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SI1. 1H NMR SPECTROSCOPY

A. Basics

The determination of the distributions of the local residual dipolar coupling constants, P(Dres), was realized by a multiple-
quantum (MQ) NMR experiment as described elsewhere [1, 2]. Basically, the NMR experiment provides two sets of data. Given
the phase acquired under the DQ pulse sequence of duration τDQ, φDQ = DresP2 (cosθ)τDQ (θ being the average segmental
orientation), the build-up of the DQ intensity IDQ(τDQ) = 〈sin2

φDQ〉θ R(2τDQ) mainly reflects DQ coherences that are dominated
by intrachain spin-pair dipole-dipole couplings, and the reference intensity Iref(τDQ) = 〈cos2 φDQ〉θ R(2τDQ)+ Itail(τDQ) includes
all signal which has not evolved into DQ coherences after a certain evolution time τDQ (Fig. SI 1).

Consequently, the sum Isum = IDQ + Iref contains the full dipolar refocused intensities and can serve as a norm, which decays
only due to molecular motions occurring on the timescale of the experiment, as described by a transverse relaxation function
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Figure SI 1: An MQ experiment provides two intensity functions that relax for long evolution times τDQ: IDQ (circles) and Iref (triangles),
as demonstrated for the unstretched sample NR1B in the left panel. The difference intensity Iref− IDQ (squares) allows to reliably determine
a tail function (dashed line) with an amplitude corresponding to the defect volume fraction of the sample. The overall intensity decay due
to intermediate-timescale motions of the matrix can be removed by dividing IDQ by the term IDQ + Iref− Itail for each τDQ (rhombi). The
normalized DQ intensity InDQ enables the determination of residual dipole-dipole coupling distributions by Tikhonov regularization (right
panel).
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Figure SI 2: Idiff (grey line, left) and Idiff− Itail (black line, left), taken from Fig. SI 1, can be used to calculate dipolar spectra (right) using eq.
SI2. The elastic defect fraction contribution is related to Itail (dashed line, left) and appears in the spectra as an additional zero frequency peak
(right). The average dipolar interaction Dres can be determined in a model-free way from the second moment of the spectra.

R(2τDQ). While these relaxation processes are present in both intensities and can be removed by a point-by-point normalization,
contributions of non-network components (generally) do not contribute to IDQ but lead to a slowly relaxing tail contribution to
Iref. Exploiting the 50-50 distribution of the signal among IDQ and the proper reference for network-only components beyond the
maximum of the build-up curve, the difference Idiff = Iref− IDQ most clearly reveals the non-elastomeric content of the sample.
The long-time tail of Idiff (τDQ) is a slowly decaying function which can often be well approximated by a single-exponential
decay with an amplitude referring to the volume fraction of the defects. A subtraction of the exponential tail from the sum
intensity eliminates the defect contribution, and a normalized DQ intensity build-up curve InDQ is obtained:

InDQ (τDQ) =
IDQ (τDQ)

IDQ (τDQ)+ Iref (τDQ)− Itail (τDQ)
. (SI1)

Such data taken on powder samples can now be subjected to a numerical distribution analysis of Dres based upon Tikhonov
regularization, as explained in the main text.

B. Initial-rise analysis, moments and spectra

As a model-free alternative to the numerical distribution analysis, time-domain data equivalent to a Hahn-echo (pure dipolar
dephasing) experiment can be calculated from the MQ data [3] using the phase relation φecho =

3
2 φDQ [1], which amounts to a

scaling of the time axis, and known trigonometric relations:

Îecho(t) = 〈cosφecho〉

=

〈
cos2

(
2

3
2

φDQ

)〉
−
〈

sin2
(

2
3
2

φDQ

)〉
(SI2)

∼ Iref− IDQ (−Itail)

With Îecho(t) ∼ Idiff, a dipolar spectrum can be obtained by Fourier transformation. Such analyses of Idiff are not only possible
for an unstretched powder sample, but also for a selected sample orientation of a stretched sample or for the “artificial” powder
average constructed from it, in the same way as for InDQ (see eq. SI2). The difference between Idiff and InDQ is that the former
is not corrected for incoherent relaxation (long-time decay), which means that the spectra still contain some (though weak)
homogeneous line broadening.

