# Development of (Trimethylsilyl)Ethyl Ester Protected Enolates and Applications in Palladium-Catalyzed Enantioselective Allylic Alkylation: Intermolecular Cross-Coupling of Functionalized Electrophiles 

Corey M. Reeves, Douglas C. Behenna and Brian M. Stoltz*

The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
stoltz@caltech.edu

## Table of Contents:

Materials and Methods SI 2
General Procedure for TMSE $\beta$-Ketoester Substrate Synthesis SI 4
Procedure for the Synthesis of Intermediate SI1 and Substrate 3c SI 5
Spectroscopic Data for TMSE $\beta$-Ketoester Substrates SI 6
General Procedure for Allyl Carbonate Substrate Synthesis SI 10
Spectroscopic Data for Allyl Carbonate Substrates SI 11
Procedure for the Synthesis Allyl Carbonate $6 \quad$ SI 12
Optimization of Reaction Parameters (Table S1) SI 14
General Procedure for Pd-Catalyzed Allylic Alkylation SI 15
Spectroscopic Data for Pd-Catalyzed Allylic Alkylation Products SI 16
Determination of Enantiomeric Excess and Polarimetry Data (Table S2) SI 20
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for New Compounds SI 22
${ }^{19}$ F NMR Spectra for New Compounds SI 64
${ }^{1}$ H NMR Spectra for Known Compounds $\mathbf{4 a}-\mathbf{4 g}$ and $\mathbf{4 k}$ SI 67

## Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon. ${ }^{1}$ Reaction progress was monitored by thin-layer chromatography (TLC). TLC was performed using E. Merck silica gel 60 F254 precoated glass plates ( 0.25 mm ) and visualized by UV fluorescence quenching, $p$-anisaldehyde, or $\mathrm{KMnO}_{4}$ staining. Silicycle SiliaFlash ${ }^{\circledR}$ P60 Academic Silica gel (particle size $40-63 \mathrm{~nm}$ ) was used for flash chromatography. ${ }^{1}$ H NMR spectra were recorded on Varian Inova 300 MHz and 500 MHz spectrometers and are reported relative to residual $\mathrm{CHCl}_{3}(\delta 7.26 \mathrm{ppm})$ or $\mathrm{C}_{6} \mathrm{HD}_{5}(\delta 7.16 \mathrm{ppm}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova 500 MHz spectrometer $(125 \mathrm{MHz})$ and are reported relative to $\mathrm{CHCl}_{3}(\delta 77.16 \mathrm{ppm})$ or $\mathrm{C}_{6} \mathrm{HD}_{5}(\delta 128.06 \mathrm{ppm})$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ( $\delta \mathrm{ppm}$ ) (multiplicity, coupling constant ( Hz ), integration). Multiplicities are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, sept $=$ septuplet, $\mathrm{m}=$ multiplet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{br} \mathrm{d}=$ broad doublet, app $=$ apparent. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shifts ( $\delta \mathrm{ppm}$ ) . ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian Mercury 300 spectrometer at 282 MHz , and are reported relative to the external standard $\mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}(\delta-76.53 \mathrm{ppm})$. IR spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line ( 589 nm ), using a 100 mm path-length cell and are reported as: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}$ (concentration in $\mathrm{g} / 100 \mathrm{~mL}$, solvent). Analytical HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralpak (AD-H or AS) or Chiralcel (ODH , OJ-H, or OB-H) columns ( $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$ ) obtained from Daicel Chemical Industries, Ltd. Analytical SFC was performed with a Mettler SFC supercritical $\mathrm{CO}_{2}$ analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns ( $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$ ) obtained from Daicel Chemical Industries, Ltd. Analytical chiral GC analysis was performed with an Agilent 6850 GC

[^0]utilizing a GTA ( $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ) column ( $1.0 \mathrm{~mL} / \mathrm{min}$ carrier gas flow). High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI + ), or mixed ionization mode (MM: ESI-APCI + ).

Reagents were purchased from Sigma-Aldrich, Gelest, Strem, or Alfa Aesar and used as received unless otherwise stated. 2-(trimethylsilyl)ethyl chloroformate (2) was prepared according to a known procedure. ${ }^{2}$ Allyl carbonates 5 and 7 were prepared from methyl chloroformate and the corresponding allyl alcohols by adaptation of a known procedure. ${ }^{3} \beta$-Ketoesters $\mathbf{3 a}-\mathbf{3 h}$ were prepared by adaptation of procedures by Stoltz and co-workers. ${ }^{4,5}$ Data reported herein is for new compounds only.

