Rational design of SOD mimics

The evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents

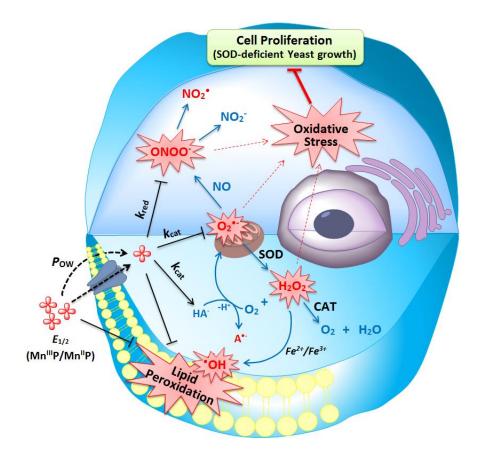
By

Artak Tovmasyan,¹ Sebastian Carballal,² Robert Ghazaryan,³ Lida Melikyan,³ Tin Weitner,¹ Clarissa G. C. Maia,⁴ Julio S. Reboucas,⁴ Rafael Radi,² Ivan Spasojevic,⁵ Ludmil Benov,⁶ and Ines Batinic-Haberle^{1*}

¹Departments of Radiation Oncology, and ⁵Medicine Duke University Medical Center, Durham, NC 27710, USA; ² Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay;

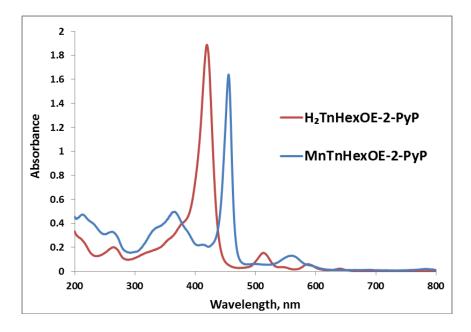
³Department of Organic Chemistry, Pharmacy Faculty, Yerevan State Medical University, Armenia; ⁴Departamento de Quimica, CCEN, Universidade Federal de Paraiba, Joao Pessoa, PB 58051-900, Brazil; ⁶Department of Biochemistry, Faculty of Medicine, Kuwait University, Safat, Kuwait

SUPPORTING MATERIAL

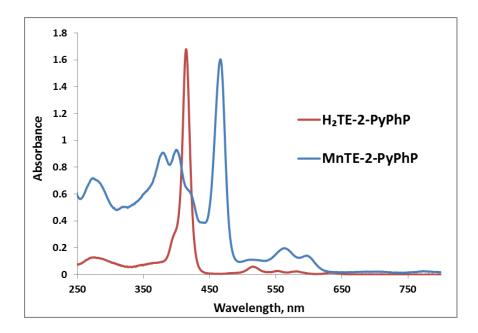

*Corresponding author

Ines Batinic-Haberle, PhD Department of Radiation Oncology Duke University School of Medicine Durham, NC 27710. Tel: 919-684-2101 e-mail: <u>ibatinic@duke.edu</u>

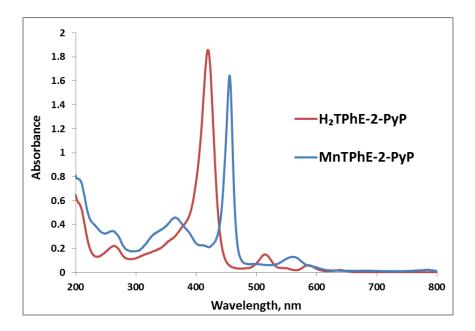
Content


- 1. UV-Vis spectra of porphyrins and their Mn(III) complexes
- 2. ESI-MS spectra of porphyrins and their Mn(III) complexes
- 3. Reduction of peroxynitrite (ONOO⁻) by Mn(III) complexes
- 4. SOD-like activity of Mn(III) porphyrins
- 5. The reduction potentials of various couples of Mn(III) porphyrins
- 6. References

Graphical Abstract



1. Uv-vis spectra of porphyrins and their Mn(III) complexes


The uv/vis spectra were recorded in water at room temperature on a UV-2501PC Shimadzu spectrophotometer with 0.5 nm resolution using a 1 cm quartz cuvette.

