\mathrm{d},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}, C 1^{\prime}\right), 112.6$ (C3'), 76.6 (d, ${ }^{2} J_{\mathrm{CP}}=43.5 \mathrm{~Hz}$, allyl-Ct), $56.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.8 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 54.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.2 \mathrm{~Hz}\right.$, allyl$C \mathrm{c}), 52.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=13.0 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 23.4\left(\mathrm{allyl}-\mathrm{CH}_{3}\right) \mathrm{ppm}$; resonances for $C 9$ ' and $C 10$ ' are obscured. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-25^{\circ} \mathrm{C}\right): \delta=\operatorname{isomer} \mathbf{A}(89 \%) 148.9$; isomer \mathbf{B} (11%) 147.2 ppm . HRMS (NSI ${ }^{+}$): Found: $m / z=533.0824$. Calculated for $[\mathrm{M}-\mathrm{Cl}]^{+}: m / z=533.0827$.

$1.16 \quad\left[\mathrm{Pd}(\mathbf{3 b})\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)\right] \mathrm{BArF}(\mathbf{1 7 b})$

$\mathrm{NaBArF}(44.3 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ and $\mathbf{1 4 b}(27.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred for 15 minutes. The reaction mixture was filtered through a layer of celite and the solvent removed in vacuo; the intended product was obtained as a pale yellow solid. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ isomer $\mathbf{A}, \mathbf{B} 8.17-8.11\left(\mathrm{~m}, 4 \mathrm{H}, H 4 / H 44^{\prime}\right), 8.04\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 5^{\prime}\right), 8.03(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 5^{\prime}\right), 7.96(\mathrm{~m}, 2 \mathrm{H}, H 5), 7.91\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\prime \mathrm{A}}\right), 7.84\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, H 3^{1 \mathrm{~B}}\right), 7.76(\mathrm{~m}, 2 \mathrm{H}, H 3), 7.75(\mathrm{~s}, 16 \mathrm{H}, o-\mathrm{BArF}), 7.58(\mathrm{~s}, 8 \mathrm{H}, p-\mathrm{BArF}), 7.54-7.49\left(\mathrm{~m}, 4 \mathrm{H}, H 6^{\prime} / H 6\right)$, $7.43\left(\mathrm{~m}, 1 \mathrm{H}, H 7^{\prime}\right), 7.35\left(\mathrm{~m}, 1 \mathrm{H}, H 7^{\prime}\right), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}, H 7), 7.00\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\prime}\right), 6.89(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\prime}\right), 5.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, H 8\right), 5.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, H 8\right), 3.90(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}{ }^{\mathrm{A}}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}{ }^{\mathrm{B}}\right), 3.58\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{t}_{\text {anti}}\right), 3.44\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{c}_{\text {syn }}\right), 3.23(\mathrm{~s}$, 1 H , allyl- $-H \mathrm{c}_{\text {syn }}$), $2.71\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{t}_{\text {anti }}\right), 2.61\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{c}_{\text {anti }}\right), 2.55$ (dd, ${ }^{3} J_{\mathrm{HP}}=5.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, allyl $-H \mathrm{t}_{\text {syn }}$), $2.47\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{c}_{\text {antit }}\right), 2.06\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=6.3 \mathrm{~Hz}\right.$, ${ }^{4} J_{\mathrm{HH}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, allyl- $\left.\left.H \mathrm{t}_{\mathrm{syn}}\right), 1.95\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=10.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}\right)_{3}\right), 1.93\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=10.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PC} H_{3}\right)$, $1.83\left(\mathrm{~s}, 3 \mathrm{H}\right.