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1. Uv-vis spectra of porphyrins and their Mn(l11) complexes

The uv/vis spectra were recorded in water at room temperature on a UV-2501PC Shimadzu
spectrophotometer with 0.5 nm resolution using a 1 cm quartz cuvette.
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Figure S1. Uv/vis spectra of H,TnHexOE-2-PyP*" and its Mn(l11) complex.
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Figure S2. Uv/vis spectra of H,TE-2-PyPhP** and its Mn(111) complex.
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Figure S3. Uv/vis spectra of H,TPhE-2-PyP*" and its Mn(I11) complex.



. ESI-MS spectra of porphyrins and their Mn(l11) complexes
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Figure S4. ESI-MS spectra of new porphyrins (H,TnHexOE-2-PyP**, H,TE-2-PyPhP**, and H,TPhE-
2-PyP**) and their Mn(111) complexes (MnTnHexOE-2-PyP>*, MnTE-2-PyPhP>*, and MnTPhE-2-PyP>"). ~1
MM sample solution in 1 : 1 v/v acetonitrile : H,O (containing 0.01% v/v heptafluorobutyric acid (HFBA))
mixture was applied. For peak assignments see Table 2 in main document.



3. Reduction of peroxynitrite (ONOQO") with Mn(l11) complexes

1) MnTE-2-PyPhP**
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Figure S5. A) Time course of the reaction of MnTE-2-PyPhP>* with peroxynitrite. MnTE-2-PyPhP>* (1
uM) was mixed with peroxynitrite at different concentrations, from right to left: 5.20, 7.76, 10.30, 15.30,
20.21, 25.02 and 29.74 uM, and reaction followed at 467 nm. A is the absorbance at time t, and A and Anr
are the initial and final values, respectively. (Inset) Logarithmic plot. B) kops Vs [ONOQO] plot, which slope is
the second-order rate constant for the reaction of peroxynitrite with MnTE-2-PyPhP°*, keq(ONOO"). The Kreq
(ONOO) value is given in the Table 4 in the manuscript.

466 nm

0.161
0.124

0.08F

Abs

0.04 1

0.00

400 450 500 550 600
A (nm)

Figure S6. Time-resolved uv/vis absorption spectra obtained upon mixing MnTE-2-PyPhP®* with
peroxynitrite. Final concentrations: MnTE-2-PyPhP®>* 2 uM, peroxynitrite 20 uM in phosphate buffer (0.05 M,
pH 7.3, with 0.1 mM DTPA) at 37 °C. Spectra were collected every 10 ms after mixing, from 0 to 200 ms. The
arrows indicate the direction of the absorbance change over time. The isosbestic point indicates the equilibrium
between two Mn porphyrin species present in solution: Mn"'P and O=Mn''P.



2) MnTPhE-2-PyP>*
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Figure S7. A) Time course of the reaction of MnTPhE-2-PyP>* with peroxynitrite. MnTPhE-2-PyP>*
(0.5 uM) was mixed with peroxynitrite at different concentrations, from right to left: 5.20, 7.76, 10.30, 12.81,
15.30, 17.77, 20.21 and 25.02 uM, and followed at 456 nm. A is the absorbance at time t, and Ay and Anr are
the initial and final values, respectively. (Inset) Logarithmic plot. B) kqs Vs [ONOO] plot, which slope is the
second-order rate constant for the reaction of peroxynitrite with MnTPhE-2-PyP>*, kieg(ONOO"). The Kreq
(ONOO) value is given in the Table 4 in the manuscript.
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Figure S8. UV-Vis absorption spectra after mixing MnTPhE-2-PyP>* with peroxynitrite. Final
concentrations: MnTPhE-2-PyP>* 1 uM, peroxynitrite 10 pM in phosphate buffer (0.05 M, pH 7.3, with 0.1
mM DTPA) at 37 °C. Spectra were collected every 2 ms after mixing, from 0 to 28 ms. The arrows indicate the
direction of the absorbance change over time.



3) MnTnHexOE-2-PyP**

A 10 1 B ..
038- —~ 400+
Zl =
" By < S
LIl < |- @ 300-
1 1 — g
< x°
< k044 -
b M, 200
000  0.01 0.02 003
0.24 Time (s) 1004
0.0‘ O T L) L) L) L]
0.00 0.01 0.02 0.03 0.04 0.05 0 4 8 12 16 20
Time (s) [ONOOT] (uM)

Figure S9. A) Time course of the reaction of MnTnHexOE-2-PyP>* with peroxynitrite. MnTnHexOE-
2-PyP>* (0.5 uM) was mixed with peroxynitrite at different concentrations, from right to left: 5.20, 7.76, 10.30,
12.81, 15.30 and 17.77 uM, and followed at 455 nm. A is the absorbance at time t, and Ay and Anr are the
initial and final values, respectively. (Inset) Logarithmic plot. B) kqps Vs [ONOO] plot, which slope is the
second-order rate constant for the reaction of peroxynitrite with MnTnHexOE-2-PyP>*, kieg(ONOO"). The Kreq
(ONOO) value is given in the Table 4 in the manuscript.
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Figure S10. UV-Vis absorption spectra after mixing MnTnHexOE-2-PyP>* with peroxynitrite. Final
concentrations: MnTnHexOE-2-PyP>* 1 uM, peroxynitrite 10 pM in phosphate buffer (0.05 M, pH 7.3, with
0.1 mM DTPA) at 37 °C. Spectra were collected every 1 ms after mixing, from 0 to 20 ms. The arrows indicate
the direction of the absorbance change over time.