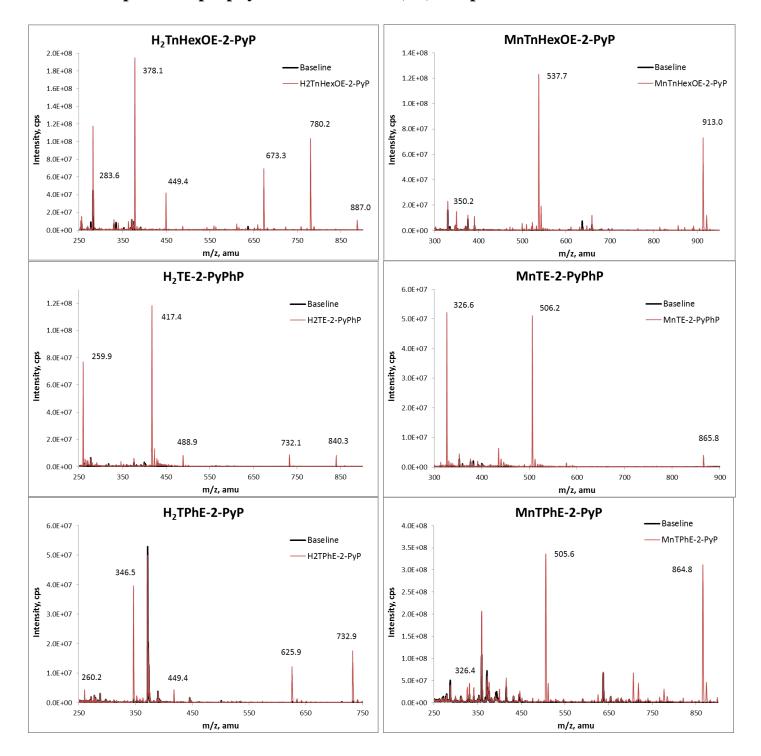
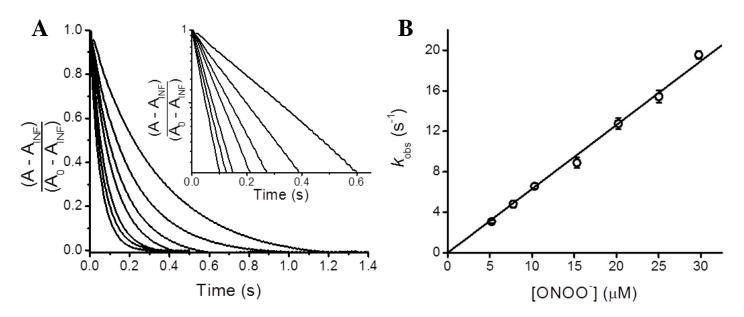
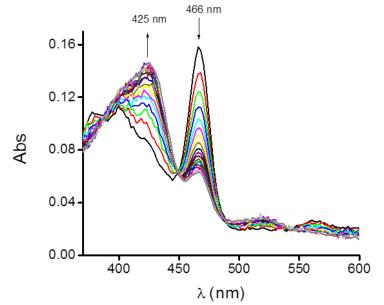

Figure S1. Uv/vis spectra of H_2 TnHexOE-2-PyP⁴⁺ and its Mn(III) complex.

Figure S2. Uv/vis spectra of H_2TE-2 -PyPhP⁴⁺ and its Mn(III) complex.


Figure S3. Uv/vis spectra of $H_2TPhE-2-PyP^{4+}$ and its Mn(III) complex.

2. ESI-MS spectra of porphyrins and their Mn(III) complexes


Figure S4. ESI-MS spectra of new porphyrins (H₂TnHexOE-2-PyP⁴⁺, H₂TE-2-PyPhP⁴⁺, and H₂TPhE-2-PyP⁴⁺) and their Mn(III) complexes (MnTnHexOE-2-PyP⁵⁺, MnTE-2-PyPhP⁵⁺, and MnTPhE-2-PyP⁵⁺). ~1 μ M sample solution in 1 : 1 v/v acetonitrile : H₂O (containing 0.01% v/v heptafluorobutyric acid (HFBA)) mixture was applied. For peak assignments see **Table 2** in main document.

