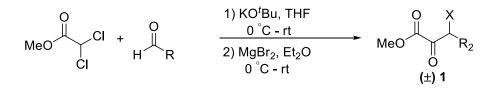
Supporting Information

Dynamic Kinetic Asymmetric Cross-Benzoin Additions of β -Stereogenic α -Keto Esters

C. Guy Goodman, Jeffrey S. Johnson*

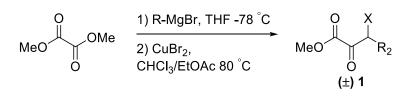
Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, 27599-3290

jsj@unc.edu


Table of Contents	Page
General Information (Materials and Methods)	S2
Preparation α -keto esters 1b-1h	S3-5
Preparation of Catalyst D	S5-6
Full optimization data for the Asymmetric Cross Benzoin of 1a/1b	S6-7
Asymmetric Cross Benzoin Additions	S8-13
Attempting the Cross Benzoin Reaction Using Homo-Benzoin Product 3	S14
Procedure for the Gram Scale Asymmetric Cross Benzoin	S14
Reduction of Cross Benzoin Products	S14-17
Synthesis of the Mosher ester of 2p	S16-17
References	S17
SFC and HPLC traces	S18-S32
¹ H NMR and ¹³ C NMR data	S33-S57

General Information:

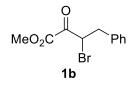
Methods: Infrared (IR) spectra were obtained using an ASI ReactIR 1000 Fourier transform infrared spectrometer. Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on a Bruker model DRX 400 or 600 (¹H NMR at 400 MHz or 600 MHz and ¹³C NMR at 100 MHz or 150 MHz) spectrometer with solvent resonance as the internal standard (¹H NMR: CDCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.0 ppm). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, dt = doublet of triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. Supercritical fluid chromatography was performed on a Berger SFC system equipped with Chiracel AD, AS, OD, and WO columns as well as Regis Industries RegisPack (RP) column (q 4.6 mm x 250 mm). Samples were eluted with SFC grade CO₂ at the indicated percentage of methanol with an oven temperature of 40 °C. HPLC analysis was performed on an Agilent Technologies 1200 system equipped with Chiralpak IA, IB, and IC columns (constant flow at 1.00 mL/min). Samples were eluted with the indicated percentages of HPLC grade isopropanol in hexanes. Optical rotations were measured using a 2 mL cell with a 1 dm path length on a Jasco DIP 1000 digital polarimiter. Mass spectra were obtained using a Micromass Quattro II (triple quad) instrument with nanoelectrospray ionization. Samples were prepared via diluted with either Methanol (MeOH), 0.1 M ammonium formate (MeOH), or 0.1 M formic acid (MeOH). Analytical thin layer chromatography (TLC) was performed on Sorbtec 0.25 mm silica gel 60 plates. Visualization was accomplished with UV light and/or either aqueous potassium permanganate KMnO₄ or aqueous ceric ammonium molybdate (CAM) solution followed by heating. Product purification was accomplished using Siliaflash-P60 silica gel (40-63 µm) purchased from Silicycle. Unless otherwise noted all reactions were carried out in flamedried glassware with magnetic stirring. Yields and diastereomeric ratios (dr) are reported for a specific experiment and as a result may differ slightly from those found in the reported tables, which represent an average of at least two trials. In order to overlay the SFC traces for the chiral and racemic samples two separate integrations of the peaks must be taken. This results in slight discrepancies between the integration values shown in the report and seen on the trace itself.


Materials: NHC catalysts **A-C**,¹⁻³ **E**,⁴ β -halo α -keto esters **1a**,⁵ and 1-tosyl-1*H*-indole-3carbaldehyde⁶ were all prepared according to literature procedures. Potassium carbonate was purchased from Sigma Aldrich and dried under vacuum (5 torr) for 3 h at 110 °C. Methanol (MeOH) was distilled from 3 Å molecular sieves prior to use. HPLC grade chloroform (CHCl₃), ethyl acetate (EtOAc) and ethanol (EtOH) were used directly from the bottle. Dichloromethane (DCM) and tetrahydrofuran (THF) were passed through a column of neutral alumina under nitrogen prior to use. Methyl ^fbutyl ether (MTBE) was distilled prior to use and stored over 4 Å molecular sieves. Benzaldehyde, *o*-tolualdehyde, *m*-tolualdehyde, *p*-tolualdehyde, *p*-anisaldehyde, furfural, and isobutyraldehyde were all purchased from Sigma Aldrich and distilled before use. All other reagents were purchased from commercial sources and were used as received unless otherwise noted. All racemic products were obtained via General Procedure B, Method 1 using Rovis's achiral triazolium catalyst.²

General Procedure A: Preparation of α-keto esters.

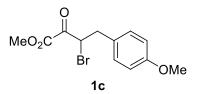
Method 1:

The following protocol was adopted from a literature procedure.⁵ A 100 mL roundbottomed flask equipped with a magnetic stir bar was charged with aldehyde (10.0 mmol, 1.0 equiv), methyl dichloroacetate (13.0 mmol, 1.3 equiv), and THF (20 mL, 0.5 M). This solution was cooled to 0 °C and potassium tert-butoxide (13.0 mmol, 1.3 equiv) was added in one portion. The mixture was warmed slowly to room temperature and stirred for 18 h, followed by dilution with Et₂O (60 mL) and H₂O (60 mL). The layers were separated and the organic layer was further washed with H₂O (1 x 60 mL) and brine (1 x 60 mL). The organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude residue was then dissolved in Et₂O (30 mL, 0.33 M) and cooled to 0 °C. To the resulting solution, magnesium bromide (10.0 mmol, 1.0 equiv) was added in one portion. The reaction was warmed slowly to room temperature and stirred for 2 h followed by dilution with Et₂O (60 mL) and H₂O (1 x 60 mL). The layers were separated and the organic layer was further washed with H₂O (1 x 60 mL) and brine (1 x 60 mL). The organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude residue was purified by column chromatography using a gradient of 10-15% EtOAc/hexanes.

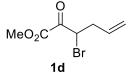


Method 2:

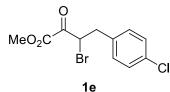
The following protocol was adopted from a literature procedure.⁷ A 50 mL round-bottomed flask equipped with a magnetic stir bar was charged with dimethyl oxalate (10.0 mmol, 1.0 equiv) and THF (10 mL, 1.0 M). This solution was cooled to -78 °C and the required Grignard reagent (1.0 M solution in THF, 11 mL, 1.1 equiv) was added dropwise The resulting mixture was stirred at -78 °C for 2 h, quenched with saturated ammonium chloride, then diluted with Et₂O (60 mL) and 1 M HCI (60 mL). The layers were separated and the organic layer was further washed with H₂O (2 x 60 mL) and brine (1 x 60 mL). The organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude residue was then dissolved in EtOAc (130 mL, 0.075M) and CHCl₃ (67 mL, 0.15 M). Copper(II) bromide (30 mmol, 3.0 equiv) was added in one portion and the reaction was heated at reflux for 12 h. The reaction was then cooled to room temperature and filtered through celite with Et₂O. The filtrate was concentrated *in vacuo* and the crude residue was purified by column chromatography using a gradient of 10-15% EtOAc/hexanes.


Grignard reagents were prepared according to the following procedure: a 50 mL 2neck round-bottomed flask fitted with a reflux condenser and septa were charged with magnesium turnings (12.0 mmol, 1.2 equiv). The apparatus was flame-dried under vacuum (<5 torr). After cooling to room temperature, THF (9 mL) was added. A small portion of alkyl bromide (11.0 mmol, 1.1 equiv) dissolved in THF (2 mL) was then added to this solution.

This solution was stirred until color change was observed, indicating reaction initiation. The remainder of the alkyl bromide was then added at a rate that maintained gentle reflux of the reaction mixture. After the addition was complete, the reaction was then aged for 1-2 h at room temperature; and used in the subsequent reaction.


Methyl 3-bromo-2-oxo-4-phenylbutanoate (1b): The title compound was prepared according to General Procedure A (Method 1) using phenylacetaldehyde (2.2 mL, 10.0 mmol), affording **1b** (2.5 g, 4.62 mmol, 47% yield) as a yellow oil. Analytical data for **1b:** ¹**H NMR** (600 MHz, CDCl₃): δ 7.36-7.33

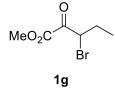
(m, 2H), 7.30-7.27 (m, 3H), 5.30 (t, J = 7.8 Hz, 1H), 3.92 (s, 3H), 3.56 (dd, J = 14.4, 7.8 Hz, 1H) 3.28 (dd, J = 14.4, 7.8 Hz, 1H); ¹³**C** NMR (150 MHz, CDCl₃): δ 184.8, 160.4, 136.3, 129.3, 128.7, 127.3, 53.4, 47.3, 38.1; **IR** (thin film): 3031, 1733,1455, 1260, 1068, 1027, 699 cm⁻¹; **TLC** (15% EtOAc/hexane): $R_f = 0.17$; **LRMS** (ESI): Calcd. for C₁₁H₁₁BrO₃: ([M+H]): 271.00, Found: 271.12.


Methyl 3-bromo-4-(4-methoxyphenyl)-2-oxobutanoate (1c): The title compound was prepared according to General Procedure A (Method 2) using dimethyl oxalate (0.76 g, 5.7 mmol), affording 1c (2.5 g, 3.27 mmol, 57% yield) as a yellow oil. Analytical data for 1c: ¹H NMR (600 MHz, CDCl₃): δ 7.16

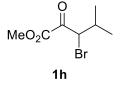
(d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 5.22 (t, J = 7.8 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 3.48 (dd, J = 14.4, 7.8 Hz, 1H) 3.20 (dd, J = 14.4, 7.8 Hz, 1H); ¹³**C** NMR (150 MHz, CDCl₃): δ 184.9, 160.4, 158.8, 130.4, 128.4, 114.1, 55.2, 53.4, 47.5, 37.3; **IR** (thin film): 3436, 1731, 1665, 1514, 1249, 1036 cm⁻¹; **TLC** (15% EtOAc/hexane): $R_f = 0.17$; **LRMS** (ESI): Calcd. for $C_{12}H_{13}BrO_4$: ([M+NH₄]): 318.03, Found: 318.09.

Methyl 3-bromo-2-oxohex-5-enoate (1d): The title compound was prepared according to General Procedure A (Method 2) using dimethyl oxalate (0.660 g, 5.0 mmol), affording 1d (0.320 g, 1.55 mmol, 31% yield) as a yellow oil. Analytical data for 1d: ¹H NMR (600 MHz, CDCl₃): δ 5.79-5.74 (m, 1H), 5.21-5.16 (m, 2H), 5.06-5.04 (t, *J* = 7.8

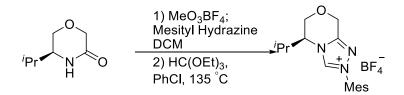
Hz, 1H), 3.91 (s, 3H), 2.92-2.87 (m, 1H) 2.75-2.70 (m, 1H); ¹³**C** NMR (150 MHz, CDCl₃): δ 184.9, 160.7, 132.6, 119.5, 53.4, 46.2, 36.0; **IR** (thin film): 3480, 1736, 1644, 1438, 1258, 1163, 1077 cm⁻¹; **TLC** (15% EtOAc/hexane): $R_f = 0.17$; **LRMS** (ESI): Calcd. for $C_7H_9BrO_3$: ([M+Na]): 239.08, Found: 239.16.



Methyl 3-bromo-4-(4-chlorophenyl)-2-oxobutanoate (1e): The title compound was prepared according to General Procedure A (Method 2) using dimethyl oxalate (0.951 g, 7.2 mmol), affording **1e** (0.66 g, 2.16 mmol, 30% yield) as a yellow oil. Analytical data for **1d:** ¹**H NMR** (600 MHz, CDCl₃): δ 7.27 (d,

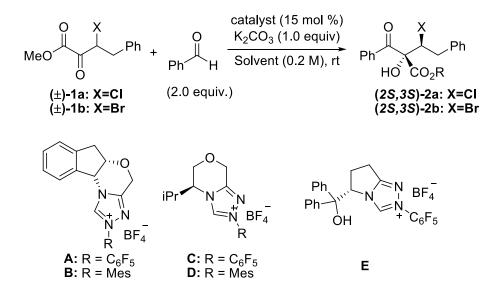

J = 8.4 Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H), 5.21 (t, J = 7.8 Hz, 1H), 3.88 (s, 3H), 3.47 (dd, J = 14.4, 7.8 Hz, 1H), 3.20 (dd, J = 14.4, 7.8 Hz, 1H); ¹³**C** NMR (150 MHz, CDCl₃): δ 184.5, 160.3, 134.7, 133.1, 130.6, 128.7, 53.4, 46.9, 37.2; **IR** (thin film): 2955, 1735, 1493, 1255, 1081, 1016 cm⁻¹; **TLC** (15% EtOAc/hexane): $R_f = 0.17$; **LRMS** (ESI): Calcd. for C₆H₇BrO₃: ([M+NH₄]): 321.98, Found: 322.12.