List of Abbreviations: ee - enantiomeric excess, dr - diastereomeric ratio, HPLC - highperformance liquid chromatography, SFC - supercritical fluid chromatography, GC - gas chromatograph, TBAT - tetrabutylammonium triphenyldifluorosilicate, TLC - thin-layer chromatography, THF - tetrahydrofuran, IPA - isopropanol, dba - dibenzylideneacetone, EtOAc - ethyl acetate, LiHMDS - lithium hexamethyldisilazide, Selectfluor - 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate), DCM dichloromethane.

[^1]
## General Procedure for TMSE $\boldsymbol{\beta}$-Ketoester Substrate Synthesis



2-(Trimethylsilyl)ethyl 1-methyl-2-oxocyclohexane-1-carboxylate (3a). A flame-dried 1 L round bottom flask was charged with 28.02 g ( 152.83 mmol , 2.5 equiv) of LiHMDS and a magnetic stirring bar in a nitrogen filled glove box. The flask was sealed, removed from the glovebox, fitted with a $\mathrm{N}_{2}$ line, and suspended in a dry ice/acetone bath. 300 mL of THF was added slowly to the flask and allowed to stir until the LiHMDS had completely dissolved. 6.00 g ( $61.13 \mathrm{mmol}, 1.0$ equiv) of cyclohexanone $\mathbf{1} \mathrm{in} 130 \mathrm{~mL}$ of THF was added via cannula over 30 min , and the flask was removed from the cooling bath and allowed to warm to $23{ }^{\circ} \mathrm{C}$ while continuing to stir. After 30 min , the flask was suspended in a dry ice/acetone bath and 12.15 g ( $67.24 \mathrm{mmol}, 1.1$ equiv) of chloroformate $\mathbf{2}$ in 130 mL of THF was added over 30 min via cannula. This mixture was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 6 h . The flask was then suspended in a water/ice bath and 21.69 g ( $152.83 \mathrm{mmol}, 2.5$ equiv) of methyl iodide was added dropwise. This mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred for 6 h , at which time an additional 21.69 g ( $152.83 \mathrm{mmol}, 2.5$ equiv) of methyl iodide was added dropwise. The mixture was then stirred at $23{ }^{\circ} \mathrm{C}$ until full consumption of starting material and acylated intermediate was observed by TLC analysis. 300 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added slowly to the mixture and stirring continued for 2 h . The mixture was then extracted with EtOAc ( $100 \mathrm{~mL} x$ 3), the collected organic fractions washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes to $3 \% \mathrm{EtOAc}$ in hexanes) to give $11.05 \mathrm{~g}(43.08$ $\mathrm{mmol})$ of ketoester 3a as a pale yellow oil. $70.1 \%$ yield. $R_{f}=0.3(10 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.29-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.05-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.01-0.92(\mathrm{~m}, 2 \mathrm{H})$, 0.02 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 208.3,173.2,63.6,57.1,40.7,38.2,27.5$, 22.6, 21.2, 17.3, -1.6; IR (Neat Film, NaCl) 3438, 2952, 2897, 2866, 1717, 1452, 1378,

1336, 1251, 1215, 1121, 1084, 1061, 1041, 938, 861, 834, $763 \mathrm{~cm}^{-1}$; HRMS (MM: ESIAPCI + ) $m / z$ calc'd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 257.1567$; found 257.1556.