As expected, the resulting dipolar spectra (Fig. SI 2) show a central peak only in case the non-elastic network contributions (Itail)
are not subtracted. The central peak can be directly related to compounds with zero residual dipolar interaction, e.g. defect
chains or low-molecular impurities. The subtraction of the tail eliminates this contribution and leads to Gaussian-shaped spectra
with an additional weak doublet. In stretched samples, the splitting includes contributions from partially oriented defect chains
[4], while in unstretched samples (as shown in Fig. SI 2) it is also present and arises from multispin interactions. The latter
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Figure SI 3: Comparison of theoretical predictions (homogeneous network, affine model) for the second and fourth moments of the extension
ratio (r = R(λmac)/R0),

〈
r2 (λmac)

〉
and

〈
r4 (λmac)

〉1/2 shown as dotted orange and solid black lines, respectively, with results based upon
Dres ∼ r2 obtained from MQ NMR meta-data. Dres obtained from the Tikhonov regularization result (squares) and the half-sided average of
the dipolar spectra (circles) agree with the former, while the second moment calculated from dipolar spectra agrees with the latter.

phenomenon is specific to spin dynamics among different quantum orders under the DQ pulse sequence [5] and is not apparent
in a standard Hahn-echo experiment.

Average values Dres or
√

D2
res can now be obtained in different ways, and a comparison of their ratio to the unstretched reference

can be used as a consistency check (see Fig. 4C of the main paper). The first moment (arithmetic average) can either be obtained
from the actual Dres distribution obtained by regularization analysis, or from a half-sided integration of the dipolar spectra:

Dres ∼
∞∫

0

ω g(ω)dω/

∞∫
0

g(ω)dω, (SI3)

This procedure is only exact for vanishing homogeneous broadening (which “smears” data for ω < 0 into the first quadrant),
nevertheless, the data in Fig. 4C of the main paper proves the procedure to be robust for the case of MQ NMR data (we do not
advise to do this for 2H spectra, where the homogeneous contribution is not known a priori).

The second moment used to calculate
√

D2
res can also be obtained in various ways. Integration of dipolar spectra is an obvious

one, as is its calculation from the known Dres distribution. Alternatively, it can be obtained by fitting the initial rise of nDQ
build-up curves, InDQ ∼ D2

res τ2
DQ to a parabola. Finally, time-domain data corresponding to dipolar spectra (Idiff) or the Fourier-

transformed fit results to 2H spectra from the literature can be fitted to exp{−k D2
rest

2} ≈ 1−k D2
rest

2. All these approaches yield
largely equivalent results when applied to our data (see Fig. 4C of the main paper).

It is important to note that the theoretical description of the strain-dependent square-averaged
√

D2
res(λmac) is different from that

of the first moment, eq. (16) of the main paper. A similar calculation for the average over all orientations i yields√
D2

res(λmac)√
D2

res,λmac=1

=

√
〈R4〉i
R2

0
=
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. (SI4)

In order to demonstrate this difference and to analyze the consistency of the different moment determinations used to relate the
experimental Dres with the local deformation r2 = R2/R2

0, we have generated InDQ meta-data for the artificial powder average
of the affine model (as explained in the next Section SI2), which leads to the widest Dres distributions and the largest strain-
dependent increase of its average among all models. The data in Fig. SI 3 demonstrate the difference between the relative first
and second moments, and also shows that the different methods to extract the different averages of Dres are quantitatively correct.

In contrast, our experimental data usually show D2
res ≈ D2

res within our accuracy limits (see Fig. 4C, main text). This is another
demonstration of the deficiencies of the simple network models, and shows that only a full distribution analysis of Dres rather
than the study of just one type of moment enables a critical discussion. Only models that predict reasonably narrow distributions
(leading to more similar first and second moments) are realistic ones.
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SI2. NUMERICAL CALCULATIONS

A. General strategy

For the comparisons of the experimental results with theoretical predictions, we performed numerical calculations based upon a
sufficiently large random set of isotropically distributed end-to-end vectors R. The apparent initial length distribution was chosen
to be either represented by a δ function (representing the time average R0 = 〈R2〉1/2 over the usual instantaneous Gaussian R
distribution), or by alternative probability functions characterizing crosslinking inhomogeneities as taken from the experimental
data. As described in the main text, these were for practical reasons implemented as additional length distributions of R, which
mathematically corresponds to a simple convolution procedure.

