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1. Derivation of function G in the MDL expression for piecewise constant signals:  

The function G in eq 3, defined
1
 below, is derived for piecewise constant signals as follows: 
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where k is the number of states and Ntp is the number of transitions (both the value of each state 

and the position of each transition are unknown parameters to be determined, represented by  

altogether); N is the total number of data points; Vol accounts for the entire parameter space; I() 

is the (k + Ntp) × (k + Ntp) Fisher information matrix of all the parameters of the k states and Ntp 

transitions averaged over the entire data set; and det I() is the determinant of the matrix I(). 

The first term in the right hand side accounts for the penalty of using more states, which is 

similar to Bayesian information criterion. The second term measures the internal complexity of 

the fitting model. The matrix element Iij() is defined as
1
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where p(y|) is the probability density function for y conditional on the value of parameters , 

and i is the partial deviation with respect to i
th

 parameter i. In general one assumes the 

functional form of p(y|) by referring the physical rule behind experiments of interest. In this 

paper, the Fisher information matrix is derived under the assumption of a Gaussian distributed 

noise model (considering the central limit theorem) and the detailed derivation can be found in 

Hanson and Fu’s work.
1
 In this work, each matrix element is:  
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Here  is the noise level estimated as overall noise level independent of each state value, ij is 

Kronecker delta, and Tj is the difference of the fitting values before and after the transition 

position j. The parameter space for each parameter i is: 

    {
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where ymax(min) means the maximum (minimum) value among the entire values of y. We use V to 

represent (ymax – ymin) to be consistent with eq 3. So, the second term of G in the right hand side 

of eq S1 is: 
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Therefore: 
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2. The Student’s t test to detect step transitions: 

The Student’s t test with unequal sample size and global noise level is applied to each single 

trace iteratively to detect all of the step transitions. The Student’s t test calculates the absolute 
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difference of the averaged intensity before and after point ti over their combined uncertainty, as 

shown in eq S7, the one-tailed t test statistic:  
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where  is defined as the noise level of the entire trace, calculated as 1/2
0.5

 of the absolute value 

of the first order Haar wavelet of the signal at 68.2% of the cumulative distribution (see section 4 

in online methods for more details); I1(ti ,ti) is the averaged intensity from t1 to ti, and the 

uncertainty of I1 is i0.5
; similarly, I2(ti+1 ,tN) is the averaged intensity from ti+1 to tN and the 

uncertainty of I2 is (Ni)
0.5

 (N is the total number of the data points), and their combined 

uncertainty is i


. During each iteration, the point having the highest t test value 

larger than a universal threshold (3.174, corresponding to t-distribution value with 99.8% 

confidence for 100 variables) is considered a transition point. This threshold value keeps the 

false positive rate smaller than 90% and also decreases the false negative rate for detection of 

short-lived transitions (important for noisy data with fast dynamics). From the identified 

transitions, the trace is broken down into multiple segments (Figure 1a). A segment is defined as 

a successive section of data points between two step transitions. For example, the second 

segment in the two segments plot in Figure 1a is broken down into two segments as highlighted 

by the black arrow. This process is repeated on every new segment and terminated when no 

further transitions are identified (the example in Figure 1a terminated at five segments). To 

capture fast but rare transitions, we introduce another parameter counter to force the iteration 

process to continue several more steps (specified by counter, default is 3) even though the 

termination condition is met. More details are included in section 7. 