Methyl 3-bromo-2-oxobutanoate (1f): The title compound was prepared according to General Procedure A (Method 1) using acetaldehyde (0.56 mL, 10.0 mmol) and affording **1f** (0.5 g, 2.58 mmol, 26% yield) as a yellow oil whose spectral properties matched those previously reported. ⁸



Methyl 3-bromo-2-oxopentanoate (1g): The title compound was prepared according to General Procedure A (Method 1) using propanal (0.72 mL, 10.0 mmol), affording **1g** (0.34 g, 1.62 mmol, 16% yield) as a yellow oil whose spectral properties matched those previously reported. ⁹

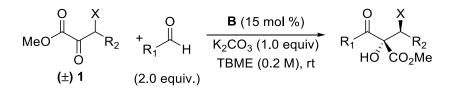
Methyl 3-bromo-4-methyl-2-oxopentanoate (1h): The title compound was prepared according to General Procedure A (Method 1) using isobutyraldehyde (0.912 mL, 10.0 mmol), affording **1b** (0.60 g, 2.70 mmol, 27% yield) as a yellow oil whose spectral properties matched those previously reported. ¹⁰


Preparation of Catalyst D.

This catalyst was synthesized according to the literature procedure.² Under N₂, a 50 mL flame-dried round-bottomed flask equipped with a magnetic stir bar was charged with trimethyloxonium tetrafluoroborate (3.6 mmol, 1.0 equiv) and capped with a septum. DCM

(20 mL, 0.2 M) was added under an atmosphere of N₂. The septum was removed and (S)-5isopropylmorpholin-3-one¹¹ was added in a single portion. The flask was capped, put under N₂, and stirred vigorously for 14 h or until homogenous. Mesityl hydrazine¹² was then added in a single portion and the reaction mixture was stirred for an additional 6 h. The reaction was then concentrated in vacuo and dried under high vacuum for 15 min. The crude reaction mixture was dissolved in chlorobenzene (20 mL, 0.2 M) and triethyl orthoformate (18.0 mmol, 5.0 equiv) was added. The reaction flask was equipped with a reflux condenser and heated to open to the atmosphere at 135 °C for 12 h. A second portion of triethyl orthoformate (18.0 mmol, 5.0 equiv) was added and the reaction mixture was heated for an additional 24 h at 135 °C. The flask was then cooled to room temperature, diluted with 200 mL of toluene, and concentrated in vacuo. The crude residue was purified by column chromatography using 5% MeOH/DCM. The resultant solid was stirred in Et_2O (100 mL) for 2 h then filtered, providing **D** (0.62 g, 1.66 mmol, 46% yield) as a tan solid. Analytical data for **2a: mp** 165.2-166.2 °C; ¹**H NMR** (600 MHz, CDCl₃): δ 9.76 (s, 1H), 6.99 (s, 1H), 5.09 (d, J = 16.2 Hz, 1H) 4.99 (d, J = 16.2 Hz, 1H) 4.29-4.20 (m, 2H), 2.48-2.43 (m, 1H), 2.37 (s, 3H), 2.03 (s, 6H) 1.07 (d, J = 6.6 Hz, 3H) 0.98 (d, J = 6.6 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃): δ 150.3, 143.6, 143.5, 142.0, 131.0, 129.7, 63.7, 61.6, 60.3, 31.8, 21.2, 18.7, 17.5, 17.1; IR (thin film): 3507, 2927, 1796, 1692, 1599, 1226, 1151 cm⁻¹; **TLC** (5% MeOH/DCM): R_f = 0.21; **LRMS** (ESI): Calcd. for C₁₇H₂₄N₃O: ([M+H-BF₄]): 287.20, Found: 287.23.

Optimization data for the Asymmetric Cross Benzoin of 1a/1b with benzaldehyde.

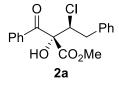

General procedure B for the asymmetric cross benzoin addition: To a flame dried 1dram vial was added catalyst, (0.03 mmol, 0.15 equiv) β -halo α -keto ester **1** (0.2 mmol, 1.0 equiv), TBME (1 mL, 0.2 M) and aldehyde (0.4 mmol, 2.0 equiv). This solution was stirred for 5 min followed by the addition of potassium carbonate (0.2 mmol, 1.0 equiv). This reaction mixture was then stirred (rate of stirring should be >800 rpm) for 14 h, filtered through a short plug of silica gel, and concentrated *in vacuo*. The crude product was purified by column chromatography using EtOAc/hexanes.

Trial	Х	catalyst	base	solvent	T (°C)	conversion	dr	er
1	CI	С	NEt ₃	DCM	rt	100	12:1	78:22
2	CI	Α	NEt ₃	DCM	rt	100	12:1	78:22
3	CI	С	NEt ₃	DCM	0	100	10:1	70:30
4	CI	Α	NEt₃	DCM	0	100	7:1	88:12
5	CI	С	NEt₃	DCM	-40	45	1.4:1	99:1
6	CI	Α	NEt₃	DCM	-40	50	5.5:1	99:1
7	CI	Е	NEt₃	DCM	rt	<10	5.5:1	
8	Br	С	K ₂ CO ₃	THF	rt	<5		
9	Br	Α	K ₂ CO ₃	THF	rt	<5		
10	Br	E	K ₂ CO ₃	THF	rt	<5		
11	CI	С	K ₂ CO ₃	THF	rt	40	1.5:1	98:2
12	CI	Α	K ₂ CO ₃	THF	rt	25	4.5:1	96:4
13	Br	D	K ₂ CO ₃	THF	rt	30		
14	Br	В	K ₂ CO ₃	THF	rt	>95	>20:1	94:6
15	5 Br B		K ₂ CO ₃	THF	0	60	7:1	96:4
16			K ₂ CO ₃	THF	rt	100	>20:1	90:10
17	CI	В	K ₂ CO ₃	THF	rt	100	14:1	95:5
18	Br	В	K ₂ CO ₃	2-Me	rt	72	>20:1	95:5
19	Br	В	K ₂ CO ₃	DCM	rt	23	>20:1	
20	Br	В	K ₂ CO ₃	CHCl₃	rt	16	>20:1	
21	Br	В	K ₂ CO ₃	PhCH₃	rt	78	>20:1	92:8
22	Br	В	K ₂ CO ₃	MeOH	rt	100	*	
23	Br	В	K ₂ CO ₃	EtOAc	rt	100	>20:1	95:5
24	Br	В	K ₂ CO ₃	Et ₂ O	rt	100	>20:1	95:5
25	Br	В	K ₂ CO ₃	CH₃CN	rt	100	*	
26	Br	В	K ₂ CO ₃	CPME	rt	100	>20:1	95.5:4.5
27	Br	В	K ₂ CO ₃	TBME	rt	100	>20:1	96:4
28	CI	В	K ₂ CO ₃	Et ₂ O	rt	100	15:1	96.5:4.5
29	CI	В	K ₂ CO ₃	CPME	rt	100	15:1	97:3
30	CI	В	K ₂ CO ₃	TBME	rt	100	14:1	97.5:2.5
31	CI	В	NEt₃	TBME	rt	50	20:1	97:3
32	CI	В	DBU	TBME	rt	100	*	
33	CI	В	Hunig's	TBME	rt	0		
34	CI	В	Pyridine	TBME	rt	50	8:1	97.5:2.5
35	CI	В	Cs ₂ CO ₃	TBME	rt	100	>20:1	96:4
36	CI	В	DMAP	TBME	rt	100	17:1	97:3
37	Br	В	NaOAc	TBME	rt	6		
38	Br	В	NaHCO ₃	TBME	rt	0		
39	Br	В	Na ₂ CO ₃	TBME	rt	10		

Catalyst, base and solvent optimization table

* Reaction mixture did not contain any desired Cross-Benzoin product.

General procedure B for the Asymmetric Cross Benzoin Procedure.

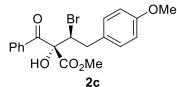


Method 1:

To a flame-dried 1-dram vial was added catalyst **B**, (0.03 mmol, 0.15 equiv) β -halo α keto ester **1** (0.2 mmol, 1.0 equiv), TBME (1 mL, 0.2 M) and aldehyde (0.4 mmol, 2.0 equiv). This solution was stirred for 5 min followed by the addition of potassium carbonate (0.2 mmol, 1.0 equiv). This reaction mixture was then stirred (rate of stirring should be >800 rpm) for 14 h, filtered through a short plug of silica gel, and concentrated *in vacuo*. The crude product was purified by column chromatography using EtOAc/hexanes. In certain instances minor impurities remained after purification, in these cases a ¹H NMR yield utilizing ferrocene (20 mg, 0.108 mmol) as an internal standard is provided.

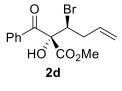
Method 2:

To a flame dried 1-dram vial was added catalyst **B**, (0.03 mmol, 0.15 equiv) β -halo α keto ester **1** (0.2 mmol, 1.0 equiv), and TBME (.5 mL, 0.4 M) followed by potassium carbonate (0.4 mmol, 2.0 equiv). This reaction mixture was then stirred (rate of stirring should be >800 rpm) while a 0.8 M solution of aldehyde in TBME (0.5 mL, 2.0 equiv) was added in 50 μ L portions every 30 min for 5 h. Upon complete aldehyde addition the reaction was stirred an additional 9 h then filtered through a short plug of silica gel with Et₂O, and concentrated *in vacuo*. The crude residue was then purified by column chromatography using between 2.5% EtOAc/hexanes.

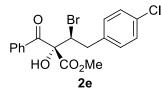

Methyl (2S,3S)-2-benzoyl-3-chloro-2-hydroxy-4-phenylbutanoate
(2a): The title compound was prepared according to General Procedure
B (Method 1) using α-keto ester 1a (0.045 g, 0.20 mmol), and benzaldehyde (0.04 mL, 0.40 mmol) affording 2a (0.064 g, 0.19 mmol, 96% yield, 12:1 dr) as a colorless oil. Analytical data for 2a: ¹H NMR

(600 MHz, CDCl₃): δ 8.05 (d, J = 7.8 Hz, 2H), 7.60-7.58 (m, 1H), 7.48-7.45 (m, 2H), 7.35-7.33 (m, 5H), 7.28-7.26 (m, 1H), 5.15 (dd, J = 10.7, 2.1 Hz, 1H) 4.30 (s, 1H), 3.82 (s, 3H), 3.24 (dd, J = 14.4, 2.2 Hz, 1H) 2.91 (dd, J = 14.4, 10.7 Hz, 1H); ¹³**C** NMR (150 MHz, CDCl₃): δ 193.6, 170.4, 137.7, 134.6, 133.8, 129.8, 129.5, 128.5, 128.4, 126.9, 86.3, 67.1, 54.4, 39.1; **IR** (thin film): 3507, 2927, 1796, 1692, 1599, 1226, 1151 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.26; **LRMS** (ESI): Calcd. for C₁₈H₁₇ClO₄: ([M+H]): 333.09, Found: 333.21; **SFC:** Regis RP, 5% MeOH, flow rate = 3.0 mL/min, $\lambda = 210$ nm, t_{R} (major) = 3.7 min t_{R} (minor) = 4.3 min, 96:4 er; [α]_D = +45.8 (c = 0.03, DCM)

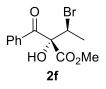
 $\begin{array}{c} O & Br \\ Ph & Ph \\ HO & CO_2Me \\ 2b \end{array}$


Methyl (2*S*,3*S*)-2-benzoyl-3-bromo-2-hydroxy-4-phenylbutanoate (2b): The title compound was prepared according to General Procedure B (Method 1) using α -keto ester **1b** (0.054 g, 0.20 mmol), and benzaldehyde (0.04 mL, 0.40 mmol) affording **2b** (0.071 g major product + minor impurity, 78% ¹H NMR yield, >20:1 dr) as a colorless oil.