$, allyl- $\left.\left.\mathrm{CH}_{3}\right), 1.80\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=10.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}\right)_{3}\right), 1.72\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=10.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH} H_{3}\right), 1.10$ ($\mathrm{s}, 3 \mathrm{H}$, allyl $-\mathrm{CH}_{3}$) ppm; in some cases the distinct assignment of resonances to the respective isomer was unavailable. ${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=-7.6 \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=$ isomer A,B $161.8\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=49.9 \mathrm{~Hz}\right.$, ipso-BArF), $155.6\left(C 2^{\prime \mathrm{A}}\right), 154.0\left(C 2^{\prime \mathrm{B}}\right), 140.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=27.0\right.$ $\mathrm{Hz}, C 1), 137.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=27.0 \mathrm{~Hz}\right.$, allyl- $\left.C^{\mathrm{A}}\right), 136.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=27.0 \mathrm{~Hz}\right.$, allyl- $\left.C^{\mathrm{B}}\right), 136.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=30.7\right.$ $\mathrm{Hz}, C 2), 135.8,135.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=30.7 \mathrm{~Hz}, C 2\right), 134.9(o-\mathrm{BArF}), 134.2\left(C 4^{\mathrm{A} \mathrm{A}}\right), 133.9\left(C 4^{\mathrm{B}}\right), 132.3$ $\left(C 9^{\mathrm{B}}\right), 131.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.9 \mathrm{~Hz}, C 9\right), 131.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.7 \mathrm{~Hz}, C 9\right), 131.5(C 4), 131.4(C 4), 131.2\left(C 9^{\prime \mathrm{A}}\right)$, $129.9\left(C 10^{\prime B}\right), 129.7\left(C 5^{\prime}\right), 129.5\left(C 5^{\prime}\right), 129.3,129.0\left(q q,{ }^{2} J_{\mathrm{CF}}=31.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.9 \mathrm{~Hz}, m-\mathrm{BArF}\right)$, $128.6(C 5), 128.5(C 6), 128.3(C 7), 128.3(C 7), 126.4\left(C 6^{1 B}\right), 126.3\left(C 6^{1 \mathrm{~A}}\right), 124.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.3 \mathrm{~Hz}\right.$, $\left.C F_{3}\right), 124.7(C 8), 124.5(C 8), 124.0,122.6\left(C 8^{\prime \mathrm{A}}\right), 122.0\left(C 8^{1 \mathrm{~B}}\right), 117.5$ (septet, $\left.{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p-\mathrm{BArF}\right)$,
 ${ }^{2} J_{\mathrm{CP}}=30.7 \mathrm{~Hz}$, allyl-Ct), $57.2\left(\mathrm{OCH}_{3}{ }^{\mathrm{A}}\right), 57.0\left(\mathrm{OCH}_{3}{ }^{\mathrm{B}}\right), 52.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.7 \mathrm{~Hz}\right.$, allyl-Cc $\left.{ }^{\mathrm{B}}\right), 52.5(\mathrm{~d}$, ${ }^{2} J_{\mathrm{CP}}=2.7 \mathrm{~Hz}$, allyl- $\left.\mathrm{Cc}^{\mathrm{A}}\right), 22.9\left(\right.$ allyl $\left.-\mathrm{CH}_{3}{ }^{\mathrm{B}}\right), 21.7\left(\right.$ allyl $\left.-\mathrm{CH}_{3}{ }^{\mathrm{A}}\right), 16.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=28.9 \mathrm{~Hz}, \mathrm{PCH}_{3}\right), 16.2(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=29.3 \mathrm{~Hz}, \mathrm{P} C \mathrm{H}_{3}\right), 15.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=28.3 \mathrm{~Hz},{\mathrm{P} C \mathrm{H}_{3}}\right.$), $15.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=29.3 \mathrm{~Hz}, \mathrm{P} C \mathrm{H}_{3}\right) \mathrm{ppm}$; in some cases the distinct assignment of resonances to the respective isomer was unavailable. ${ }^{19} \mathbf{F} \mathbf{N M R}$ ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=-62.7 \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): $\delta=\operatorname{isomer} \mathbf{A}$ (50\%) 9.4; isomer B $(50 \%) 8.7 \mathrm{ppm}$. HRMS $\left(\mathrm{ESI}^{+}\right)$: Found: $m / z=501.0925$. Calculated for $[\mathrm{M}-\mathrm{BArF}]^{+}$: $m / z=501.0934$.