3. State grouping algorithm: 
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After all of the transition points have been identified, the final segments are assigned to different 

states based on their average values and a greedy algorithm is applied in each iteration to find the 

two most similar states and group them into a single state.
2
 To do this, the log likelihood merit 

(M in eq S8) of each two-segment pairing in the remaining n states is calculated: 
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This equation shows the log likelihood merit of clustering two states i and j. In the equation, Ln-1 

and Ln are the log likelihood estimation for n-1 and n states respectively; yt represents the 

measured value at time t; mi and mj are the number of data points for states i and j, and similarly, 

Ii is the averaged value for state i, and Ii,j is the averaged value if states i and j are clustered 

together. The two states corresponding to the maximum M(i,j) are then clustered into a single 

state. This greedy strategy is applied iteratively until only one state remains. This process is 

illustrated in Figure 1b. In the five states plot, all of the five states have different average FRET 

efficiencies. In each iteration, two states are clustered into a single state, as highlighted by the 

black arrows in Figure 1b. At the conclusion of this process, the best grouping strategy for every 

possible number of states has been calculated and all that is left is to decide which number of 

states best describes the data using the MDL equation for compressed sensing.  

4. Calculating the noise level using the Haar wavelet transform:  
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    For a piecewise constant signal, the average signal changes after each transition. The noise 

level of a piecewise constant signal therefore cannot be directly calculated as the standard 

deviation of the signal. The Haar wavelet transform of the signal at the lowest scale (or highest 

frequency, which is basically taking the differences of adjacent signal values), which we call w1 

hereafter, mostly captures the fluctuations of the noise due to the memoryless property of the 

noise (with the assumption that number of transitions is much smaller than the number of data 

points). The standard deviation of the noise can be estimated as 1/2
0.5

 of the standard deviation of 

w1. To avoid the biases of large transitions, we use the cumulative distribution of the absolute 

value of w1. The noise level then corresponds to 68.2% of the cumulative distribution, which is 

the standard deviation for a cumulative Gaussian distribution.  

    In StaSI, the noise level is used both in step detection in eq S7 and state determination in the 

MDL equation. Our algorithm is designed to capture all of the transitions that may be relatively 

small. For systems where only relatively large transitions are important (such as systems that can 

be described by binary states), using a reasonably large noise level that is comparable to these 

transitions will identify the steps.  
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5. Comparison between the L1 norm and the L2 norm:  

Example traces under several conditions are shown in Figure S1-3. For a smaller noise level 

(0.03) and long mean-lifetime (2.5 s), both the L1 norm and the L2 norm identifies the correct 

number of states analyzing raw data (Figure S1a,b). When analyzing binned data, STaSI using 

the L1 norm identifies the correct number of states, but nine redundant states are identified when 

using the L2 norm (seven of the small populations are indicated by black arrows, the other two 

are very close to the real states at 0.5 and 0.35) (Figure S1c,d). For data with a relatively large 

noise level (0.12) and short mean lifetime of the states (0.25 s), STaSI using the L1 norm 

identifies the correct number of states when analyzing both the raw data and binned data, but 

STaSI using the L2 norm identifies two redundant states when analyzing raw data and identifies 

more than 20 states when analyzing binned data (Figure S2). As an extreme example, Figure S3 

shows the analysis of raw data with high noise level (0.12) and very short mean lifetime of the 

states (0.025 s). Both the L1 norm and the L2 norm fail, but the state distribution determined 

using the L1 norm is much closer to the true distribution.  
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Figure S1. Typical example comparison between the L1 norm and the L2 norm for data with 

noise level = 0.03 and mean lifetime of the states = 2.5 s. (a) Simulated raw data analyzed by 

STaSI using the L1 norm and the L2 norm. (b) The corresponding histograms of the analyzed 

states using the L1 norm and the L2 norm, and the histogram of the true states of raw data. (c) 

Simulated 10 ms binned data analyzed by STaSI using the L1 norm and the L2 norm. (d) The 

corresponding histograms of the analyzed states using the L1 norm and the L2 norm, and the 

histogram of the true states of binned data. The black arrows indicate redundant states with very 

small populations due to binning. 
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Figure S2. Typical example comparison between the L1 norm and the L2 norm under noise level 

= 0.12 and mean lifetime of the states = 0.25 s. (a) Simulated raw data analyzed by STaSI using 

the L1 norm and the L2 norm. (b) The corresponding histograms of the analyzed states using the 