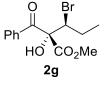
Analytical data for **2a**: ¹**H NMR** (600 MHz, CDCl₃): δ 8.07 (d, *J* = 7.8 Hz, 2H), 7.61-7.58 (m, 1H), 7.47-7.45 (m, 2H), 7.34-7.19 (m, 5H), 5.22-5.20 (m, 1H) 4.37 (s,1H), 3.85 (s, 3H), 3.32-3.31 (m, 1H) 3.04-2.98 (m, 1H); ¹³**C NMR** (150 MHz, CDCl₃): δ 193.4, 170.5, 138.2, 134.7, 133.8, 129.8, 129.4, 128.5, 128.3, 126.9, 86.5, 60.9, 54.4, 39.9; **IR** (thin film): 3066, 2089, 2699, 1746, 1692, 1421, 1244 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.26; **LRMS** (ESI): Calcd. for C₁₈H₁₇BrO₄: ([M+H]): 377.23, Found: 377.15; **SFC**: Regis RP, 5% MeOH, flow rate = 3.0 mL/min, λ = 210 nm, t_{R} (major) = 4.5 min t_{R} (minor) = 5.0 min, 96:4 er; **[\alpha]_D = +39.8** (*c* = 0.03, DCM)


Methyl (2S,3S)-2-benzoyl-3-bromo-2-hydroxy-4-(4methoxyphenyl)butanoate (2c): The title compound was prepared according to General Procedure B (Method 2) using α -keto ester 1c (0.060 g, 0.20 mmol), and benzaldehyde (0.04 mL, 0.40 mmol) affording 2c (0.050g, major product + homo-

benzoin impurity 83 % ¹H NMR yield, >20:1 dr) as a colorless oil. Analytical data for **2a**: ¹H **NMR** (600 MHz, CDCl₃): δ 8.06 (d, J = 7.8 Hz, 2H), 7.60-7.57 (m, 1H), 7.47-7.44 (m, 2H), 7.26-7.23 (m, 2H) 6.87 (d, J = 8.4 Hz, 2H), 5.16 (dd, J = 10.8, 2.3 Hz, 1H) 4.35 (s,1H), 3.82-3.81 (m, 6H), 3.24 (dd, J = 15.0, 2.3 Hz, 1H) 2.95 (dd, J = 15.0, 10.8 Hz, 1H); ¹³C **NMR** (150 MHz, CDCl₃): δ 193.4, 170.5, 158.5, 134.7, 133.8, 130.4, 130.3, 129.8, 128.5, 113.7, 86.5, 61.5, 55.2, 54.4, 39.0; **IR** (thin film): 3059, 2989, 2306, 1715, 1429, 1267, 896 cm⁻¹; **TLC** (10% EtOAc/hexane): $R_f = 0.14$; **LRMS** (ESI): Calcd. for C₁₉H₁₉BrO₅: ([M+H]): 407.05, Found: 407.08; **SFC**: Regis RP, 5% MeOH, flow rate = 3.0 mL/min, $\lambda = 210$ nm, **2c** could not be directly analyzed via SFC, see compound **4c** for enantiomeric analysis; **[α]**_D = +39.8 (*c* = 0.03, DCM)


Methyl (2S,3S)-2-benzoyl-3-bromo-2-hydroxyhex-5-enoate (2d): The title compound was prepared according to General Procedure B (Method 1) using α -keto ester **1d** (0.044 g, 0.20 mmol), and benzaldehyde (0.04 mL, 0.40 mmol) affording **2d** (0.046g, 0.15 mmol, 74% yield, 17:1 dr) as a white solid. Analytical data for **2d: mp** 68.6-

70.0 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.01-8.00 (m, 2H), 7.58-7.57 (m, 1H), 7.45-7.42 (m, 2H), 5.89-5.83 (m, 1H) 5.17-5.14 (m, 2H) 5.02 (dd, *J* = 10.8, 3 Hz, 1H), 4.22 (s,1H), 3.83 (s, 3H), 2.68-2.65 (m, 1H) 2.64-2.56 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 193.4, 170.5, 134.72, 134.70, 133.7, 129.8, 128.5, 118.2, 86.4, 58.9, 54.4, 37.8; **IR** (thin film): 3059, 2989, 2306, 1715, 1614, 1420, 1267 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.22; **LRMS** (ESI): Calcd. for C₁₄H₁₅BrO₄: ([M+Na]): 350.16, Found: 350.16; **2d** could not be directly analyzed via SFC, see compound **4d** for enantiomeric analysis; **[** α **]**_D = +14.8 (*c* = 0.01, DCM).


Methyl (2S,3S)-2-benzoyl-3-bromo-4-(4-chlorophenyl)-2hydroxybutanoate (2e): The title compound was prepared according to General Procedure B (Method 1) using α -keto ester 1e (0.061 g, 0.20 mmol), and benzaldehyde (0.04 mL, 0.40 mmol) affording 2e (0.050 g, 0.12 mmol, 61% yield, 12:1 dr) as a

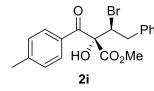
colorless oil. Analytical data for **2e**: ¹**H NMR** (600 MHz, CDCl₃): δ 8.07 (d, J = 4.2 Hz, 2H), 7.63-7.61 (m, 1H), 7.50-7.47 (m, 2H), 7.36-7.28 (m, 4H), 5.16-5.14 (m, 1H) 4.36 (s,1H), 3.85 (s, 3H), 3.30 (d, J = 15.0 Hz, 1H) 3.00 (dd, J = 15.0, 10.8 Hz, 1H); ¹³**C NMR** (150 MHz, CDCl₃): δ 193.3, 170.4, 136.7, 134.5, 133.9, 132.7, 130.7, 129.8, 128.5, 128.5, 86.3, 60.5, 54.5, 39.3; **IR** (thin film): 3507, 3059, 2309, 1748, 1692, 1228, 1151 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.21; **LRMS** (ESI): Calcd. for C₁₈H₁₆BrClO₄: ([M+H]):411.00, Found: 411.14; **2e** could not be directly analyzed via SFC, see compound **4e** for enantiomeric analysis; **[** α **]**_D = +44.9 (c = 0.02, DCM).

Methyl (2*S*,3*S*)-2-benzoyl-3-bromo-2-hydroxybutanoate (2f): The title compound was prepared according to General Procedure B (Method 1) using α-keto ester 1f (0.039 g, 0.20 mmol), and benzaldehyde (0.04 mL, 0.40 mmol) affording 2f (0.042g, 0.14 mmol, 70% yield, 14:1 dr) as a colorless oil. Analytical data for 2f: ¹H NMR (600 MHz, CDCl₃): δ 8.02 (d, *J*

= 7.8 Hz, 2H), 7.58-7.55 (m, 1H), 7.44-7.42 (m, 2H), 5.16 (q, J = 6.6 Hz, 1H) 4.17 (s,1H), 3.83 (s, 3H), 1.72 (d, J = 6.6 Hz, 3H); ¹³**C** NMR (150 MHz, CDCl₃): δ 193.0, 170.7, 134.6, 133.8, 129.8, 128.5, 86.2, 54.3, 53.4, 20.6; IR (thin film): 3507, 2936, 2309, 1746, 1692, 1166, 1050 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.24; **LRMS** (ESI): Calcd. for C₁₂H₁₃BrO₄: ([M+H]): 301.01, Found: 300.99; **SFC:** Chiracel AD, 5% MeOH, flow rate = 1.5 mL/min, $\lambda = 210$ nm, $t_{R (major)} = 5.7 \min t_{R (minor)} = 6.1 \min, 93:7$ er; $[\alpha]_{D} = +26.1$ (c = 0.02, DCM)

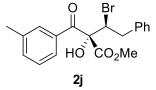
Br

с`́ОН **2h**

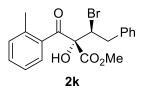

MeO₂C

Methyl (2*S*,3*S*)-2-benzoyl-3-bromo-2-hydroxypentanoate (2g): The title compound was prepared according to General Procedure B (Method 1) using α-keto ester **1g** (0.042 g, 0.20 mmol), and benzaldehyde (0.04 mL, 0.40 mmol) affording **2g** (0.046g, 0.15 mmol, 73% yield, >20:1 dr) as a white solid. Analytical data for **2g:** ¹H NMR (600 MHz, CDCl₃): δ 8.01-8.00

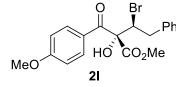
(m, 2H), 7.58-7.55 (m, 1H), 7.44-7.42 (m, 2H), 4.92 (dd, J = 9, 4.2 Hz, 1H) 4.17 (s,1H), 3.83 (s, 3H), 1.87-1.82 (m, 2H), 1.11 (t, J = 7.2 Hz, 3H); ¹³**C** NMR (150 MHz, CDCI₃): δ 193.7, 170.6, 134.8, 133.7, 129.8, 128.5, 86.8, 62.8, 54.4, 26.9, 12.8; **IR** (thin film): 3507, 2935, 1748, 1692, 1228, 1189 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.24; **LRMS** (ESI): Calcd. for C₁₃H₁₅BrO₄: ([M+H]): 315.02, Found: 315.06; **SFC:** Chiracel AD, 5% MeOH, flow rate = 1.5 mL/min, $\lambda = 210$ nm, t_{R} (major) = 5.9 min t_{R} (minor) = 6.4 min, 94:6 er; **[\alpha]_D** = +12.5 (c = 0.02, DCM)


Methyl (2R,3S)-2-benzoyl-3-bromo-2-hydroxy-4-methylpentanoate
(2h): The title compound was prepared according to General Procedure B

(Method 1) using α-keto ester **1h** (0.044 g, 0.20 mmol), benzaldehyde (0.04 mL, 0.40 mmol) and mesitylene as an internal standard (0.028 mL, 0.20 mmol) affording **2h** (0.026g, 0.08 mmol, 65% ¹H NMR yield, 40% isolated yield, >20:1 dr) as a colorless oil. Analytical data for **2h:** ¹H NMR (600 MHz, CDCl₃): δ 7.98 (d, *J* = 7.2 Hz, 2H), 7.57-7.55 (m, 1H), 7.44-7.42 (m, 2H), 5.08 (d, *J* = 3 Hz, 1H) 4.22 (s,1H), 3.83 (s, 3H), 2.09-2.05 (m, 1H), 1.06 (d, *J* = 6.6 Hz, 3H) 1.00 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 193.5, 170.7, 135.0, 133.5, 129.8, 128.4, 88.0, 67.2, 54.4, 31.5, 23.1, 19.8; **IR** (thin film): 3507, 2966, 1740, 1692, 1159, 409 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.29; **LRMS** (ESI): Calcd. for C₁₄H₁₇BrO₄: ([M+H]): 329.03, Found: 329.13; **SFC:** Regis RP, 5% MeOH, flow rate = 1.5 mL/min, λ = 210 nm, *t*_{R (major)} = 4.0 min *t*_{R (minor)} = 4.3 min, 94:6 er; **[α]**_D = +18.3 (*c* = 0.01, DCM)

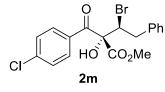

Methyl (2*S*,3*S*)-3-bromo-2-hydroxy-2-(4-methylbenzoyl)-4phenylbutanoate (2i): The title compound was prepared according to General Procedure B (Method 1) using α -keto ester 1b (0.054 g, 0.20 mmol), and *p*-tolualdehyde (0.05 mL, 0.40 mmol) affording **2i** (0.060g, 0.15 mmol, 77% yield, >20:1 dr) as a

colorless oil. Analytical data for **2i:** ¹**H NMR** (600 MHz, CDCl₃): δ 8.02 (d, *J* = 7.8 Hz, 2H), 7.36-7.28 (m, 7H), 5.23 (dd, *J* = 10.7, 2.3 Hz, 1H) 4.36 (s, 1H), 3.84 (s, 3H), 3.34 (dd, *J* = 14.6, 2.3 Hz, 1H) 3.02 (dd, *J* = 14.6, 10.7 Hz, 1H), 2.45 (s, 3H); ¹³**C NMR** (150 MHz, CDCl₃): δ 192.7, 170.6, 145.0, 138.3, 132.0, 130.0, 129.4, 129.2, 128.3, 126.8, 86.4, 61.1, 54.3, 39.9, 21.7; **IR** (thin film): 3507, 2927, 1746, 1684, 1607, 1151 cm⁻¹; **TLC** (10% EtOAc/hexane): R_{*f*} = 0.24; **LRMS** (ESI): Calcd. for C₁₉H₁₉BrO₄: ([M+H]): 391.05, Found: 391.15; **SFC:** Regis RP, 10% MeOH, flow rate = 1.5 mL/min, λ = 210 nm, $t_{\text{R (major)}}$ = 9.7 min $t_{\text{R (minor)}}$ = 11.1 min, 97:3 er; **[** α]_D = +20.7 (*c* = 0.02, DCM)