$1.17 \quad\left[\mathrm{Pd}(\mathbf{4 b})\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)\right] \mathrm{BArF}(\mathbf{1 8 b})$

$\mathrm{NaBArF}(44.3 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ and $\mathbf{1 5 b}(30.0 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred for 15 minutes. The reaction mixture was filtered through a layer of celite and the solvent removed in vacuo; the intended product was obtained as a pale yellow solid. Slow evaporation of a
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution gave crystals which were suitable for X-ray analysis. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=$ isomer $\mathbf{A}, \mathbf{B} 8.12\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 2 \mathrm{H}, H 4^{\prime}\right), 8.10\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, H 4\right), 8.05$ (d, $\left.{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 5^{\prime}\right), 8.03\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 5^{\prime}\right), 7.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, H 5\right), 7.93(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\prime}\right), 7.85\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\prime}\right), 7.81\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $H 3$), 7.75 ($\mathrm{s}, 16 \mathrm{H}, o-$ BArF), 7.58 (s, $8 \mathrm{H}, p$-BArF), $7.55-7.47$ ($\mathrm{m}, 4 \mathrm{H}, H 6^{\prime} / H 6$), $7.44\left(\mathrm{~m}, 1 \mathrm{H}, H 7^{\prime}\right), 7.36$ ($\mathrm{m}, 1 \mathrm{H}, H 7^{\prime}$), $7.15-7.10(\mathrm{~m}, 2 \mathrm{H}, H 7), 7.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\prime}\right), 6.95\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\prime}\right)$, $5.67\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 8\right), 5.66\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H 8\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HP}}=10.6 \mathrm{~Hz}, 1 \mathrm{H}$, allyl- $\left.\mathrm{Ht}_{\text {antit }}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} H_{3}\right), 3.63\left(\mathrm{~m}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{c}_{\text {syn }}\right), 3.33(\mathrm{~m}, 1 \mathrm{H}$, allyl$\left.H c_{\text {syy }}\right), 2.70\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=14.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.69\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=14.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH} H_{3}\right), 2.68(\mathrm{~m}, 1 \mathrm{H}$, allyl$\left.H t_{\text {ant }}\right), 2.61\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=12.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.58\left(\mathrm{~m}, 1 \mathrm{H}\right.$, allyl $\left.-\mathrm{Hc}_{\mathrm{anti}}\right), 2.45\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=7.4 \mathrm{~Hz}\right.$, ${ }^{4} J_{\mathrm{HH}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, allyl- $-\mathrm{t}_{\text {syn }}$), $2.37\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl $\left.-H \mathrm{c}_{\text {antit }}\right), 1.90-1.84\left(\mathrm{~m}, 4 \mathrm{H}\right.$, allyl $-H \mathrm{t}_{\text {syn }} /$ allyl $\left.