3. Reduction of peroxynitrite (ONOO⁻) with Mn(III) complexes

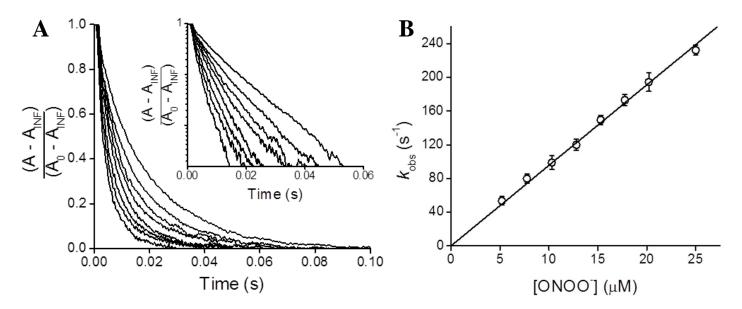

1) MnTE-2-PyPhP $^{5+}$

Figure S5. A) Time course of the reaction of MnTE-2-PyPhP⁵⁺ with peroxynitrite. MnTE-2-PyPhP⁵⁺ (1 μ M) was mixed with peroxynitrite at different concentrations, from right to left: 5.20, 7.76, 10.30, 15.30, 20.21, 25.02 and 29.74 μ M, and reaction followed at 467 nm. A is the absorbance at time t, and A₀ and A_{INF} are the initial and final values, respectively. (Inset) Logarithmic plot. **B**) $k_{obs} vs$ [ONOO⁻] plot, which slope is the second-order rate constant for the reaction of peroxynitrite with MnTE-2-PyPhP⁵⁺, k_{red} (ONOO⁻). The k_{red} (ONOO⁻) value is given in the **Table 4** in the manuscript.

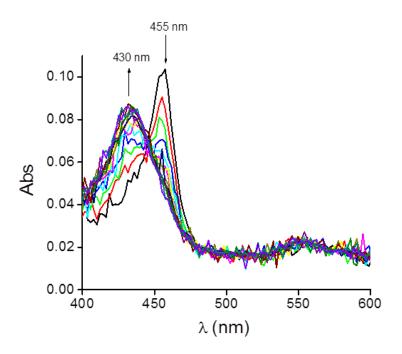


Figure S6. Time-resolved uv/vis absorption spectra obtained upon mixing MnTE-2-PyPhP⁵⁺ with peroxynitrite. Final concentrations: MnTE-2-PyPhP⁵⁺ 2 μ M, peroxynitrite 20 μ M in phosphate buffer (0.05 M, pH 7.3, with 0.1 mM DTPA) at 37 °C. Spectra were collected every 10 ms after mixing, from 0 to 200 ms. The arrows indicate the direction of the absorbance change over time. The isosbestic point indicates the equilibrium between two Mn porphyrin species present in solution: Mn^{III}P and O=Mn^{IV}P.

2) MnTPhE-2-PyP⁵⁺

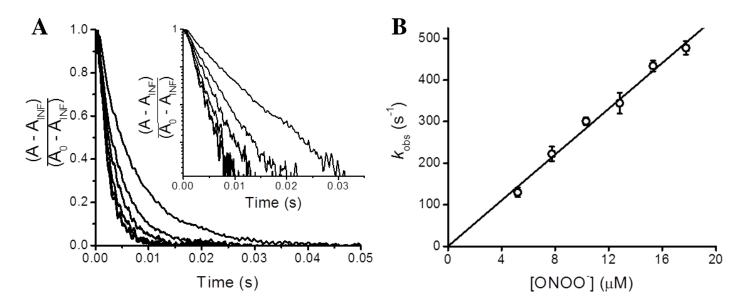


Figure S7. A) Time course of the reaction of MnTPhE-2-PyP⁵⁺ with peroxynitrite. MnTPhE-2-PyP⁵⁺ (0.5 μ M) was mixed with peroxynitrite at different concentrations, from right to left: 5.20, 7.76, 10.30, 12.81, 15.30, 17.77, 20.21 and 25.02 μ M, and followed at 456 nm. A is the absorbance at time t, and A₀ and A_{INF} are the initial and final values, respectively. (Inset) Logarithmic plot. **B**) k_{obs} vs [ONOO⁻] plot, which slope is the second-order rate constant for the reaction of peroxynitrite with MnTPhE-2-PyP⁵⁺, k_{red} (ONOO⁻). The k_{red} (ONOO⁻) value is given in the **Table 4** in the manuscript.

