Semisynthetic Analogues of Toxiferine I and Their Pharmacological Properties at α 7 nAChRs, Muscle-type nAChRs, and the Allosteric Binding Site of Muscarinic M₂ Receptors

Darius P. Zlotos,^{*,†} Christian Tränkle,[‡] Ulrike Holzgrabe,[§] Daniela Gündisch,[⊥] and Anders A.

Jensen

[†]The German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt

^{*}Pharmacology and Toxicology Section, Institute of Pharmacy, Rheinische Friedrich-Wilhelms-University, D-53121 Bonn, Germany

[§]Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany

^LDepartment of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, United States

^IDepartment of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark

* Corresponding author E-mail: darius.zlotos@guc.edu.eg. Tel: +20 2 2758 1041. Fax: +20 2 2758 1041.

Figure S1. NOESY spectrum of **3** (aliphatic section, 600 MHz, CDCl₃) Figure S2. ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (100 MHz) spectra of **2** Figure S3. ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (100 MHz) spectra of **3** Figure S4. ¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz) spectra of **3a** Figure S5. . ¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz) spectra of **3b** Figure S6. ¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz) spectra of **3c** Figure S7. ¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz) spectra of **2a** Figure S8. ¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz) spectra of **2a** Figure S8. ¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz) spectra of **2b** Figure S9. ¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz) spectra of **2b** Figure S9. ¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz) spectra of **2c**

Figure S1. NOESY spectrum of compound 3 (aliphatic section, 600 MHz, CDCl₃)

Figure S2.¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (100 MHz, including DEPT-135 subspectrum) spectra of compound 2

Figure S3.¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (100 MHz, including DEPT-135 subspectrum) of compound 3

Figure S4.¹H NMR (DMSO-*d*₆, 400 MHz) and ¹³C NMR (100 MHz, including DEPT-135 subspectrum) of compound **3a**

Figure S5. ¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz, including DEPT-135 subspectrum) of compound **3b**

Figure S6.¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz, including DEPT-135 subspectrum) of compound **3c**

Figure S7.¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz, including DEPT-135 subspectrum) of compound **2a**

Figure S8.¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz, including DEPT-135 subspectrum) of compound **2b**

Figure S9.¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (100 MHz, including DEPT-135 subspectrum) of compound **2**c