Supporting Information for

Synthesis of alumina-modified cigarette soot carbon as adsorbent for efficient arsenate removal

He Chen,^{†,‡} Jiaxing Li,^{*,†,‡} Xilin Wu,[‡] and Xiangke Wang^{†,§}

[†]School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, P.R. China.

[‡]Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei, PR China.

[§]Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Corresponding author's address: <u>lijx@ipp.ac.cn;</u> Fax: +86-551-65591310; Phone:

+86-551-65593308.

Figure S1. Images of CS and CSC.

Figure S2. Dstribution of the arsenic contamination area in China.

Figure S3. The distribution of arsenate species at different pH values.

Figure S4. Adsorption isotherms of As(V) on raw Al₂O₃, Al₂O₃/CSC, 2Al₂O₃/CSC and 3Al₂O₃/CSC (A); Linear plots of Langmuir model of the As(V) adsorption on raw Al₂O₃, Al₂O₃/CSC, 2Al₂O₃/CSC and 3Al₂O₃/CSC (B); Linear plots of Freundlich model of the As(V) adsorption on raw Al₂O₃, Al₂O₃/CSC, 2Al₂O₃/CSC and 3Al₂O₃/CSC (C); Linear plots of lnK_d versus C_e (D); m/V = 0.2 g/L, T = 303 K, $C_{[As(V)]initial} = 0.5$ mmol/L, pH = 5.5 ± 0.1, I = 0.01 mol/L NaCl.

Figure S5. Adsorption isotherms of As(V) on raw Al₂O₃, Al₂O₃/CSC, 2Al₂O₃/CSC and 3Al₂O₃/CSC (A); Linear plots of Langmuir model of the As(V) adsorption on raw Al₂O₃, Al₂O₃/CSC, 2Al₂O₃/CSC and 3Al₂O₃/CSC (B); Linear plots of Freundlich model of the As(V) adsorption on raw Al₂O₃, Al₂O₃/CSC, 2Al₂O₃/CSC and 3Al₂O₃/CSC (C); Linear plots of lnK_d versus C_e (D); m/V = 0.2 g/L, T = 313 K, $C_{[As(V)]initial} = 0.5$ mmol/L, pH = 5.5 ± 0.1, I = 0.01 mol/L NaCl.

Figure S6. Adsorption isotherm of F⁻ on 2Al₂O₃/CSC, m/V = 0.2 g/L, T = 293 K, $C_{\text{[F-]initial}} = 40$ mg/L, pH = 4.0 ± 0.1 , I = 0.01 mol/L NaCl.

Table S1. Parameters for pseudo-first-order and pseudo-second-order models of As(V)adsorption on Al_2O_3 and $2Al_2O_3/CSC$.

Adsorbent	pseudo-first-order			pseudo-second-order		
	$q_e(\text{mg/g})$	$k_l(h^{-1})$	R^2	$q_e(mg/g)$	<i>k</i> ₂ (g/mg/h)	R^2
CSC	11.80	4.320	0.909	11.81	0.0564	0.999
Al ₂ O ₃	40.01	1.187	0.966	40.01	0.0365	0.993
2Al ₂ O ₃ /CSC	55.83	1.865	0.956	59.17	0.0361	0.996

A J - - ub - ub	<i>T</i> (K)	Langmuir			Freundlich		
Adsorbent		q_{max} (mg/g)	b (L/mg)	R^2	k	п	R^2
	293	81.08	0.148	0.994	0.00910	0.297	0.893
3Al ₂ O ₃ /CSC	303	85.65	0.170	0.994	0.00957	0.293	0.874
	313	93.60	0.188	0.992	0.0145	0.312	0.888
2Al ₂ O ₃ /CSC	293	96.90	0.139	0.996	0.0150	0.339	0.929
	303	100.73	0.146	0.996	0.0164	0.342	0.925
	313	103.58	0.147	0.996	0.0179	0.349	0.928
Al ₂ O ₃ /CSC	293	67.50	0.175	0.992	0.00543	0.253	0.860
	303	71.63	0.181	0.995	0.00615	0.262	0.888
	313	75.96	0.183	0.997	0.00731	0.278	0.909
Al ₂ O ₃	293	50.10	0.180	0.992	0.00545	0.180	0.800
	303	53.78	0.226	0.995	0.00267	0.191	0.776
	313	58.88	0.252	0.997	0.00366	0.220	0.842

Table S2. Parameters for Langmuir and Freundlich models of As(V) adsorption on

synthesized adsorbents.