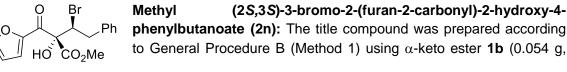


Methyl (2*S*,3*S*)-3-bromo-2-hydroxy-2-(3-methylbenzoyl)-4phenylbutanoate (2j): The title compound was prepared according to General Procedure B (Method 1) using α-keto ester 1b (0.054 g, 0.20 mmol), and *m*-tolualdehyde (0.05 mL, 0.40 mmol) affording 2j (0.066g, 0.17 mmol, 85% yield, >20:1 dr) as a

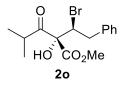
colorless oil. Analytical data for **2j**: ¹**H NMR** (600 MHz, CDCl₃): δ 7.87-7.84 (m, 2H), 7.41-7.40 (m, 1H), 7.35-7.26 (m, 6H), 5.22 (m, 1H) 4.31 (s,1H), 3.82 (s, 3H), 3.31-3.28 (d, J =12.6 Hz, 1H) 3.02-2.97 (dd, J = 14.4, 11.4 Hz, 1H), 2.41 (s, 3H); ¹³**C NMR** (150 MHz, CDCl₃, two coincident aromatic resonances): δ 193.7, 170.5, 138.4, 138.2, 134.7, 134.6, 130.2, 129.4, 128.4, 127.0, 126.9, 86.5, 70.0, 54.4, 39.9, 21.4 (two coincident resonances); **IR** (thin film): 3507, 2927, 1746, 1692, 1607, 1143 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.24; **LRMS** (ESI): Calcd. for C₁₉H₁₉BrO₄: ([M+Na]): 413.04, Found: 413.12; **HPLC:** Chiralpak IC, 5% /PrOH, flow rate = 1.0 mL/min, λ = 230 nm, t_{R} (major) = 5.1 min t_{R} (minor) = 5.7 min, 96:4 er; **[** α **]**_D = +39.8 (c = 0.03, DCM)



Methyl (2*S*,3*S*)-3-bromo-2-hydroxy-2-(2-methylbenzoyl)-4phenylbutanoate (2k): No reaction was observed using General Procedure B (Method 1) with α -keto ester 1b (0.054 g, 0.20 mmol), and o-tolualdehyde (0.05 mL, 0.40 mmol).

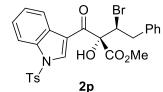

Methyl (2*S*,3*S*)-3-bromo-2-hydroxy-2-(4-methoxybenzoyl)-4-phenylbutanoate (2I): The title compound was prepared according to General Procedure B (Method 1) using α -keto ester 1b (0.054 g, 0.20 mmol), *p*-anisaldehyde (0.05 mL, 0.40 mmol), and mesitylene as an internal standard (0.028 mL, 0.20

mmol) resulting in 50% conversion of **1b** and affording **2l** (0.040 g, 0.10 mmol, 49% yield, >20:1 dr) as a colorless oil. Analytical data for **2l**: ¹**H NMR** (400 MHz, CDCl₃): δ 8.13 (d, J = 8.8 Hz, 2H), 7.33-7.32 (m, 5H), 6.93 (d, J = 8.8 Hz, 2H), 5.20 (dd, J = 10.7, 2.2 Hz, 1H) 4.33 (s,1H), 3.88 (s, 3H), 3.80 (s, 3H), 3.33 (dd, J = 14.8, 2.2 Hz, 1H) 2.99 (dd, J = 14.8, 10.7 Hz, 1H); ¹³**C NMR** (150 MHz, CDCl₃): δ 191.1, 107.8, 164.2, 138.3, 132.6, 129.4, 128.3, 127.3, 126.8, 113.8, 86.4, 61.3, 55.5, 54.3, 39.9; **IR** (thin film): 3066, 2989, 2309, 1746, 1684, 1599, 1420, 1159 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.15; **LRMS** (ESI): Calcd. for C₁₉H₁₉BrO₅: ([M+Na]): 429.03, Found: 429.18; **SFC**: Regis RP, 10% MeOH, flow rate = 1.5 mL/min, $\lambda = 210$ nm, $t_{R (major)} = 9.7 \min t_{R (minor)} = 12.1 \min, 98:2 er; [$ **α**]_D = +8.23 (*c*= 0.02, DCM)

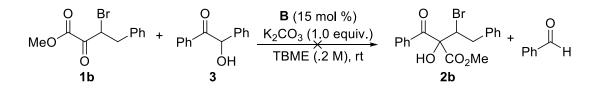


Methyl (2*S*,3*S*)-3-bromo-2-(4-chlorobenzoyl)-2-hydroxy-4phenylbutanoate (2m): The title compound was prepared according to General Procedure B (Method 1) using α -keto ester 1b (0.054 g, 0.20 mmol), 4-Chlorobenzaldehyde (0.056 g, 0.40 mmol) and mesitylene as an internal standard (0.028 mL, 0.20

mmol) resulting in 71% conversion of **1b** and affording **2m** (0.036 g, 0.09 mmol, 44% yield >20:1 dr) as a colorless oil. With 20 mol % of catalyst **1b** went to full conversion and **2m** was obtained with identical selectivity but higher isolated yield (0.066 g, 0.16 mmol, 80% yield >20:1 dr). Analytical data for **2m**: ¹H **NMR** (600 MHz, CDCl₃): δ 8.02 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.34-7.33 (m, 4H), 7.29-7.26 (m, 1H), 5.17 (dd, J = 10.8, 1.8 Hz, 1H) 4.27 (s,1H), 3.82 (s, 3H), 3.30 (dd, J = 15.0, 1.8 Hz, 1H) 3.00 (dd, J = 15.0, 10.8 Hz, 1H); ¹³C **NMR** (150 MHz, CDCl₃): δ 192.1, 170.4, 140.5, 138.1, 132.9, 131.4, 129.4, 128.8, 128.4, 127.0, 86.6, 60.8, 54.5, 39.9; **IR** (thin film): 3630, 3507, 3059, 2958, 2308, 1746, 1692, 1591, 1097, 1026 cm⁻¹; **TLC** (10% EtOAc/hexane): $R_f = 0.28$; **LRMS** (ESI): Calcd. for C₁₈H₁₆BrClO₄: ([M+Na]): 411.00, Found: 411.14; **2m** could not be directly analyzed via SFC, see compound **4m** for enantiomeric analysis; **[a]**_D = +24.6 (c = 0.03, DCM)



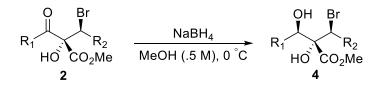
0.20 mmol), and furfural (0.03 mL, 0.40 mmol) affording **2n** (0.052g, 0.14 mmol, 71% yield, >20:1 dr) as a colorless oil. Analytical data for **2n**: ¹H **NMR** (600 MHz, CDCl₃): δ 7.69 (d, J = 1.2 Hz, 1H), 7.64 (d, J = 3.6 Hz, 1H), 7.32-7.29 (m, 4H), 6.58 (dd, J = 3.6, 1.2 Hz, 1H), 5.15 (dd, J = 11.4, 2.4 Hz, 1H) 4.47 (s,1H), 3.81 (s, 3H), 3.28 (dd, J = 15.0, 2.4 Hz, 1H) 3.00 (dd, J = 14.4, 10.8 Hz, 1H); ¹³C **NMR** (150 MHz, CDCl₃): δ 180.9, 169.8, 149.5, 148.2, 138.0, 129.4, 128.3, 126.9, 123.1, 112.6, 85.8, 59.7, 54.4, 39.6; **IR** (thin film): 3507, 1746, 167, 1466, 1159, 1027, 818, 617 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.35; **LRMS** (ESI): Calcd. for C₁₆H₁₅BrO₅: ([M+H]): 367.02, Found: 367.02; **SFC**: Regis RP, 5% MeOH, flow rate = 3.0 mL/min, $\lambda = 210$ nm, t_{R} (major) = 4.3 min t_{R} (minor) = 7.0 min, 75.5:25.5 er; **[α]**_D = +4.7 (c = 0.02, DCM)


Methyl (S)-2-((S)-1-bromo-2-phenylethyl)-2-hydroxy-4-methyl-3oxopentanoate (20): The title compound was prepared according to General Procedure B (Method 2) using α -keto ester **1b** (0.054 g, 0.20 mmol), and isobutyraldehyde (0.02 mL, 0.40 mmol) affording **2o** (0.039 g, 0.12 mmol, 59% yield 10:1 dr) as a colorless oil. Analytical data for

2n: ¹**H NMR** (600 MHz, CDCl₃): δ 7.33-7.30 (m, 2H), 7.27-7.25 (m, 3H), 5.75 (dd, J = 9.0, 4.5 Hz, 1H) 3.86 (s, 3H), 3.25 (dd, J = 14.1, 4.5 Hz, 1H) 3.07 (dd, J = 14.1, 9.0 Hz, 1H) 2.61-2.57 (m, 1H), 1.15 (d, J = 7.2 Hz, 3H), 1.11 (d, J = 7.2 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃): δ 189.5, 176.3, 160.2, 135.3, 129.4, 128.5, 127.2, 75.7, 53.1, 36.2, 33.4, 18.64, 18.60; **IR** (thin film): 3059, 2989, 2688, 2410, 2308, 1760, 1429, 1267, 896 cm⁻¹; **TLC** (10% EtOAc/hexane): R_f = 0.15; **LRMS** (ESI): Calcd. for C₁₅H₁₉BrO₄: ([M+H]): 343.05, Found: 343.04; **HPLC:** Chiralpak IC, 5% /PrOH, flow rate = 1.0 mL/min, $\lambda = 230$ nm, t_{R} (major) = 9.1 min t_{R} (minor) = 9.9 min, 58:42 er; [α]_D = +2.3 (c = 0.02, DCM)

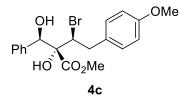
Methyl (2S,3S)-3-bromo-2-hydroxy-4-phenyl-2-(1-tosyl-1Hindole-3-carbonyl)butanoate (2p): The title compound was prepared according to General Procedure B (Method 1) using α keto ester 1b (0.054 g, 0.20 mmol), and 1-tosyl-1H-indole-3carbaldehyde (0.119 g, 0.40 mmol). 2a was not isolable from 1-

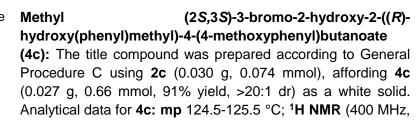
tosyl-1*H*-indole-3-carbaldehyde and was reduced with NaBH₄ **4p** (0.074 g, 0.13 mmol, 65% yield, 10:1 dr), was isolated by column chromatography using 15% EtOAc/hexanes. See compound **4p** for all characterization data.


Attempting the Cross Benzoin Reaction Using Homo-Benzoin Product 3.

To a flame dried 1-dram vial was added catalyst **B**, (0.03 mmol, 0.15 equiv) β -halo α -keto ester **1** (0.2 mmol, 1.0 equiv), TBME (1 mL, 0.2 M) and benzoin product **3** (0.2 mmol, 1.0 equiv). This solution stirred for 5 minutes followed by the addition of potassium carbonate (0.2 mmol, 1.0 equiv). This reaction was stirred for 14 h, filtered through a short plug of silica gel with Et₂O, and concentrated *in vacuo* for analysis by ¹H NMR.

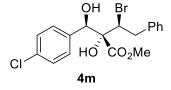
Procedure for the Gram Scale Asymmetric Cross Benzoin.