4) MnTE-3-PyP>*
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Figure S11. A) Time course of the reaction of MnTE-3-PyP>* with peroxynitrite. MnTE-3-PyP>* (1
uM) was mixed with different peroxynitrite concentrations, from right to left: 10.19, 12.74, 15.28, 17.83, 20.38
and 25.47 uM, and followed at 460 nm. A is the absorbance at time t, and Ag and Anr are the initial and final
values, respectively. (Inset) Logarithmic plot. B) koss Vs [ONOOQOT] plot which slope is the second-order rate
constant for the reaction of peroxynitrite with MnTE-3-PyP>". The kg (ONOO) value is given in the Table 4
in the manuscript.



4. SOD-like activity of Mn(l11) porphyrins
1) MnTE-2-PyPhP**
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Figure S12. A) Time course of the reaction of MnTE-2-PyPhP>* with Oy at (25 + 1) °C in 0.05 M potassium
phosphate buffer, pH 7.8, 0.1 mM EDTA and at different MnP concentrations. B) The plot of (vo/vi-1) vs
[MNnTE-2-PyPhP], where vq is the rate of reduction of 10 uM cytochrome ¢ by O," and v; is the rate of
reduction of cytochrome c inhibited by the porphyrin. From the plot, the concentration that causes 50% of the
inhibition of cytochrome c reduction by O,” [IC(50 ), 1 unit of activity] was found at (vo/v; -1) = 1. On the
basis of the competition of MnP with 10 uM cytochrome c, at 50% inhibition the rates of the reactions of
cytochrome ¢ and the MnP with O," are equal, i.e., ket [MNP] = Kyt [cytochrome c], where k(cyt ¢)= 2.6 x
10°M™ s™. This equation allows us to calculate the MnP ke(O,7). At any given day of experiments, MnTE-2-
PyP>* was always tested along with new compounds to adjust for the fluctuations in methodology (for
additional details see [S1].
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2) MnTPhE-2-PyP>* and MnTnHexOE-2-PyP>"
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Figure S13. The (vo/vi-1) vs [MnP] is plotted for the reactions of MnPs [MnTPhE-2-PyP>* (A) and
MnTnHexOE-2-PyP>* (B)] with O,™ at (25 + 1) °C in 0.05 M potassium phosphate buffer, pH 7.8, 0.1 mM

EDTA. At any given day of experiments, MnTE-2-PyP>" was tested along with new compounds to adjust for

fluctuations in methodology. See in Figure S12 for the approach to the calculations of kg,:(O2").
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5. The reduction potentials of various couples of Mn(l11) porphyrins

Table S1. The reduction potentials of MnPs related to the reduction of Mn from Mn +4 or Mn +5
to Mn +2 or Mn +3 oxidation state in one-electron or two-electron proton-dependent transfers. The data
for O=Mn"VP/Mn"'P and (O),Mn"P/Mn"" are based on reported values determined at pH 11 [S2-S4]. The Eq;

for Mn""P/Mn"P redox couple are from ref [S5,S6].

MnP Eip [ mV
Mn""'P/Mn"'P 2 O=Mn""P/Mn""P® | (0),Mn"P/Mn""P ®

MnTM-2-PyP>* +220 +540 ¢ ~+800 °
MnTM-3-PyP>* +52 +526 °

MnTM-4-PyP>* +60 +532 ¢

MnTE-2-PyP>* +228 +509 ' ~+800 °
MnTE-3-PyP>* +54 +529 '

MnTnBu-2-PyP>* +254 +509 '

MnTDM-2-ImP>" +320 ~+800 °

* NHE refers to 1N strong acid, whereas SHE refers to the hydrogen ion having unit activity and no ionic interactions. The

difference at 25°C is approximately 5.7 mV [S7]. Specifically, the Nernst equation, nFE = -RTInK, for the reduction defined

as 2H" (1IN, activity ~ 0.8) + 2¢” — H, (fugacity ~ 100kPa) at 25°C yields E = E° - 29.6 log[1/(0.8)?] for the potential given

in mV, and therefore E(NHE) = E(SHE) - 5.7mV.

 Values are in mV vs NHE at pH 7.4 (references [S5, S6]).
®Values are in mV vs SHE at pH 11; there is insignificant difference between the values reported vs NHE and SHE.

°Values are in mV vs NHE at pH 11.

¢ Reference [S2].
¢ Reference [S4].
" Reference [S3].
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