-\mathrm{CH}_{3}\right), 1.08$ (s, 3 H , allyl- CH_{3}) ppm; in some cases the distinct assignment of resonances to the respective isomer was unavailable. ${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=-7.5 \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=$ isomer A,B 161.8 (q, ${ }^{1} J_{\mathrm{CB}}=50.2 \mathrm{~Hz}$, ipso-BArF), 156.2 (C2'), 154.5 (C2'), $140.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=35.3\right.$ $\mathrm{Hz}, C 2), 140.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=35.1 \mathrm{~Hz}, C 2\right), 140.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=18.2 \mathrm{~Hz}, C 1\right), 140.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=18.5 \mathrm{~Hz}, C 1\right)$, $136.1(\mathrm{~m}, C 9), 135.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=7.8 \mathrm{~Hz}\right.$, allyl-C), $135.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right.$, allyl-C), 134.8 (o-BArF), 134.4 (C4'), 134.2 (C4'), 133.2 (C9'), 132.2 (C9'), 132.0 (m, C9), 131.9 (m, C10), 130.6 (d, $\left.{ }^{3} J_{\mathrm{CP}}=3.4 \mathrm{~Hz}, C 4\right), 130.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.4 \mathrm{~Hz}, C 4\right), 130.1$ (C7'), 129.8 (C7'), 129.5 (C5'), 129.3 (C5'), $129.2\left(\mathrm{~d},{ }^{5} J_{\mathrm{CP}}=0.9 \mathrm{~Hz}, C 100^{\prime}\right), 128.9\left(\mathrm{~d},{ }^{5} J_{\mathrm{CP}}=0.9 \mathrm{~Hz}, C 10^{\prime}\right), 128.9\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.9 \mathrm{~Hz}\right.$, m-BArF), 128.5 (C5/C6), 128.1 (C7), 126.6 ($\left.C 6^{\prime}\right), 126.3\left(C 6^{\prime}\right), 124.7$ ($\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.3 \mathrm{~Hz}, C \mathrm{~F}_{3}$), 124.5$124.3\left(\mathrm{~m}, C 3 / C 8^{\prime} / C 8\right), 117.5$ (septet, $\left.{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p-\mathrm{BArF}\right), 115.6\left(C 3^{\prime}\right), 115.1\left(C 3^{\prime}\right), 102.5\left(C 1^{\prime}\right)$, $102.4\left(C 1^{\prime}\right), 101.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=34.8 \mathrm{~Hz}\right.$, allyl-Ct), $100.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=34.4 \mathrm{~Hz}\right.$, allyl-Ct), $57.0\left(\mathrm{OCH}_{3}\right), 56.8$ $\left(\mathrm{OCH}_{3}\right), 46.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.5 \mathrm{~Hz}\right.$, allyl-Cc), $45.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}\right.$, allyl- Cc$), 38.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9.1 \mathrm{~Hz}\right.$, $\left.\mathrm{NCH}_{3}\right), 38.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8.7 \mathrm{~Hz}, \mathrm{NCH}_{3}\right), 37.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9.1 \mathrm{~Hz}, \mathrm{NCH}_{3}\right), 37.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8.7 \mathrm{~Hz}, \mathrm{NCH}_{3}\right)$, 22.9 (allyl- CH_{3}), $21.6\left(\right.$ allyl $\left.-\mathrm{CH}_{3}\right) \mathrm{ppm}$; in some cases the distinct assignment of resonances to the respective isomer was unavailable. ${ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=-62.7 \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ isomer $\mathbf{A}(50 \%) 120.5$; isomer B (50%) 120.5 ppm . HRMS (ESI^{+}): Found: $m / z=562.1448$. Calculated for $[\mathrm{M}-\mathrm{BArF}]^{+}: m / z=562.1460$.