To a flame dried 50 mL round bottom flask was added catalyst **B**, (0.55 mmol, 0.15 equiv) β -halo α -keto ester **1** (3.7 mmol, 1.0 equiv), TBME (19 mL, 0.2 M) and benzaldehyde (7.4 mmol, 2.0 equiv). This solution stirred for 5 minutes followed by the addition of potassium carbonate (3.7 mmol, 1.0 equiv). This reaction was stirred (rate of stirring should be >800 rpm) for 14 h, filtered through celite with DCM, and concentrated *in vacuo*. The resulting precipitate was dissolved in MeOH and quenched with (1.1 mmol, 0.3 equiv conc. HCI). The solvent was removed *in vacuo* and the crude residue was purified by column chromatography with 5% EtOAc/hexanes until **2b** (1.26 g, 91% yield, >20:1 dr, 95.5:4.5 er) had eluted from the column (TLC analysis). At this point the eluent was changed to 2.5% MeOH/DCM in order to recover the HCI salt of catalyst **B** (0.15 g, 74% recovery based on the HCI salt).


General Procedure C for the Reduction of Cross Benzoin Products.

A flame dried scintillation vial was charged with cross-benzoin product **2**, diluted with MeOH (to 0.5 M), and cooled to 0 °C. NaBH₄ (5.0 equiv) was added and the reaction was stirred at 0 °C for 7 min, then quenched with saturated NH₄Cl and diluted with Et₂O (15 mL)

and H₂O (10 mL). The layers were separated and the organic layer was further washed with brine (1 x 10 mL). The organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. In general no further purification was required but if necessary diols 4 could be purified by column chromatography using an eluent of 15% EtOAc/hexanes.

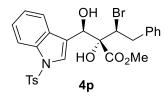

CDCl₃): δ 7.42-7.40 (m, 2H), 7.38-7.32 (m, 3H), 7.26-7.19 (m, 2H) 6.87-6.85 (m, 2H), 5.07 (d, J = 7.6, Hz, 1H) 4.79 (dd, J = 11.4, 2.0 Hz, 1H), 3.84-3.79 (m, 4H), 3.72 (s, 3H), 3.60 (s, 1H), 3.52 (d, J = 14.4 Hz, 1H) 2.99 (dd, J = 14.4, 11.4 Hz, 1H), 2.85 (d, J = 8.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 172.5, 158.5, 138.7, 130.31, 130.29, 128.6, 128.2, 126.7, 113.7, 75.4, 82.7, 60.8, 55.2, 53.2, 37.2; IR (thin film): 2927, 2866, 1738, 1514, 803, 602 cm⁻¹; TLC (15% EtOAc/hexane): $R_f = 0.21$; LRMS (ESI): Calcd. for $C_{19}H_{21}BrO_5$: ([M+H]): 409.07, Found: 409.17; SFC: Regis RP, 15% MeOH, flow rate = 3.0 mL/min, λ = 210 nm, $t_{R (major)}$ = 5.5 min t_{R} (minor) = 10.8 min, 96:4 er; $[\alpha]_{\rm P}$ = -24.8 (c = 0.005, DCM)

ΗÒ CO₂Me

*t*_R

(2S,3S)-3-bromo-2-hydroxy-2-((R)-

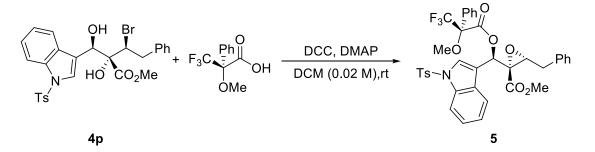
hydroxy(phenyl)methyl)hex-5-enoate (4d): The title compound was prepared according to General Procedure C using 2d (0.040 g, 0.13 mmol), affording 4d (0.039 g, 0.13 mmol, 98% yield, >20:1 dr) as a 4d white solid. Analytical data for 4c mp 72.1-73.0 °C;: 1H NMR (600 MHz, CDCl₃): δ 7.38-7.30 (m, 5H), 5.92-5.85 (m, 1H), 5.19-5.15 (m, 2H) 4.99 (d, J = 8.4, Hz, 1H) 4.57 (dd, J = 10.8, 2.4 Hz, 1H), 3.73 (s, 3H), 3.55 (s, 1H), 3.55 (s, 1H), 2.91-2.86 (m, 2H), 2.66-2.60 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 172.6, 138.6, 134.9, 128.6, 128.2, 126.8, 118.0, 75.4, 82.5, 58.1, 53.2, 36.2; **IR** (thin film): 2924, 1731, 1454, 1242, 1024, 701 cm⁻¹; TLC (15% EtOAc/hexane): R_f = 0.12; LRMS (ESI): Calcd. for C₁₄H₁₇BrO₄: ([M+NH₄]): 347.22, Found: 347.22; **SFC:** Regis RP, 5% MeOH, flow rate = 3.0 mL/min, λ = 210 nm, $t_{R \text{ (maior)}}$ = 7.7 min (minor) 8.7 min. 95.5:4.5 $[\alpha]_{D} = -20.1$ (c 0.007, DCM) = er: =


Methyl

Methyl

(2S,3S)-3-bromo-2-((R)-(4-

chlorophenyl)(hydroxy)methyl)-2-hydroxy-4phenylbutanoate (4m): The title compound was prepared according to General Procedure C using 2m (0.031 g, 0.075 mmol), affording 4m (0.030 g, 0.073 mmol, 97% yield, >20:1 dr)


as a white solid. This solid was then recrystallized from 5% EtOAc/hexanes. Analytical data for **4m: mp** 149.2-150.0 °C; ¹**H NMR** (600 MHz, CDCl₃): δ 7.38-7.26 (m, 9H), 5.06 (d, J = 8.2 Hz, 1H), 4.78 (dd, J = 11.3, 2.6 Hz, 1H), 3.72 (s, 3H), 3.64 (s, 1H), 3.58 (dd, J = 14.6, 2.6 Hz, 1H), 3.03 (dd, J = 22.4, 14.6 Hz, 1H) 2.98 (d, J = 8.2 Hz, 1H); ¹³**C** NMR (150 MHz, CDCl₃): δ 172.4, 138.1, 137.2, 134.5, 131.0, 129.3, 128.4, 128.2, 126.9, 82.6, 74.7, 60.0, 53.4, 38.1; **IR** (thin film): 3059, 2989, 2688, 2309, 1738, 1429, 1267 cm⁻¹; **TLC** (15% EtOAc/hexane): R_{f} = 0.41; **LRMS** (ESI): Calcd. for C₁₈H₁₈BrClO₄: ([M+Na]): 435.00, Found: 435.09; **SFC:** Regis RP, 15% MeOH, flow rate = 3.0 mL/min, λ = 210 nm, $t_{R \text{ (major)}}$ = 4.4 min $t_{R \text{ (minor)}}$ = 8.2 min, 98:2 er (>99.9:0.1 recrystallized); **[a]**_D = -56.3 (*c* = 0.004, DCM)

Methyl (2*S*,3*S*)-3-bromo-2-hydroxy-2-((*R*)-hydroxy(1-tosyl-1Hindol-3-yl)methyl)-4-phenylbutanoate (4p): The title compound was prepared according to General Procedure C using 2p affording 4p (0.074 g, 0.13 mmol, 65% yield, 10:1 dr) as a white solid. Analytical data for 4p: mp 74.8-75.2 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.97 (d, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.73-

7.68 (m, 3H), 7.35-7.25 (m, 7H), 7.18 (d, J = 7.8 Hz, 2H), 5.42-5.41 (m, 1H), 4.71 (d, J = 10.8 Hz, 1H), 3.83 (s, 1H), 3.77 (s, 3H), 3.56 (d, J = 14.4 Hz, 1H), 3.02-2.97 (m, 1H) 2.33 (s, 3H); ¹³**C** NMR (150 MHz, CDCI₃): δ 172.8, 145.1, 138.0, 135.0, 134.9, 129.9, 128.4, 126.9, 126.8, 126.7, 125.1, 124.3, 123.3, 121.4, 121.1, 113.5, 83.0, 74.7, 69.7, 59.4, 53.4, 38.3, 21.5; **IR** (thin film): 3059, 2989, 2306, 1738, 1429, 1267, 896 cm⁻¹; **TLC** (15% EtOAc/hexane): $R_f = 0.21$; **LRMS** (ESI): Calcd. for C₂₇H₂₆BrNO₆S: ([M+Na]): 594.06, Found: 594.06; **4p** could not be directly analyzed via SFC, see compound **5** for enantiomeric analysis; **[** α **]**_D = -24.8 (c = 0.007, DCM)

Synthesis of the Mosher ester of 2p

A flame dried scintillation vial was loaded with cross-benzoin diol **4p** (0.035 mmol, 1.0 equiv), (R)- α -methoxy- α -trifluoromethylphenylacetic acid (0.042 mmol, 1.2 equiv) and DCM (2.0 mL, 0.02 M). To this was added *N*,*N*-dicyclohexylcarboimide (0.07 mmol, 2.0 equiv) and 4-dimethylaminopyridine (0.035 mmol, 1.0 equiv) This reaction mixture was stirred at rt for 18 h then filtered through celite. The filtrate was then diluted with 1M HCI (10 mL) and EtOAc (10 mL). The layers were separated and the organic layer was further washed with 1 M NaOH (2 x 10 mL) and brine (1 x 10 mL). The organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The reaction mixture was purified by column chromatography using an eluent of 10% EtOAc/hexanes providing **5** as a colorless oil (22 mg, 0.031 mmol, 89% yield, 98:2 er).

Analytical data for (2*S*,3*R*)-methyl 3-benzyl-2-((*R*)-(1-tosyl-1*H*-indol-3-yl)((*R*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyloxy)methyl)oxirane-2-carboxylate (5): ¹H NMR (600 MHz, CDCl₃): δ 7.88 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.57 (s, 1H), 7.40-7.39 (d, *J* = 7.8 Hz, 1H), 7.28-7.21 (m, 4H), 7.09-7.00 (m, 9H), 6.96 (s, 1H), 3.82 (s, 3H), 3.42 (s, 3H), 2.90-2.86 (m, 1H), 2.76-2.72 (m, 2H) 2.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 167.8, 165.3, 145.2, 135.6, 134.7, 134.5, 131.3, 129.8, 129.5, 128.8, 128.7, 128.4, 128.0, 127.5, 127.1, 126.9, 126.7, 125.0, 123.6, 121.0, 114.2, 113.4, 71.0, 63.2, 60.3, 55.5, 52.9, 33.9, 29.7 21.5 (two coincident peaks); ¹⁹F NMR (376 MHz, CDCl₃): δ_{major} 71.85 δ_{minor} 71.6, 98:2 er; IR (thin film): 3059, 2989, 2306, 1738, 1429, 1267, 896 cm⁻¹; TLC (15% EtOAc/hexane): R_f = 0.21; LRMS (ESI): Calcd. for C₃₇H₃₂NO₈S: ([M+Na]): 730.17, Found: 730.31; [a]_D = 39.0 (*c* = 0.007, DCM).

References:

(1) Vora, H. U.; Lathorp, H. P.; Reynolds, N. T.; Kerr, M. S.; Read de Alaniz, J.; Rovis, T. *Org Synth.* **2010**, 87, 350-361.

(2) Kobayashi, S.; Kinoshita, T.; Uehara, H.; Sudo, T.; Ryu, I. Org. Lett. **2009**, *11*, 3934-3937.

(3) Thai, K.; Langdon, S. M.; Bilodeau, F.; Gravel, M. Org. Lett., 2013, 15, 2214-2217.

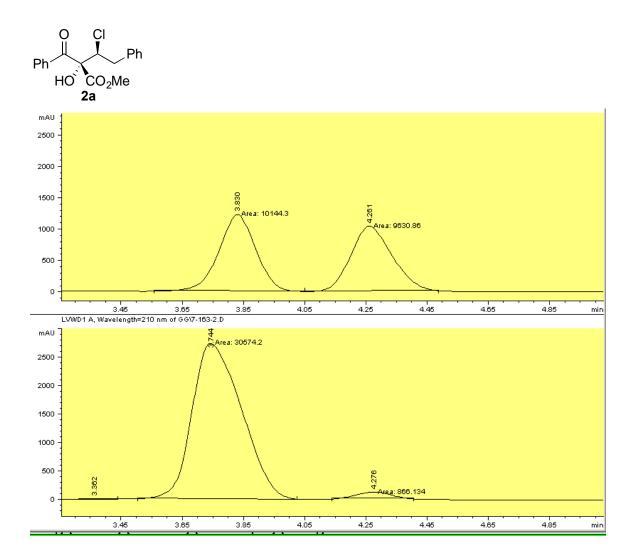
(4) Massey, R. S.; Collett, C. J.; Lindsay, A. G.; Smith, A. D.; O'Donoghue, A. C. *J. Am. Chem. Soc.* **2012**, *134*, 20421-20432.