L1 norm and the L2 norm, and the histogram of the true states of raw data. The black arrow 

indicates a redundant state with a very small population due to noise. (c) Simulated 10 ms binned 

data analyzed by STaSI using the L1 norm and the L2 norm. (d) The corresponding histograms 

of the analyzed states using the L1 norm and the L2 norm, and the histogram of the true states of 

binned data. 
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Figure S3. Typical example comparison between the L1 norm and the L2 norm under noise level 

= 0.12 and mean-lifetime = 0.025 s. (a) Simulated raw data analyzed by STaSI using the L1 

norm and the L2 norm. (b) The corresponding histograms of the analyzed states using the L1 

norm and the L2 norm, and the histogram of the true states of raw data.  
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6. Speed comparison:  

 

Figure S4. Speed comparison between STaSI and vbFRET.
3
 For a FRET trace with the number 

of data points smaller than 10
5
. STaSI is more than ten times faster than vbFRET within this 

range of data length. The complexity of the Student’s t test (step 1) is O(Nlog(N)), the 

complexity of the grouping algorithm (step 2) is O(N
2
), and the complexity of the MDL 

calculation is O(N). Therefore, the overall complexity of STaSI is O(N
2
). The test is conducted 

using MATLAB R2013a on a personal computer with an Intel i7, 3.40 GHz processor. For 

vbFRET, the number of possible states is set to be one to ten, and the fitting attempt per trace is 

set to be ten.   
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7. Identifying short-lived state segments:  

In the step transition identification process, the detection of the transitions terminates when no 

further transitions are detected in any remaining segment. To identify short-lived state segments 

that may be overlooked, each terminated segment (with more than one data point) is broken 

down into two segments separated by the data point in the middle, and the t test is applied to both 

segments to search for the transitions. A short-lived state segment in a relative smaller segment is 

easily detected by the t test. This process is iterated multiple times in each segment before the 

final termination. The number of iterations is controlled by a parameter called counter in our 

function. The effect of using this parameter is depicted in Figure S5. Usually, counter = 3 to 5 is 

good enough to identify short-lived state segments 100 times shorter than the mother segment 

(Figure S5). The default value of counter is 3 in this work. 
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Figure S5. The effect of using counter to capture the short-lived transitions. Both figures use the 

same simulated piecewise constant signal with Poisson noise. The simulated signal is shown in 

blue and the fit is shown in red. As highlighted by the dashed black boxes, using counter = 3 is 

more likely to capture short-lived state segments compared to using counter = 0. 
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8. FRET trajectory simulation: 

 The FRET trajectories are simulated with a Monte Carlo method using several parameters. 

The key parameters include the number of states, FRET efficiency of the states, transition rate 

between each two states, noise levels, total simulation time, simulation step time, bin time. The 

simulation is carried out in two steps as following. 

Major parameters for the simulation are listed in Figure S6, including the number of 

states n, the transition rate constant kij, and the FRET values. The molecule is randomly assigned 

to have an initial state. At each sampling time    (1 ms), the transition probability is: 

      ∑          

If the molecule is confirmed to change states at a certain step, the transition probability to each 

state is set to be proportional to the corresponding rate constant. After the simulation, each state 

is assigned to the corresponding pre-set FRET efficiency. 

Photon counts in the donor and acceptor channels are calculated based on the FRET 

efficiency at that time, with total photon counts set to be 20 in 1 ms. For each simulated step, 

noise is added to both the donor acceptor channels. The noise follows Gaussian distribution and 

the standard deviation of the Gaussian distribution is proportional to the photon counts for both 

channels. The slope of this proportional relation can be controlled to generate traces with 

different noise levels. For binned data, the two channels are averaged at every 10-ms time 

window separately, and the final FRET value at each binned time step is calculated from the 

binned photon counts of the two channels.  
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Figure S6. Input parameters for the Monte Carlo simulation. Assuming transitions happen 

between any two of the n states with transition rate constants kij > 0 (s
-1

). FRET values Si are 

assigned to the i
th

 state after simulation. 
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