$1.18 \quad\left[\mathrm{Pd}(\mathbf{3 b})_{2}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)\right] \operatorname{BArF}(\mathbf{1 9 b})$

3b ($17.2 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$) and $\mathbf{1 7 b}(68.5 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred for 15 minutes. The solvent was removed in vacuo and the intended product was obtained as a yellow solid. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.09\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, H 4^{\mathrm{B}}\right), 8.09\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.H 4^{1 \mathrm{~A}}\right), 8.04\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, H 4^{\mathrm{A}}\right), 7.96\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, H 5^{\mathrm{A}}\right), 7.93-7.88(\mathrm{~m}, 4 \mathrm{H}$, $\left.H 5^{\text {B/ }} / H 4^{\mathrm{B}} / H 5^{\mathrm{B}} / H 5^{\mathrm{A} \mathrm{A}}\right), 7.78(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{BArF}), 7.64\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=11.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\mathrm{A}}\right), 7.60(\mathrm{~s}$, $4 \mathrm{H}, p$-BArF), $7.58-7.54\left(\mathrm{~m}, 2 \mathrm{H}, H 6^{\mathrm{A}} / H 6^{\mathrm{B}}\right), 7.49\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\prime \mathrm{A}}\right), 7.49\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=13.9 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{\mathrm{B}}\right), 7.46\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, H 3^{1 \mathrm{~B}}\right), 7.37\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$,
$\left.{ }^{4} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, H 6^{\mathrm{B}}\right), 7.33-7.24\left(\mathrm{~m}, 3 \mathrm{H}, H 7^{\mathrm{B}} / H 6^{\mathrm{A}} / H 7^{\mathrm{A}}\right), 7.22\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H 7^{\mathrm{B}}\right), 7.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\mathrm{B}}\right), 7.05\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, H 7^{\prime \mathrm{A}}\right), 7.00\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\mathrm{A}}\right), 6.76\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{1 \mathrm{~B}}\right), 6.73(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, H 8^{\mathrm{A}}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}{ }^{\mathrm{B}}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}{ }^{\mathrm{A}}\right), 3.65\left(\mathrm{~s}, 1 \mathrm{H}\right.$, allyl $\left.-H_{\text {syn }}\right), 3.57(\mathrm{~s}$, 1 H , allyl- H_{syn}), $1.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, allyl $\left.-H_{\text {anti }}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}\right.$, allyl- $\left.\mathrm{CH}_{3}\right)$, 1.64 (d, ${ }^{3} J_{\mathrm{HP}}=10.1 \mathrm{~Hz}, 1 \mathrm{H}$, allyl $\left.-H_{\mathrm{ant}}\right), 1.40\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=8.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}{ }_{3}{ }^{\mathrm{A}}\right), 1.21\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=9.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{PCH}_{3}{ }^{\text {A }}\right), 1.10\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=9.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}{ }^{\mathrm{B}}\right), 1.08\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}}=8.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}{ }^{{ }^{\mathrm{B}}}\right) \mathrm{ppm}$; only one isomer was observed; labelled as A, B to distinguish between the resonances of the two ligands. ${ }^{11} \mathbf{B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=-7.5 \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=161.9\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-BArF), $155.4\left(C 2^{\mathrm{A}}\right), 155.1\left(C 2^{\mathrm{B}}\right), 139.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=7.6 \mathrm{~Hz}, C 1^{\mathrm{A}}\right), 139.