(5) Saifina, D. F.; Ganieva, V. R.; Mamedov, V. A. Russ. J. Org. Chem. 2009, 45, 1244-1247

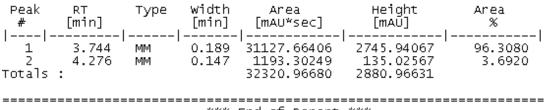
(6) Yang, L.; Deng, G.; Wang, D-X.; Huang, Z-T.; Zhu, J-P.; Wang, M-X. *Org. Lett.* **2007**, *9*, 1387-1390

(7) Steward, K. M.; Corbett, M. T.; Goodman, C. G.; Johnson, J. S. *J. Am. Chem. Soc.* **2012**, *134*, 20197 –20206.

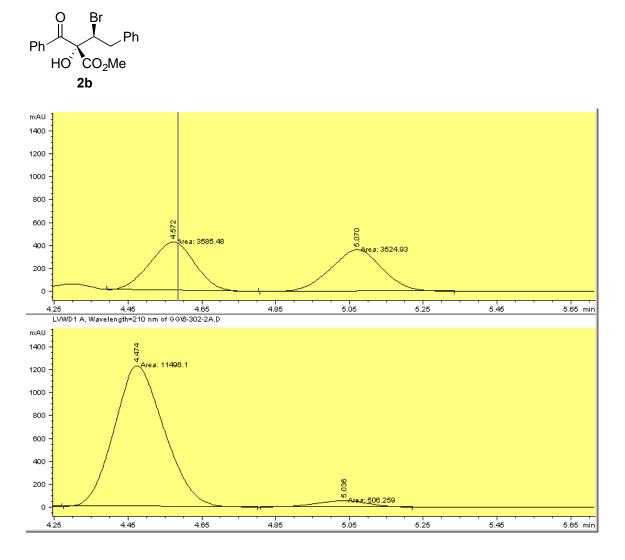
(8) Rothman, J. H.; J. Org. Chem. 2009, 74, 925-928.


(9) Cornwall C.; Dell, C. P.; Knight D. W.; J. Chem. Soc. 1991, 2417-2428.

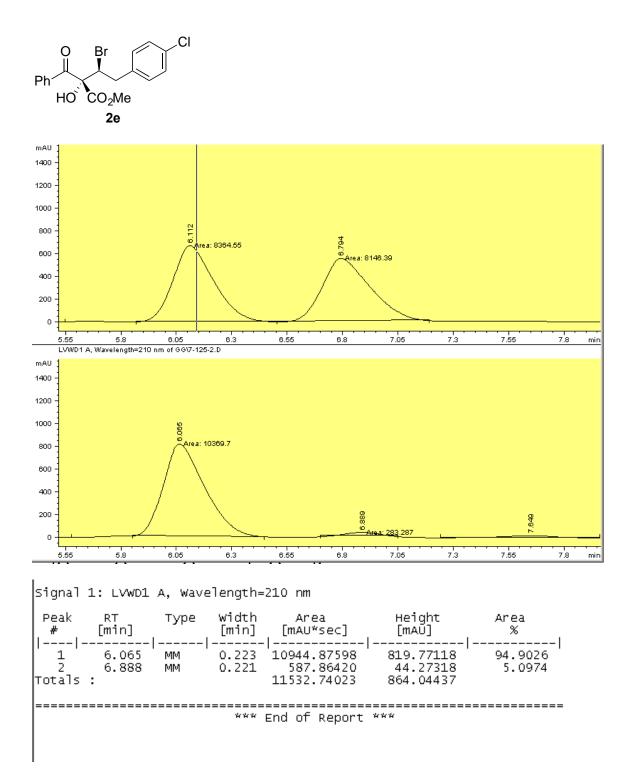
(10) Nagasaki, A.; Adachi, Y.; Yonezawa, Y.; Shin, C-G. Heterocycles, 2003, 60, 331-335

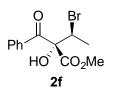

(11) Medine, J. R.; Becker, C. J.; Blackledge, C. W.; Duquenne, C.; Feng, Y.; Grant, S. W.; Heerding, D.; Li, W. H.; Miller, W. H.; Romeril, S. P.; Scherzer, D.; Shu, A.; Bobko, M. A.; Chadderton, A. R.; Dumble, M.; Gardiner, C. M.; Gilbert, S.; Liu, Q.; Rabindran, S. K.; Sudakin, V.; Xiang, H.; Brady, P. G.; Campobasso, N.; Ward, P.; Axten, J. M. *J. Med. Chem.* **2011**, *54*, 1871-1895.

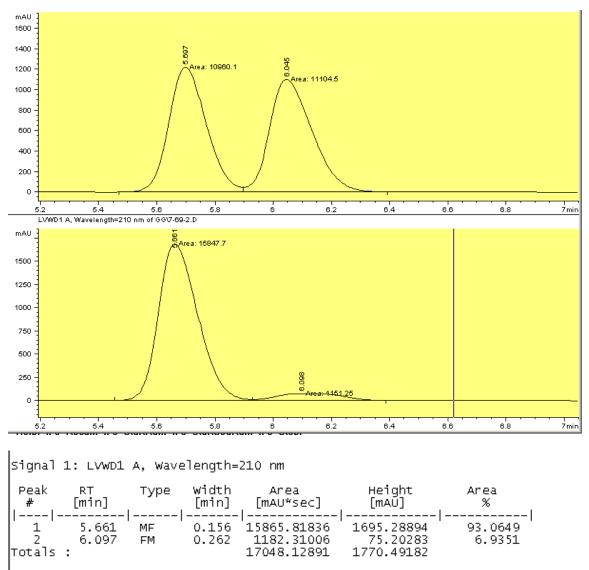
(12) Ling, K. B.; Smith, A. D. Chem. Commun. 2011, 47, 373-375


SFC and HPLC traces

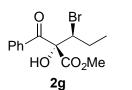
Signal 1: LVWD1 A, Wavelength=210 nm

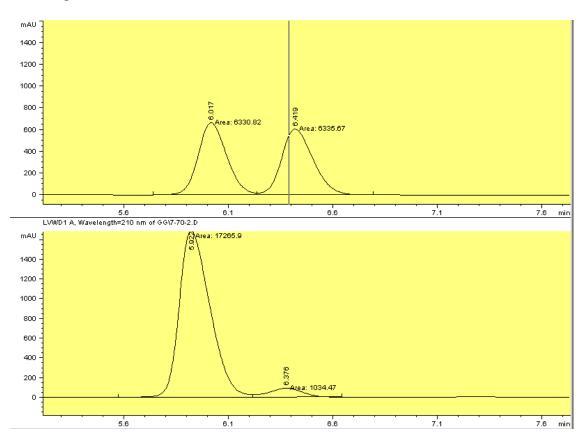


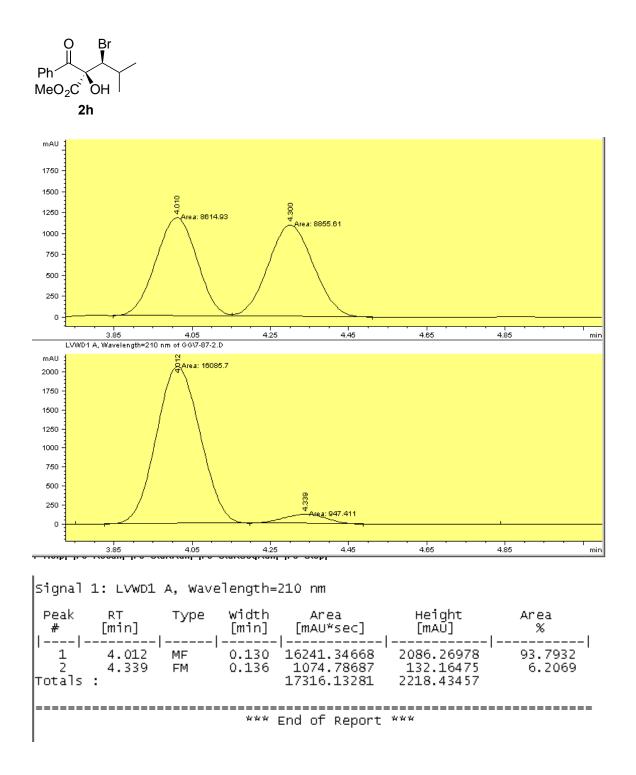

*** End of Report ***

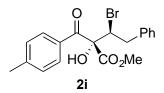


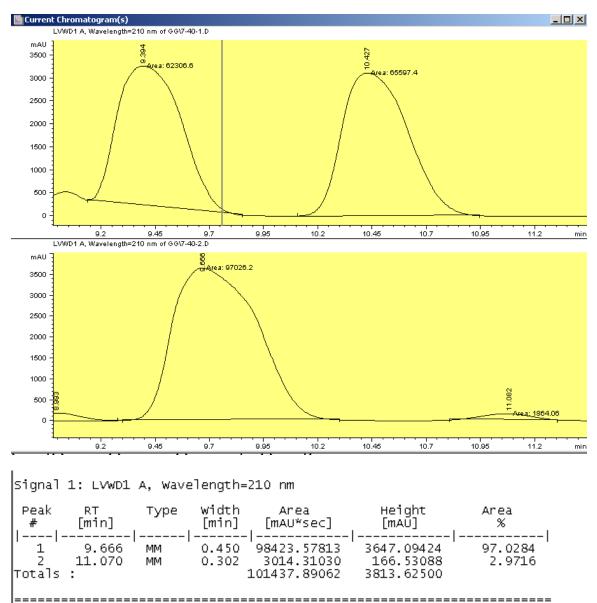
Signal 1: LVWD1 A, Wavelength=210 nm

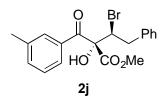

Peak #	RT [min]	туре	Width [min]	Area [mAU*sec]	Height [mAU]	Area %		
1 2 Totals	3.744 4.276 :	MM MM	0.189 0.147	31127.66406 1193.30249 32320.96680	2745.94067 135.02567 2880.96631	96.3080 3.6920		
*** End of Report ***								

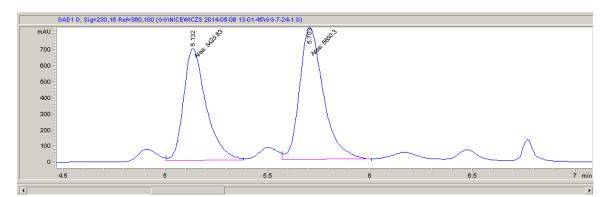


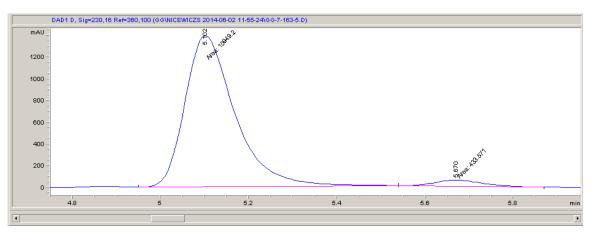


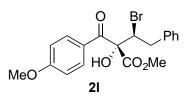

*** End of Report ***

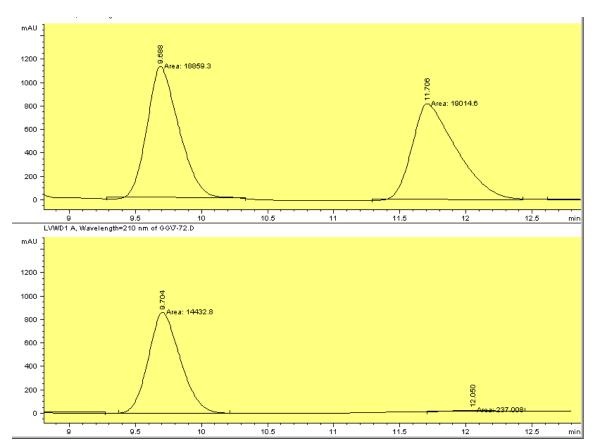


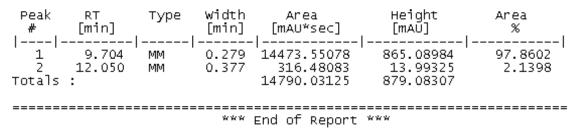

Signal 1: LVWD1 A, Wavelength=210 nm туре width Peak RT Height Area Area % # [min] [min] [mAU*sec] [mAŪ] ____ _____ ____ ----| ____ 17286.55859 1095.52734 18382.08594 1702.33911 93.69172 1 2 5.921 6.376 94.0402 5.9598 MF 0.169 0.195 FΜ Totals : 1796.03088 ===== *** End of Report ***

