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1. Experimental Methods 

a. Synthesis of PbS Nanocrystals 

PbS nanocrystals (NCs) used in this study were prepared using the method reported 

by Hines and Scholes 
1
. In a typical synthesis, 0.45 g of lead oxide powder was mixed 

with 20 mL of oleic acid. Then the solution was heated to 150 °C for one hour under 

nitrogen flow to form a lead oleate solution and degas. The solution was then cooled 

down or further heated up to injection temperature ranging from 90 to 200°C. The 

injection temperature determines the size of synthesized NCs. In a nitrogen glovebox, 

210 μL of bis(trimethylsilyl)sulfide was dissolved in 10 mL of 1-octadecene, stirred 

thoroughly and then injected rapidly into the vigorously stirred lead oleate solution. 

Immediate formation of PbS NCs was indicated by color change of the mixture from 

transparent to dark. NCs were collected after reaction for 1 min then washed twice by 

sequential precipitation with ethanol and redispersion in hexane.  Finally the solvent 

was removed by nitrogen flow and dry NCs were stored inside a nitrogen glovebox 

(oxygen <1 ppm).  

b. Transmission Electron Microscopy for NC Size Measurements 

Dilute hexane solution of PbS NC samples were dropped on carbon coated copper 

grids for transmission electron microscopy (TEM) imaging. TEM images were taken 

using a FEI Tecnai T-12 microscope operated at 120 kV.  The average diameter of 

NCs is determined by statistics on at least 200 NCs in multiple TEM images.  Figure 

S1 shows representative TEM images and corresponding diameter histograms of the 

six samples involved in this study. The sizes of the PbS NCs are determined to be 

3.0±0.3, 3.7±0.3, 6.7±0.6, 8.5±0.8, 11.3±0.9 and 16.1±1.9 nm in diameter D0. 

c. In-situ High-Pressure X-ray Scattering Measurements. 

High pressure was generated by a diamond anvil cell (DAC) consisting of two aligned 

diamond anvils (Figure 1). Saturated toluene suspension of PbS NCs was loaded into 

a 150-μm diameter hole in a pre-indented stainless-steel gasket and then encapsulated 

and pressurized by the diamond anvils up to 6 GPa. Toluene served as both solvent 

and pressure media to decouple inter-NC interactions and provide hydrostatic pressure. 

Multiple ruby chips were placed in the DAC with the sample to measure pressure 

using standard ruby fluorescence method. The pressure gradient within the sample 

chamber never exceeded 0.2 GPa in all measurements. 

X-ray scattering measurements were performed at the B1 beamline at Cornell High 

Energy Synchrotron Source (CHESS). Monochromatic x-ray of wavelength of 0.4859 

Å was generated by two Ge (111) single crystals. Then the beam size was reduced to 

100 μm by a collimator. Wide-angle x-ray scattering (WAXS) patterns were collected 

by a large-area Mar345 image plate detector (Figure 1). The sample-to-detector 

distance was calibrated using a CeO2 standard to 847.8 mm. The scattering patterns 

were then integrated by Fit2D software
2
 and analyzed.   
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Figure S1.  TEM images of (a) 3.0, (b) 3.7, (c) 6.7, (d) 8.5, (e) 11.3 and (f) 16.1 nm 

PbS NCs. Insets shows corresponding histogram of NQD diameter by counting at 

least 200 NQDs. 
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2. WAXS Measurements   

 

Figure S2.  WAXS patterns of PbS NCs samples under ambient conditions 

Figure S2 shows the WAXS patterns of the six PbS NC samples under ambient 

pressure confirming rock salt crystal structure. The scattering peaks broaden as NC 

size decreases due to size-dependent Scherrer broadening effect. The peak positions 

were determined by fitting them to Gaussian peaks. Lattice parameters were 

calculated by eqn. S1. Then the ambient lattice constant a0 as in Table 1 was obtained 

from dhkl by the software UnitCell.
3
 The 95% confidence interval is ~ 0.001 Å in all 

case. 

2 /hkl hkld q          (S1) 

 

3. Calculation of Bulk Modulus 

Bulk modulus K of PbS NCs were calculated by fitting measure data to Vinet equation 

of state (EOS):
4,5

  

  2/3 1/3 1/33 1 exp 1.5 ' 1 1P Kv v K v              (S2) 

Where v is the normalized unit cell volume with respect to the ambient pressure value: 

v(P) = V (P)/V0 = [a (P)/a0]
3
; K is the bulk modulus under ambient pressure, and K = 

dK/dP|P=0 is the pressure derivative of the bulk modulus. In this study, K’ is fixed at 

4.0 for fair comparison between samples.
6,7

  The Vinet EOS fits of the measured data 

are presented in Figure S3. The slight deviation of the experimental data from the 

ideal shape of the EOS is likely to be a result of deviatoric stresses when pressure is 

high.
8
 The variable bulk modulus indicates size-dependence of compressibility of PbS 

NCs as detailed in the main text.    