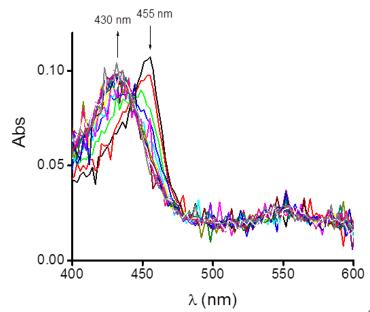


Figure S8. UV-Vis absorption spectra after mixing MnTPhE-2-PyP⁵⁺ with peroxynitrite. Final concentrations: MnTPhE-2-PyP⁵⁺ 1 μ M, peroxynitrite 10 μ M in phosphate buffer (0.05 M, pH 7.3, with 0.1 mM DTPA) at 37 °C. Spectra were collected every 2 ms after mixing, from 0 to 28 ms. The arrows indicate the direction of the absorbance change over time.

3) MnTnHexOE-2-PyP⁵⁺

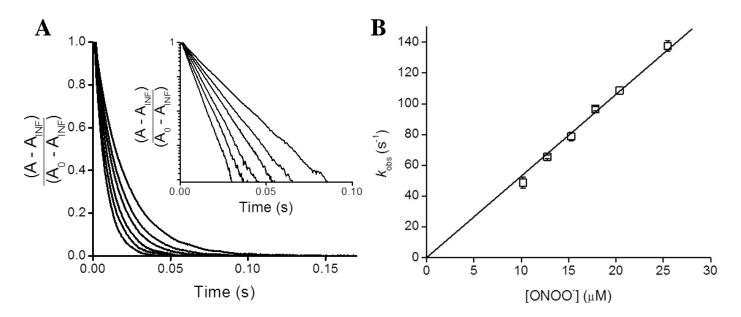
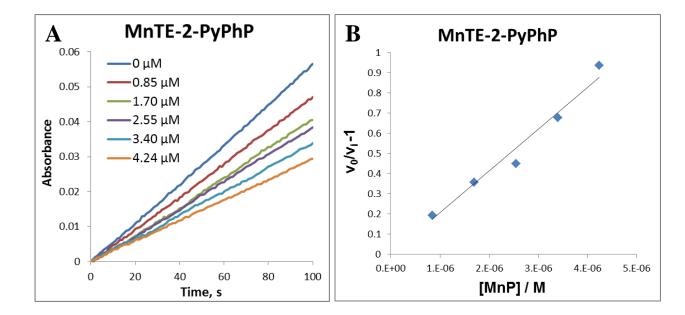
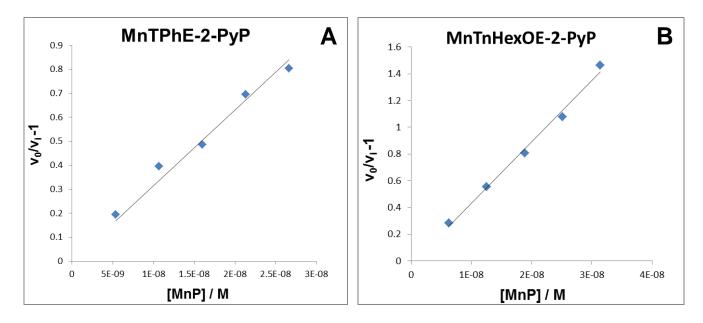