Adsorbents	рН	Temperature (K)	Adsorption capacity (mg/g)	References
Hematite	4.2	303	0.2	1
Goethite	5.0	302	5	2
GAC-Fe NaClO (0.05 M)	4.7	298	6.57	3
FePO ₄ (amorphous)	6 - 6.7	293	10	4
Fe10SBA-15	6.5	298	12.74	5
Iron hydroxide coated alumina	7.15 - 7.2	298	36.64	6
Iron(III) oxide with polyacrylamide	-	_	43	7
LDH-CO ₃	6.0	298	44.66	8
Iron(III)-loaded chelating resin	_	_	60	9
Ferrihydrite	7.0	_	68.75	10
LDH-Cl	6.0	298	88.3	8
Fe/NN-MCM-41	6.0	298	119.8	11
Zirconium(IV)-loaded phosphoric chelate adsorbent	2.0	298	149.9	12
Fe(III) alginate gel	4.0	-	352	13

Table S3. Comparison of the maximum As(V) adsorption capacities of $2Al_2O_3/CSC$

and other adsorbents.

2Al ₂ O ₃ /CSC	5.5	293	96.9	Present study
--------------------------------------	-----	-----	------	---------------

Table S4. Thermodynamic parameters for As(V) adsorption on synthesizedadsorbents.

Adsorbent	<i>T</i> (K)	ΔG^0 (kJ/mol)	ΔH^0 (kJ/mol)	ΔS^{0} (J/mol/K)
3Al ₂ O ₃ /CSC	293	-4.76		33.53
	303	-5.06	5.07	33.45
	313	-5.43		33.53
2Al ₂ O ₃ /CSC	293	-5.07		35.34
	303	-5.48	5.28	35.53
	313	-5.78		35.34
Al ₂ O ₃ /CSC	293	-4.02		29.98
	303	-4.35	4.77	30.07
	313	-4.62		29.98
Al ₂ O ₃	293	-3.27		28.06
	303	-3.58	4.95	28.14
	313	-3.84		28.06

Component	Concentration (mg/L)			
Na ⁺	430.60			
Cu ²⁺	0.29			
Mg ²⁺	21.69			
Ca ²⁺	7.63			
Zn ²⁺	7.93			
Cd^{2+}	0.23			
Mn ²⁺	8.34			
Pb ²⁺	2.84			
Hg ²⁺	6.18			
F ⁻	4.14			
Cl ⁻	114.40			
NO ₃	11.48			
SO4 ²⁻	3.61			
AsO3 ⁻	0.23			

Table S5. Components of the groundwater sample.

References:

(1) Singh, D. B.; Prasad, G.; Rupainwar, D. C. Adsorption technique for the treatment of As(V)-rich effluents. *Colloid Surface A*. **1996**, *111*, 49.

(2) Lakshmipathiraj, P.; Narasimhan, B. R. V.; Prabhakar, S.; Raju, G. B. Adsorption of arsenate on synthetic goethite from aqueous solutions. *J. Hazard. Mater.* 2006, *136*, 281.

(3) Gu, Z.; Fang, J.; Deng, B. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. *Environ. Sci. Technol.* **2005**, *39*, 3833.

(4) Lenoble, V.; Laclautre, C.; Deluchat, V.; Serpaud, B.; Bollinger, J. C. Arsenic removal by adsorption on iron(III) phosphate. *J. Hazard. Mater.* **2005**, *123*, 262.

(5) Jang, M.; Shin, E. W.; Park, J. K.; Choi, S. I. Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides. *Environ. Sci. Technol.* **2003**, *37*, 5062.

(6) Hlavay, J.; Polya'k, K. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water. *J. Colloid Interf. Sci.* **2005**, *284*, 71.

(7) Shigetomi, Y.; Hori, Y.; Kojima, T. The Removal of Arsenate in Wastewater with an Adsorbent Prepared by Binding Hydrous Iron(Iii) Oxide with Polyacrylamide. *B. Chem. Soc. Jpn.* **1980**, *53*, 1475.

(8) Wu, X. L.; Tan, X. L.; Yang, S. T.; Wen, T.; Guo, H. L.; Wang X. K.; Xu, A. W. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides.

Water Res. 2013, 47, 4159.

(9) Rau, I.; Gonxalo, A.; Valiente, M. Arsenic(V) removal from aqueous solutions by iron(III) loaded chelating resin. *J. Radioanal. Nucl. Ch.* **2000**, 246, 597.

(10)Lafferty, B. J.; Loeppert, R. H. Methyl arsenic adsorption and desorption behavior on iron oxides. *Environ. Sci. Technol.* **2005**, *39*, 2120.

(11) Yoshitake, H.; Yokoi, T.; Tatsumi, T. Adsorption behavior of arsenate at transition metal cations captured by amino-functionalized mesoporous silicas. *Chem. Mater.* **2003**, *15*, 1713.

(12)Seko, N.; Basuki, F.; Tamada, M.; Yoshii, F. Rapid removal of arsenic(V) by zirconium(IV) loaded phosphoric chelate adsorbent synthesized by radiation induced graft polymerization. *React. Funct. Polym.* **2004**, *59*, 235.

(13)Min, J. H.; Hering, J. G. Arsenate sorption by FE(III)-doped alginate gels. *Water Res.* **1998**, *32*, 1544.