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.4 \mathrm{~Hz}, C 1^{\mathrm{B}}\right)$, $137.3\left(\mathrm{pt},{ }^{2} J_{\mathrm{CP}}=5.4 \mathrm{~Hz}\right.$, allyl-C), $134.9(o-\mathrm{BArF}), 134.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=2.0 \mathrm{~Hz}, C 10^{\mathrm{A}}\right), 134.3(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{CP}}=2.0 \mathrm{~Hz}, C 10^{\mathrm{B}}\right), 134.3\left(C 9^{\mathrm{A}^{\mathrm{A}}}\right), 134.2\left(C 9^{\mathrm{B}}\right), 133.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=1.6 \mathrm{~Hz}, C 9^{\mathrm{A}}\right), 133.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right.$, $\left.C 9^{\mathrm{B}}\right), 131.5\left(C 4^{\prime \mathrm{A}}\right), 131.4\left(C 4^{\mathrm{B}}\right), 130.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=41.6 \mathrm{~Hz}, C 2^{\mathrm{A}}\right), 129.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=41.8 \mathrm{~Hz}, C 2^{\mathrm{B}}\right), 129.4$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CP}}=24.3 \mathrm{~Hz}, C 3^{\mathrm{B}}\right), 129.1\left(C 10^{\mathrm{B}}\right), 129.0\left(\mathrm{qq},{ }^{2} J_{\mathrm{CF}}=31.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=2.9 \mathrm{~Hz}, m-\mathrm{BArF}\right), 128.9$ $\left(C 10^{\prime \mathrm{A}}\right), 128.7\left(C 4^{\mathrm{A}} / C 5^{\prime \mathrm{A}}\right), 128.5\left(C 4^{\mathrm{B}} / C 5^{\mathrm{B}}\right), 128.2\left(C 5^{\mathrm{A}}\right), 128.2\left(C 6^{\mathrm{A}} / C 6^{\mathrm{B}}\right), 128.1\left(C 5^{\mathrm{B}}\right), 127.6\left(C 7^{\mathrm{A}}\right)$, $127.6\left(C 7^{\mathrm{B}}\right), 127.3\left(C 7^{\mathrm{B}}\right), 127.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=12.6 \mathrm{~Hz}, C 3^{\mathrm{A}}\right), 127.1\left(C 7^{\mathrm{A}}\right)$, $126.2\left(C 8^{\mathrm{B}}\right), 126.1\left(C 8^{\mathrm{A}}\right)$, $124.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.3 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 125.0\left(C 8^{\mathrm{B}}\right), 124.5\left(C 6^{{ }^{\mathrm{B}}}\right), 124.3\left(C 8^{\mathrm{AA}}\right), 124.1\left(C 6^{\prime \mathrm{A}}\right), 120.1\left(C 1^{1 \mathrm{~B}}\right)$, $119.7\left(C 1^{\mathrm{A}}\right), 117.6\left(\right.$ septet, $\left.{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, p-\mathrm{BArF}\right), 113.4\left(C 3^{\mathrm{AA}}\right), 113.3\left(C 3^{\mathrm{B}}\right), 70.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=30.5 \mathrm{~Hz}\right.$, allyl- $\left.\mathrm{CH}_{2}\right), 69.8\left(\mathrm{~d}^{2}{ }^{2} J_{\mathrm{CP}}=30.8 \mathrm{~Hz}\right.$, allyl- $\left.\mathrm{CH}_{2}{ }^{\prime}\right), 56.3\left(\mathrm{OCH}_{3}{ }^{\mathrm{B}}\right), 55.9\left(\mathrm{OCH}_{3}{ }^{\mathrm{A}}\right), 23.6\left(\right.$ allyl $\left.-\mathrm{CH}_{3}\right), 17.7$ $\left(\mathrm{dd},{ }^{1} J_{\mathrm{CP}}=27.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=2.4 \mathrm{~Hz}, \mathrm{PCH}_{3}{ }^{\text {A }}\right.$) $17.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{CP}}=26.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=2.4 \mathrm{~Hz}, \mathrm{PCH}{ }_{3}{ }^{\mathrm{B}}\right), 16.3(\mathrm{~m}$, $\mathrm{PCH}_{3}{ }^{\mathrm{A}} / \mathrm{PCH}_{3}{ }^{\mathrm{B}}$) ppm; only one isomer was observed; labelled as A, B to distinguish between the resonances of the two ligands. ${ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=-62.7 \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ $\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=-2.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=43 \mathrm{~Hz}, P^{\mathrm{A}}\right),-7.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=43 \mathrm{~Hz}, P^{\mathrm{B}}\right) \mathrm{ppm}$; only one isomer was observed; labelled as A, B to distinguish between the resonances of the two ligands. HRMS $\left(\mathrm{ESI}^{+}\right)$: Found: $m / z=845.2245$. Calculated for $[\mathrm{M}-\mathrm{BArF}]^{+}: m / z=845.2258$.