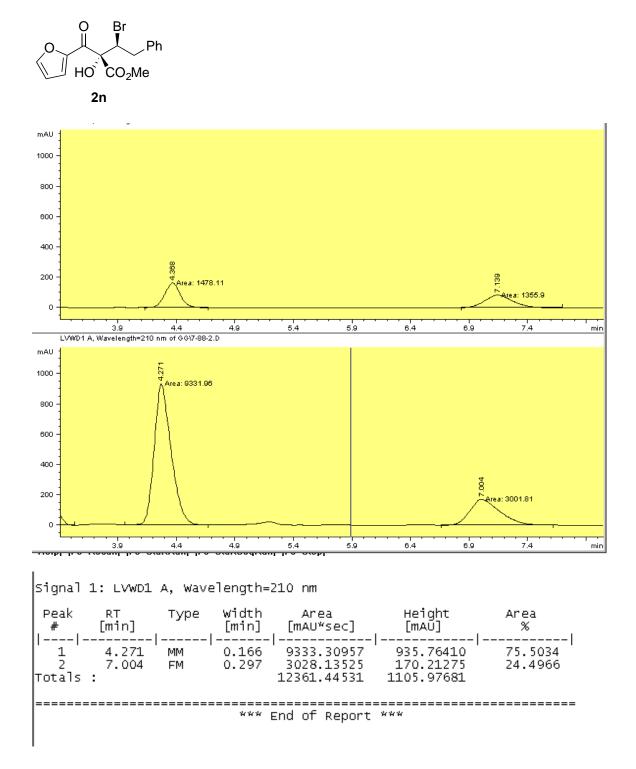


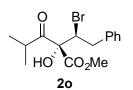


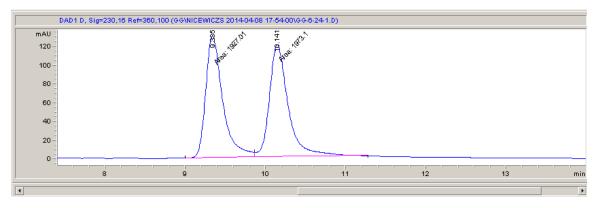

*** End of Report ***

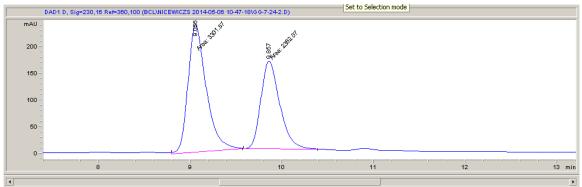


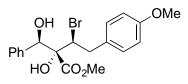


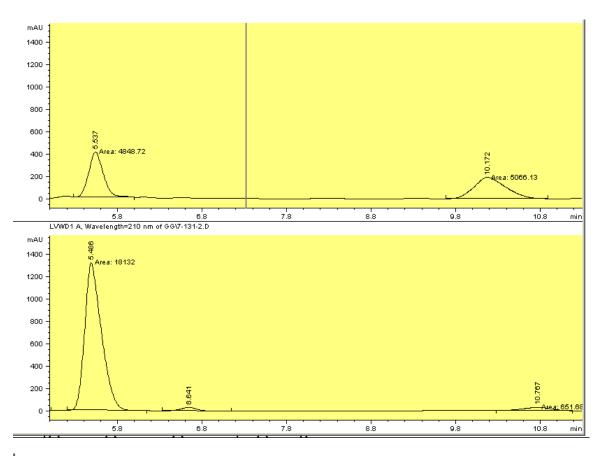

		Area	Height	Width	Area%	Symmetry
1	5.102	10949.2	1393.8	0.1309	96.191	0.662
2	5.67	433.6	56.4	0.1282	3.809	0.787

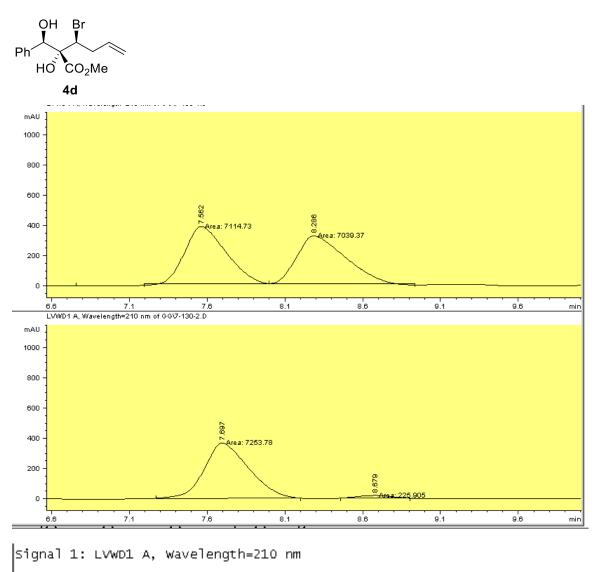


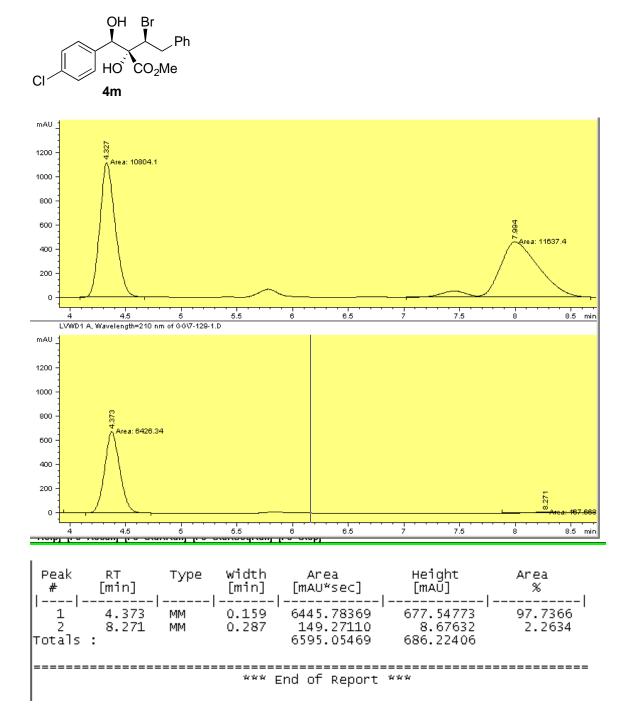


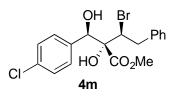

Signal 1: LVWD1 A, Wavelength=210 nm



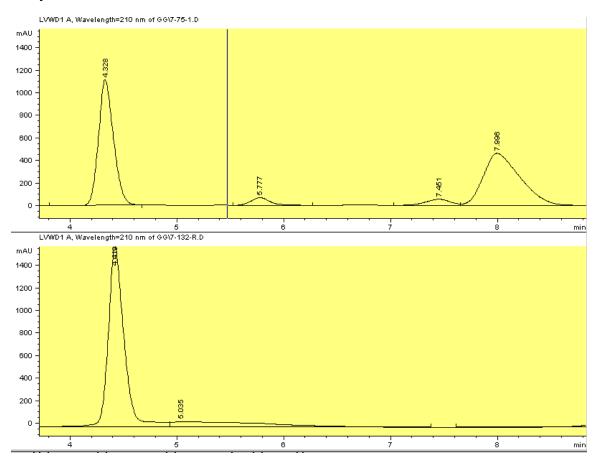


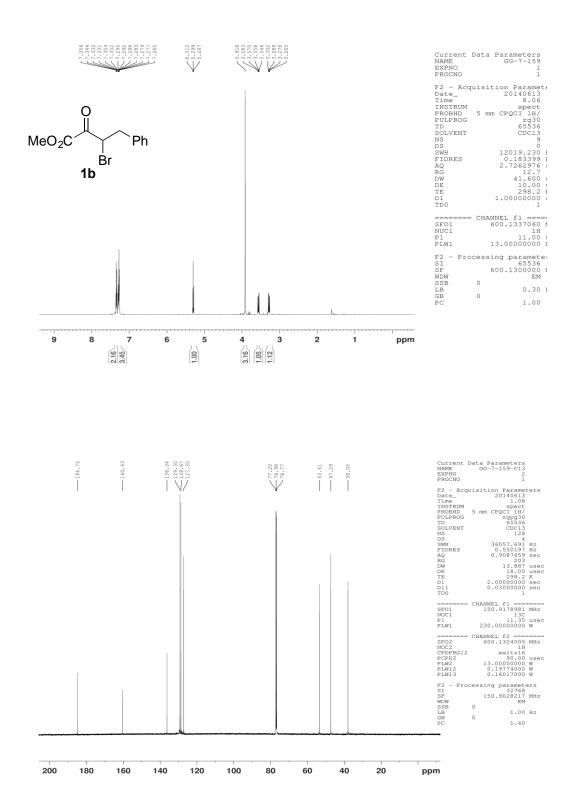

#	Time	Area	Height	Width	Area%	Symmetry
1	9.056	3301.6	239	0.2303	58.294	0.674
2	9.857	2362.1	164.9	0.2387	41.706	0.719

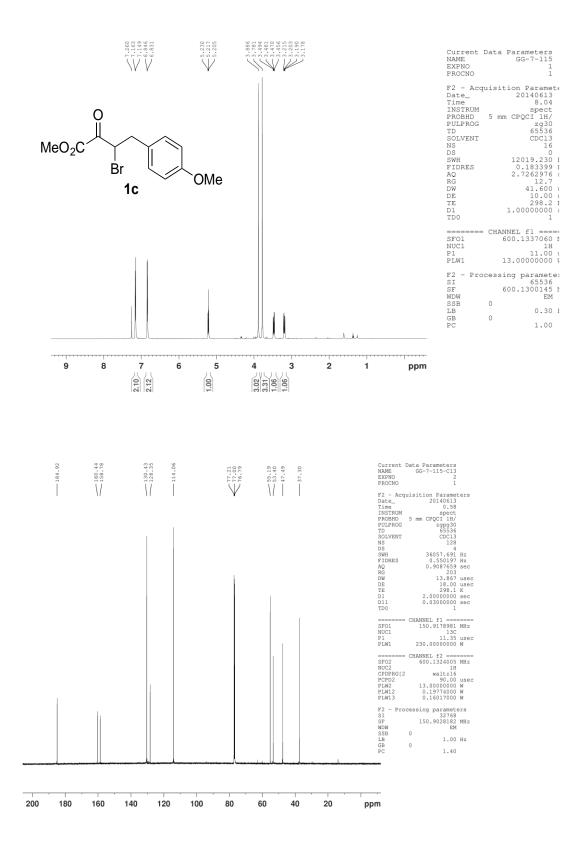


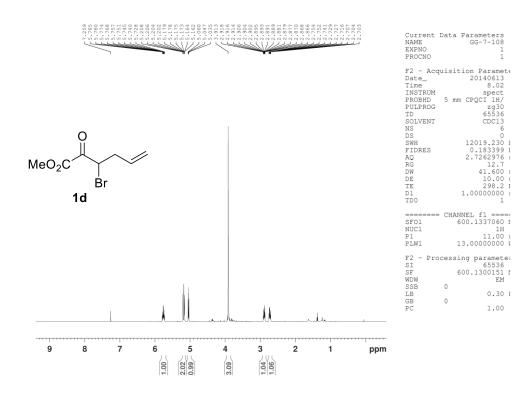


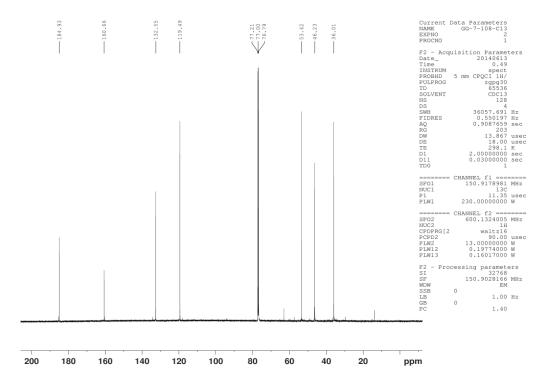
Signal 1: LVWD1 A, Wavelength=210 nm Peak RT Width Area Height Area туре [mAU*sec] [mAŨ] [min] [min] % ____ ----| _____ 18337.21484 746.57886 19083.79297 1326.79773 29.89055 1 2 0.230 5.485 96.0879 MM. 10.767 MM 3.9121 0.416 Totals : 1356.68823 _____ *** End of Report ***