Figure S9. A) Time course of the reaction of MnTnHexOE-2-PyP⁵⁺ with peroxynitrite. MnTnHexOE-2-PyP⁵⁺ (0.5 μ M) was mixed with peroxynitrite at different concentrations, from right to left: 5.20, 7.76, 10.30, 12.81, 15.30 and 17.77 μ M, and followed at 455 nm. A is the absorbance at time t, and A₀ and A_{INF} are the initial and final values, respectively. (Inset) Logarithmic plot. **B**) k_{obs} vs [ONOO⁻] plot, which slope is the second-order rate constant for the reaction of peroxynitrite with MnTnHexOE-2-PyP⁵⁺, k_{red} (ONOO⁻). The k_{red} (ONOO⁻) value is given in the **Table 4** in the manuscript.


Figure S10. UV-Vis absorption spectra after mixing MnTnHexOE-2-PyP⁵⁺ with peroxynitrite. Final concentrations: MnTnHexOE-2-PyP⁵⁺ 1 μ M, peroxynitrite 10 μ M in phosphate buffer (0.05 M, pH 7.3, with 0.1 mM DTPA) at 37 °C. Spectra were collected every 1 ms after mixing, from 0 to 20 ms. The arrows indicate the direction of the absorbance change over time.

4) MnTE-3-PyP⁵⁺

Figure S11. A) Time course of the reaction of MnTE-3-PyP⁵⁺ with peroxynitrite. MnTE-3-PyP⁵⁺ (1 μ M) was mixed with different peroxynitrite concentrations, from right to left: 10.19, 12.74, 15.28, 17.83, 20.38 and 25.47 μ M, and followed at 460 nm. A is the absorbance at time t, and A₀ and A_{INF} are the initial and final values, respectively. (Inset) Logarithmic plot. **B**) k_{obs} vs [ONOO⁻] plot which slope is the second-order rate constant for the reaction of peroxynitrite with MnTE-3-PyP⁵⁺. The k_{red} (ONOO⁻) value is given in the **Table 4** in the manuscript.


4. SOD-like activity of Mn(III) porphyrins

1) MnTE-2-PyPhP⁵⁺

Figure S12. A) Time course of the reaction of MnTE-2-PyPhP⁵⁺ with O₂⁻⁻ at (25 ± 1) °C in 0.05 M potassium phosphate buffer, pH 7.8, 0.1 mM EDTA and at different MnP concentrations. **B**) The plot of $(v_0/v_i-1) vs$ [MnTE-2-PyPhP], where v_0 is the rate of reduction of 10 µM cytochrome *c* by O₂⁻⁻ and v_i is the rate of reduction of cytochrome *c* inhibited by the porphyrin. From the plot, the concentration that causes 50% of the inhibition of cytochrome *c* reduction by O₂⁻⁻ [IC(50), 1 unit of activity] was found at $(v_0/v_i - 1) = 1$. On the basis of the competition of MnP with 10 µM cytochrome *c*, at 50% inhibition the rates of the reactions of cytochrome *c* and the MnP with O₂⁻⁻ are equal, i.e., k_{cat} [MnP] = k_{cyt} [cytochrome *c*], where $k(cyt c)= 2.6 \times 10^5 \text{M}^{-1} \text{ s}^{-1}$. This equation allows us to calculate the MnP $k_{cat}(O_2^{-1})$. At any given day of experiments, MnTE-2-PyP⁵⁺ was always tested along with new compounds to adjust for the fluctuations in methodology (for additional details see [S1].

2) MnTPhE-2-PyP⁵⁺ and MnTnHexOE-2-PyP⁵⁺

Figure S13. The (v₀/v_i-1) vs [MnP] is plotted for the reactions of MnPs [MnTPhE-2-PyP⁵⁺ (A) and MnTnHexOE-2-PyP⁵⁺ (B)] with O₂⁻⁻ at (25 ± 1) °C in 0.05 M potassium phosphate buffer, pH 7.8, 0.1 mM EDTA. At any given day of experiments, MnTE-2-PyP⁵⁺ was tested along with new compounds to adjust for fluctuations in methodology. See in **Figure S12** for the approach to the calculations of $k_{cat}(O_2^{--})$.