 4 

 

Figure S3.  Compressibility of (a) 3.0, (b) 3.7, (c) 6.7, (d) 8.5, (e) 11.3 and (f) 16.1 

nm PbS NCs. Solid lines are Vinet EOS fits. 

 

4. Lattice Expansion Model 

We estimate the influence of atomic lattice expansion on elastic modulus in PbS NCs. 

The Young’s modulus Y is related to the distance between the nearest-neighboring 

atoms at equilibrium dnn by:
9,10

 

/ nnY d           (S3) 

where β is a force constant given by 

2

2

nnr d

d u

dr




          (S4) 

where u is the inter-atomic pair potential. When u is approximated as a Lennard-Jones 

potential with binding energy ε, i.e.: 

12 6[( ) 2( ) ]nn nnd d
u

r r
          (S5) 

Then we have 
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And 
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The bulk modulus is then given by 
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where ν is the Poisson ratio. In the rock salt lattice in PbS, dnn is proportional to lattice 

constant a0. Assuming size-independent binding energy and Poisson ratio, we can 

simplify eqn. S8 to be 

3

0

'
K

a


           (S9) 

The constant β’ can be obtained from the bulk value of lattice constant and bulk 

modules. For PbS, we found β’ = 1.10x10
4
 GPa•Å

3
.  

Using eqn. S9, we estimate the lattice expansion effect on bulk modulus in PbS based 

on measured lattice constants listed in Table 1 of main text. The calculated bulk 

moduli of PbS NCs of different sizes are plotted in Figure S4 and compared with the 

experimental values. It shows that considering only the lattice expansion effect results 

in bulk modulus smaller than bulk value indicating weakened elastic strength in PbS 

NCs. This is the opposite of what was observed. On the other hand the lattice 

expansion model does predict the trend that for very small NCs i.e. K decreases as NC 

size. However, the shift calculated is much smaller than the measured by about an 

order of magnitude. Consequently we can rule out a major contribution by lattice 

expansion. 

 

Figure S4. Size-dependent bulk modulus caused by lattice expansion (LE) effect (red 

dots) comparing with measured (black squares) and bulk values (blue dashed line).  
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5. Modeling the Size-Dependent Stiffness in PbS NCs 

 

a. Details of the Basic Core-Shell Model 

The core-shell model is based on a core with a radius of R and a constant bulk 

modulus Kc., which we take to be the value of bulk PbS.
21

 On the other hand, the shell 

contains surface atoms of a skin thickness b and has a size-dependent bulk modulus 

Ks (eqn. 1). Ks is an apparent stiffness which is expected to be larger than the intrinsic 

bulk modulus of the shell due to higher packing density at NC surface and pressure 

shielding effect by the soft ligands. Ks captures the elasticity of the surface layer, this 

is expected to vary with the effective curvature of the dot. 

            (S7) 

Where Ks,0 is the modulus of the surface layer of a flat slab of PbS. Note that Ks,o ≠ Kc 

since the surface atoms packed differently than in the bulk. ks and n are fitted 

parameters. According to the composite sphere model,
22,23

 the effective bulk modulus 

Keff which is measured experimentally can be calculated from Ks and Kc:
24

 

       (S8) 

Where c is the volume fraction of the core, Gs is the shear modulus of the surface 

layer. 

         (S9) 

        (S10) 

Where ν = 0.25 is the Poisson ratio of PbS.  
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b. Alternative Effective Stiffness Model 

In addition to the composite sphere model, another effective elastic stiffness adopted 

from Miller et. al.
11

 is used to calculate the effective modulus of NCs of different 

sizes. This is a general model describing the size-dependence of elastic properties: 

1c

c

D D S

D E h





        (S12) 

Where, the left hand side is deviation of an elastic property D from that of 

conventional continuum mechanics Dc. On the right hand side, α is a non-dimensional 

constant that depends on the geometry of the structural element, h is a characteristic 

length defining the size of the particle. The quantity S is a surface elastic property 

related to the structural element being considered and E is the corresponding elastic 

modulus of the bulk material. Note that E is a positive quantity, but that S can be 

positive or negative. 

In our case, D=Keff , Dc=Kbulk , h is the diameter of NC d, E=Kbulk, S=Ks which size 

dependent as given by eqn. 1 of main text. And this model now can be rewritten as: 

1
(1 )s

eff bulk

bulk

K
K K

K d
 

       (S13) 

Fitting measured data to this model yields: Ks,bulk = 78 GPa ks = 169 GPa•nm
2
, n = 

2.0 and α = 1.0. Again, as in the composite sphere model, we see n = 2 indicating Ks 

scales as the surface area of NC. So it can be written in the form of eqn. 5. And the 

constant α happens to be 1 representing the spherical shape of the NCs.  
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