1.19 General Procedure for the Palladium-Catalysed Hydrosilylation of Styrene

$\left[\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(4.6 \mathrm{mg}, 0.0125 \mathrm{mmol})$, the ligand $(0.025$ or 0.050 mmol$)$ and styrene $(1.2 \mathrm{~mL}, 1.0 \mathrm{~g}$, $10.0 \mathrm{mmol})$ were stirred at room temperature for 20 minutes. $\mathrm{HSiCl}_{3}(1.2 \mathrm{~mL}, 1.6 \mathrm{~g}, 12.0 \mathrm{mmol})$ was added and the reaction was stirred at room temperature for the appropriate time. The conversion of the reaction was followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The product was purified by Kugelrohr distillation (reduced pressure, $150^{\circ} \mathrm{C}$).

Trichloro(1-phenylethyl)silane ($400 \mathrm{mg}, 1.67 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and THF $(30 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(1.40 \mathrm{~g}, 10.1 \mathrm{mmol})$, $\mathrm{KF}(600 \mathrm{mg}, 10.3 \mathrm{mmol})$ and $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.8 \mathrm{~mL})$ were added subsequently and the mixture was stirred overnight. After filtration, $\mathrm{H}_{2} \mathrm{O}$ was added and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic washings were dried over MgSO_{4}. The crude product was purified by column chromatography (hexane/EtOAc, $4: 1, R_{\mathrm{f}}=0.20$) on silica media to
obtain the desired product. The enantiomeric excess was measured by chiral HPLC (Lux 5 u Cellulose1 Column, $250 \times 4.6 \mathrm{~mm}$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; hexane $/ 2$-propanol, $95: 5$; retention times: $(R) t_{1}=8.9$ $\left.\mathrm{min},(S) t_{2}=10.2 \mathrm{~min}\right)$. The absolute assignment was made according to literature data. ${ }^{5}$

1.20 General Procedure for the Palladium-Catalysed Asymmetric Allylic Alkylation of (rac)-(E)-1,3-Diphenylallyl Acetate

$\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(3.7 \mathrm{mg}, 0.01 \mathrm{mmol})$ and the ligand (0.02 or 0.04 mmol) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 ml) and stirred for 20 minutes. Subsequently the reaction was treated with a solution of (rac)-(E)-1,3-diphenylallyl acetate ($126 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}), \mathrm{KOAc}(5 \mathrm{mg}, 0.05 \mathrm{mmol})$, dimethyl malonate $(0.11 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and N, O-bis(trimethylsilyl)acetamide $(0.25 \mathrm{~mL}, 1.0 \mathrm{mmol})$. The reaction mixture was stirred at room temperature and the conversion was monitored by TLC analysis. After the appropriate reaction time the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 20 \mathrm{ml})$. The organic phase was dried over MgSO_{4}. The product was purified by column chromatography (hexane/EtOAc, 3:1, $R_{\mathrm{f}}=0.50$) on silica media ($\mathrm{h}=13 \mathrm{~cm}$, $\mathrm{d}=2 \mathrm{~cm}$) to give a colorless oil (in some cases the oil became a white solid after a few hours). The enantiomeric excess was measured by chiral HPLC (Column Daicel Chiralcel AD-H; flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$; hexane $/ 2$-propanol, $90: 10$; retention times: $\left.(R) t_{1}=10.0 \mathrm{~min},(S) t_{2}=13.4 \mathrm{~min}\right)$. The absolute assignment was made according to literature data. ${ }^{6}$

2 NMR Spectra

References

1 R. M. Hiney, L. J. Higham, H. Müller-Bunz, D. G. Gilheany, Angew. Chem. Int. Ed. 2006, 45, 7248-7251.

2 A. Ficks, I. Martinez-Botella, B. Stewart, R. W. Harrington, W. Clegg, L. J. Higham, Chem. Commй. 2011, 47, 8274-8276.

3 (a) K. B. Dillon, A. E. Goeta, P. K. Monks, H. J. Shepherd, Polyhedron 2010, 29, 606-612; (b) W. Baratta, P. S. Pregosin, Inorg. Chim. Acta 1993, 209, 85-87.

4 Spartan 10; Wavefunction Inc., Irvine, CA, 2011.
5 M. Ito, Y. Endo, N. Tejima, T. Ikariya, Organometallics 2010, 29, 2397-2399.
6 H. Y. Cheung, W.-Y. Yu, T. T. L. Au-Yeung, Z. Zhou, A. S. C. Chana, Adv. Synth. Catal. 2009, 351, 1412-1422.