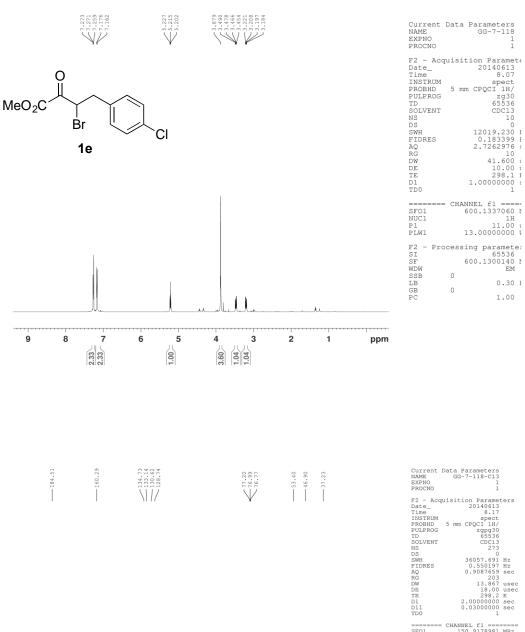


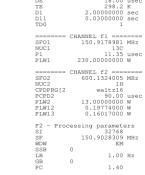

Peak #	RT [min]	туре	Width [min]	Area [mAU*sec]	Height [mAU]	Area %
1 2 Totals	7.697 8.679 :	п МҒ FM	0.340 0.311	7553.62842 439.34650 7992.97510	370.17178 23.54018 393.71198	94.5033 5.4967
			***	End of Report		

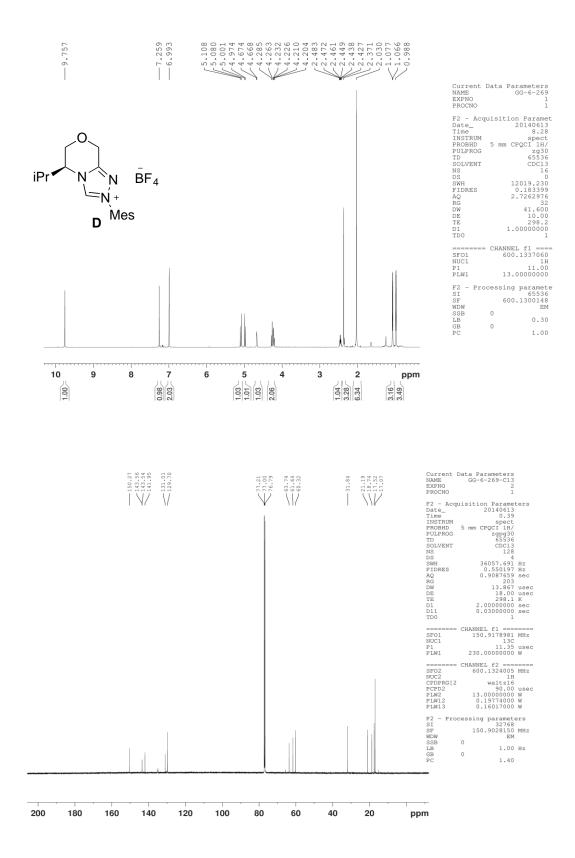


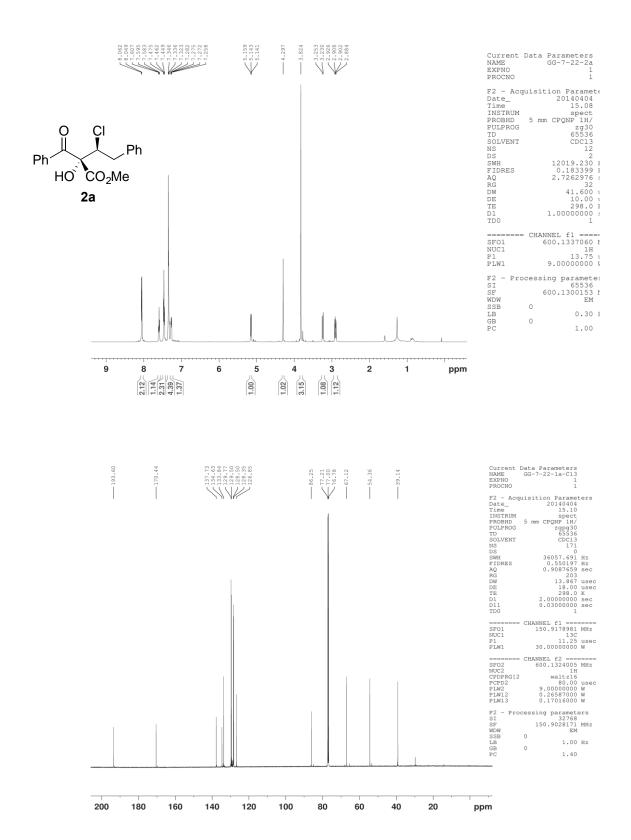


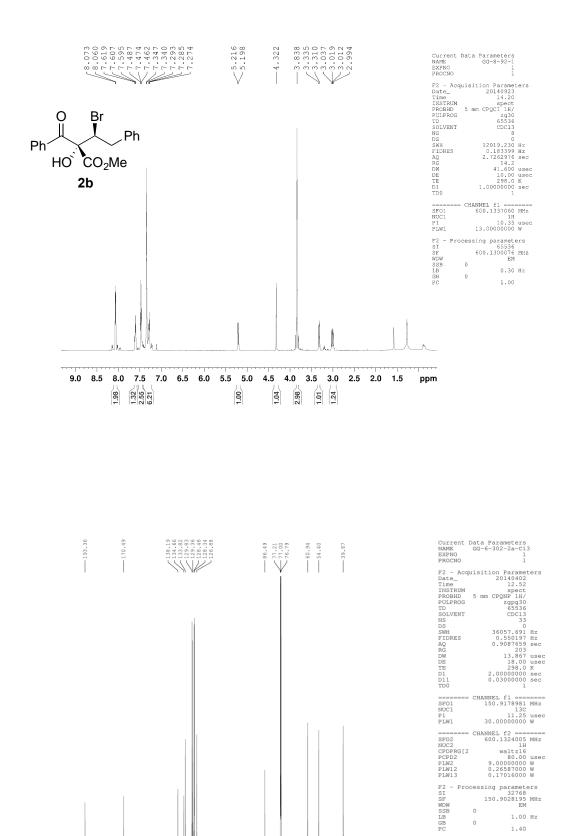

Recrystallized:



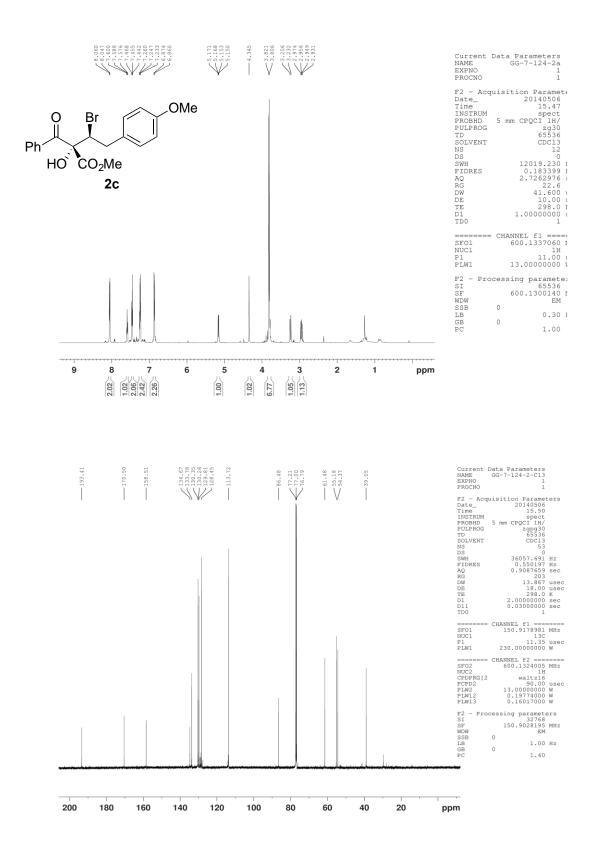


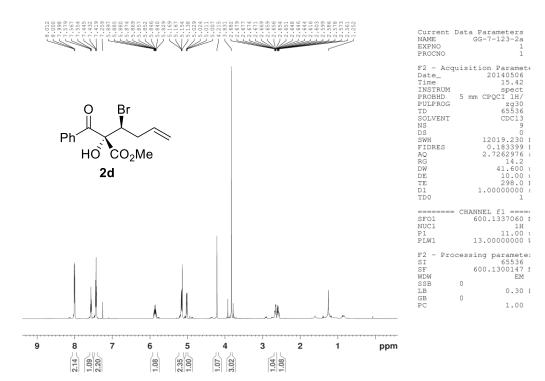


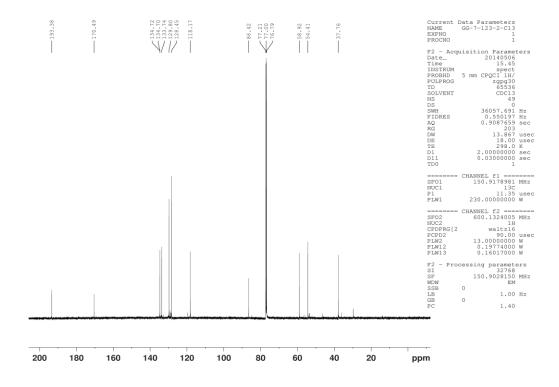


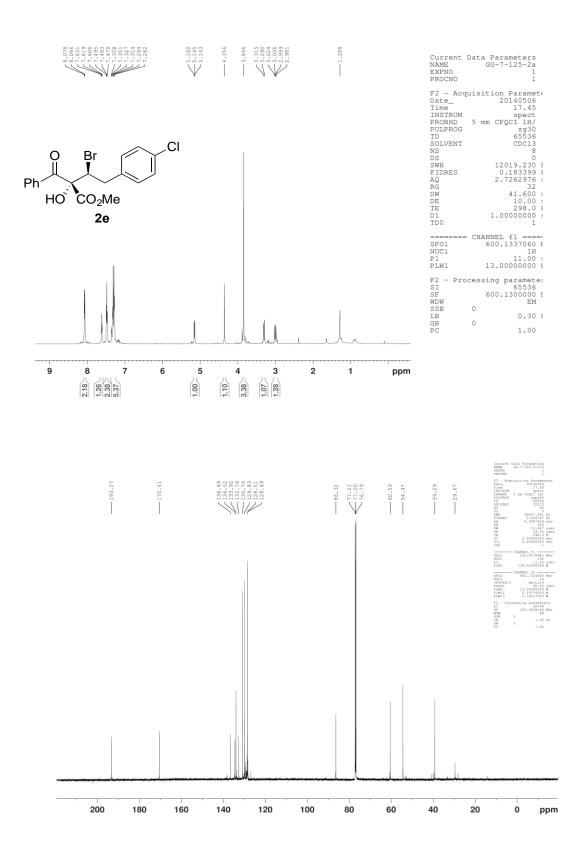


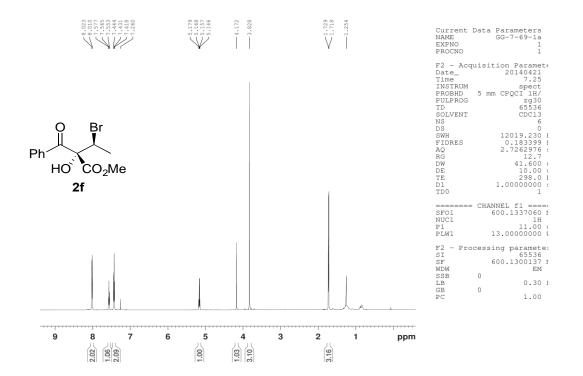
ppm










0 ppm