5. The reduction potentials of various couples of Mn(III) porphyrins

Table S1. The reduction potentials of MnPs related to the reduction of Mn from Mn +4 or Mn +5 to Mn +2 or Mn +3 oxidation state in one-electron or two-electron proton-dependent transfers. The data for $O=Mn^{IV}P/Mn^{III}P$ and $(O)_2Mn^VP/Mn^{III}$ are based on reported values determined at pH 11 [S2-S4]. The $E_{1/2}$ for Mn^{III}P/Mn^{III}P redox couple are from ref [S5,S6].

MnP	$E_{1/2}$ / mV [*]		
	Mn ^{III} P/Mn ^{II} P ^a	O=Mn ^{IV} P/Mn ^{III} P ^b	$(O)_2 Mn^V P/Mn^{III} P^c$
MnTM-2-PyP ⁵⁺	+220	$+540^{\text{ d}}$	~+800 ^e
MnTM-3-PyP ⁵⁺	+52	$+526^{d}$	
MnTM-4-PyP ⁵⁺	+60	+532 ^d	
MnTE-2-PyP ⁵⁺	+228	+509 ^f	~+800 ^e
MnTE-3-PyP ⁵⁺	+54	$+529^{\text{f}}$	
MnTnBu-2-PyP ⁵⁺	+254	$+509^{\text{f}}$	
MnTDM-2-ImP ⁵⁺	+320		~+800 ^e

* NHE refers to 1N strong acid, whereas SHE refers to the hydrogen ion having unit activity and no ionic interactions. The difference at 25°C is approximately 5.7 mV [S7]. Specifically, the Nernst equation, nFE = -RTlnK, for the reduction defined as $2H^+$ (1N, activity ≈ 0.8) + 2e⁻ \rightarrow H₂ (fugacity ≈ 100 kPa) at 25°C yields E = E⁰ - 29.6 log[1/(0.8)²] for the potential given in mV, and therefore E(NHE) = E(SHE) - 5.7mV.

^a Values are in mV vs NHE at pH 7.4 (references [S5, S6]).

- ^b Values are in mV vs SHE at pH 11; there is insignificant difference between the values reported vs NHE and SHE.
- ^c Values are in mV vs NHE at pH 11.

^d Reference [S2].

^e Reference [S4].

^f Reference [S3].

6. References

[S1] Spasojevic, I.; Batinic-Haberle, I.; Stevens, R. D.; Hambright, P.; Thorpe, A. N.; Grodkowski, J.; Neta, P.; Fridovich, I. Manganese(III) biliverdin IX dimethyl ester: a powerful catalytic scavenger of superoxide employing the Mn(III)/Mn(IV) redox couple. Inorg Chem 40:726-739; 2001.

[S2] Ferrer-Sueta, G.; Batinic-Haberle, I.; Spasojevic, I.; Fridovich, I.; Radi, R. Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants. Chem Res Toxicol 12:442-449; 1999.

[S3] Weitner, T.; Kos, I.; Mandic, Z.; Batinic-Haberle, I.; Birus, M. Acid-base and electrochemical properties of manganese meso(ortho- and meta-N-ethylpyridyl)porphyrins: voltammetric and chronocoulometric study of protolytic and redox equilibria. Dalton Trans 42:14757-14765; 2013.

[S4] Lahaye, D.; Groves, J. T. Modeling the haloperoxidases: reversible oxygen atom transfer between bromide ion and an oxo-Mn(V) porphyrin. J Inorg Biochem 101:1786-1797; 2007.

[S5] Batinic-Haberle, I.; Tovmasyan, A.; Roberts, E. R.; Vujaskovic, Z.; Leong, K. W.; Spasojevic, I. SOD Therapeutics: Latest Insights into Their Structure-Activity Relationships and Impact on the Cellular Redox-Based Signaling Pathways. Antioxid Redox Signal 20:2372-2415; 2014.

[S6] Batinic-Haberle, I.; Reboucas, J. S.; Spasojevic, I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 13:877-918; 2010.

[S7] Ramette, R.W. Outmoded terminology: The normal hydrogen electrode. J. Chem. Educ 64:885; 1987.