The acquired phase in the DQ experiment is for a single residual coupling (a representative segment of a single type of sub-chain)
written as φDQ =DresP2 (cosθ)τDQ, where θ is its time-averaged orientation with respect to the magnetic field and Dres∼R2/R2

0.
Therefore, the DQ intensity of the entire system is proportional to the sum of the individual chains’ contributions and reads:

InDQ(τDQ)∼∑
i

sin2
(

3Deff

5N
R2

i

R2
0

P2(cosθi)τDQ

)
. (SI5)

Uniaxial stretching can be “simulated” by coordinate transformations of the differently oriented end-to-end vectors Ri→ R′i, see
Fig. 5 of the main text, using the characteristic ratios between the macroscopic and the local microscopic deformation, see eqs.
(4–9) therein. The corresponding spectra were simply obtained as histograms in bins of fixed frequency width via the summation
over all i phases:

φ
i
DQ/τDQ ∼±

R2
i

R2
0

P2 (cosθi) . (SI6)
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Figure SI 4: A set of 10000 chains was generated, having the apparent R-distribution p(R) as derived from the experiment (A) and an
orientation distribution p(α) characterized by κ . The anisotropy paramter κ was taken as a free variable to iteratively fit the simulated data to
the anisotropic features of the experiments. The shown data sets correspond to the angle-dependent data shown in Fig. 10 of the main text.
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B. Anisotropy fit

The orientation dependence of the DQ intensity was fitted by using the random-set approach from above and an iterative refine-
ment of the anisotropy parameter κ:

1. generation of a set of 10000 chains with an R distribution, p(R′), corresponding to the length distribution of unixially
deformed NR samples (SI Fig. 3A)

2. generation of an orientation distribution, p(α ′), by using tanα ′i = κ tanαi with an initial guess of κ and an isotropic
distribution p(α), where α describes the orientation of the chains with respect to the macroscopic elongation (see Fig. 5
of the main text) and κ = λ ∗⊥/λ ∗‖ with λ ∗⊥ and λ ∗‖ characterizing the orientational deformation ellipsoid as described in the
main text. This approach can also be rationalized by defining new unit vectors, ~ei = {e⊥,i,e⊥,i,e‖,i}, with:

e⊥,i = λ
∗2
⊥,i sin2

αi/
(

λ
∗2
‖,i cos2

αi +λ
∗
⊥,i2 sin2

αi

)
(SI7)

= κ
2 sin2

αi/
(
cos2

αi +κ
2 sin2

αi
)

(SI8)

e‖,i = λ
∗2
‖ cos2

αi/
(

λ
∗2
‖,i cos2

αi +λ
∗2
⊥,i sin2

αi

)
(SI9)

= cos2
αi/
(
cos2

αi +κ
2 sin2

αi
)

(SI10)

3. it was assumed that longer chains appear at smaller angles and vice versa (SI Fig. 3B), imposing a correlation of the
orientation with the value of R

4. the DQ intensities for a given evolution time τDQ were calculated using eq. SI3, normalized by the powder average and
compared with the experimentally derived normalized intensity InDQ/Ipow

nDQ. τDQ was chosen such that InDQ was approx.
0.1 (τDQ was 0.3 ms and 0.5 ms for the samples NR3X and NR1X, respectively)

5. κ was iteratively adjusted to fit the experimental data sets (for results see Figs. 10 and 11 of the main text)

SI3. LINESHAPE DECOMPOSITION OF 2H NMR SPECTRA

Polymer method network type defects Mc (g/mol) Ref.

natural rubber 1H MQ NMR sulfur-vulcanized 5% 2100 [4]

poly(dimethylsiloxane) 2H NMR spectra end-linked 22% 5000 (?) [6]
poly(1,1,4,4−d4-butadiene)
PBd −5−4 2H NMR spectra radically crosslinked 30% 19500 [7]
PBd −3−5 2H NMR spectra radically crosslinked 25% 15900 [7]
PBd −3−6 2H NMR spectra radically crosslinked 32% 11600 [7]
PBd −Si−1 2H NMR spectra radically crosslinked , junction-labeled 35% 27000 [7]
PBd −Si−3 2H NMR spectra radically crosslinked , junction-labeled 28% 15900 [7]
poly(1,1,4,4−d4-butadiene) 2H NMR spectra peroxide-crosslinked 22% 6500 [8]
poly(dimethylsiloxane) 2H NMR spectra end-linked 38% l0500 [9]

SI Table I: Sample properties for Fig. 13 of the main text and Fig. SI 5.
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Figure SI 5: Sample decompositions of 2H spectra from the literature. A: Genesky et al. [6], B: Gronski et al. [7], C: Ries et al. [8], D:
Sotta et al. [9]. A pair of Lorentzians is attributed to the apparent defect contribution (splitting), which appears due to the orientating effect
of the strained network matrix. The network response is described by a single Gaussian (A,B,D) or by the combination of a Gaussian and a
Lorentzian (C). The right hand side (E) shows the comparison analogous to Fig. 13C,D of the main paper for the data of Ries et al., which was
obtained at a sample orientation of 0◦ (which means that the 1H MQ NMR data and the theoretical fits are different, as they depend on the
orientation).
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