## Procedures for the Syntheses of TMSE $\boldsymbol{\beta}$-Ketoester Intermediate SI1 and Ketoester 3c



2-(Trimethylsilyl)ethyl 1-methyl-2-oxocyclohexane-1-carboxylate (SI1). A flamedried 500 mL round bottom flask was charged with 4.67 g ( $25.47 \mathrm{mmol}, 1.3$ equiv) of LiHMDS and a magnetic stirring bar in a nitrogen filled glove box. The flask was sealed, removed from the glovebox, fitted with a $\mathrm{N}_{2}$ line, and suspended in a dry ice/acetone bath. 100 mL of THF was added slowly to the flask and allowed to stir until the LiHMDS had been completely dissolved. $2.00 \mathrm{~g}(20.38 \mathrm{mmol}, 1.0$ equiv) of cyclohexanone $\mathbf{1}$ in 50 mL of THF was added via cannula over 30 min , and the flask was removed from the cooling bath and allowed to warm to $23{ }^{\circ} \mathrm{C}$ while continuing to stir. After 30 min , the flask was suspended in a dry ice/acetone bath and 4.10 g ( $22.42 \mathrm{mmol}, 1.1$ equiv) of chloroformate $\mathbf{2}$ in 50 mL of THF was added over 30 min via cannula. This mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred until full consumption of starting material was observed (ca. 6 h ). 100 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added slowly and the mixture stirred for 20 min before being extraced with EtOAc ( $30 \mathrm{~mL} \times 3$ ). The collected organic fractions were washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}$, hexanes to $2 \%$ EtOAc in hexanes), to give $3.20 \mathrm{~g}(43.08 \mathrm{mmol})$ of ketoester SI1 as a colorless oil. $64.6 \%$ yield. $R_{f}=0.5\left(20 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 12.29$ (s, $1 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{dtt}, J=24.7,6.3,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.17-$ $0.86(\mathrm{~m}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 172.9, 171.9, 97.8, 62.4, 29.1, 22.5, 22.4, 21.9, 17.3, -1.5; IR (Neat Film, NaCl) 2952, 2899, 2860, 1742, 1718, 1654,
$1618,1453,1398,1360,1297,1258,1219,1175,1079,1060,936,859,837 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI-) $m / z$ calc'd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}-\mathrm{H}]^{-}: 241.1265$; found 241.1270.


2-(Trimethylsilyl)ethyl 1-fluoro-2-oxocyclohexane-1-carboxylate (3c). A flame dried 100 mL round bottom flask was charged with a magnetic stirring bar, 0.35 g SI1 (1.44 mmol , 1.0 equiv), 5 mL of acetonitrile and cooled to $0^{\circ} \mathrm{C}$. To this mixture was added $0.027 \mathrm{~g} \mathrm{TiCl}_{4}$ ( $0.144 \mathrm{mmol}, 0.10$ equiv) dropwise over 15 minutes. To this stirring solution was added 0.64 g Selectfluor ( $1.73 \mathrm{mmol}, 1.2$ equiv) in 20 mL of acetonitrile over 25 minutes. The mixture was then allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred for 8 h . A 1:1 mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOAc}(20 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc ( $20 \mathrm{~mL} \times 3$ ), dried over $\mathrm{MgSO}_{4}$ and adsorbed onto $1 \mathrm{~g} \mathrm{SiO}_{2}$ by concentration in vacuo. The crude product was isolated by flash column chromatography $\left(\mathrm{SiO}_{2}, 3 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in pentane to $12 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) to give 0.29 g of $\mathbf{3 c}$ as a colorless oil. $79.0 \%$ yield. $R_{f}$ $=0.2\left(20 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.41-4.26(\mathrm{~m}, 2 \mathrm{H}), 2.84-$ $2.36(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.15-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=19.5 \mathrm{~Hz}\right), 167.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=24.6 \mathrm{~Hz}\right), 96.4(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CF}}=197.0 \mathrm{~Hz}\right), 65.0,39.7,36.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=21.7 \mathrm{~Hz}\right), 26.6,21.0\left(\mathrm{~d},{ }^{5} J_{\mathrm{CF}}=6.0 \mathrm{~Hz}\right), 17.3$, $-1.6 ;{ }^{19}$ F NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-173.70$; IR (Neat Film, NaCl) 2953, 1732, 1452, 1287, 1251, 1223, 1157, 1093, 1051, 860, $838 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) m/z calc'd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{FO}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 283.1136$; found 283.1145.

## Spectroscopic Data for TMSE $\boldsymbol{\beta}$-Ketoester Substrates

## 2-(Trimethylsilyl)ethyl 1-benzyl-2-oxocyclohexane-1-carboxylate (3b)


$3 b$

Ketoester 3b was prepared by the general procedure and was isolated by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes to $5 \% \mathrm{EtOAc}$ in hexanes) as a colorless oil. $79.4 \%$ yield. $R_{f}=0.3\left(20 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.48-7.04(\mathrm{~m}, 5 \mathrm{H})$, 4.16 (td, $J=9.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=125.3,13.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.05$ (ddd, $J=12.4,6.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{ddd}, J=$ 8.9, 7.2, $1.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $0.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.9,172.8,138.3$, 132.0, 129.5, 128.2, 65.2, 63.8, 42.9, 42.0, 37.5, 29.2, 24.1, 18.8, 0.0; IR (Neat Film, $\mathrm{NaCl}) 3029,2952,2856,1713,1496,1453,1439,1250,1221,1177,1132,1086,1053$, 988, $932,860,838,765,744 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) $m / z$ calc'd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 333.1880; found 333.1863.

## 2-(Trimethylsilyl)ethyl 1-(3-methoxy-3-oxopropyl)-2-oxocyclohexane-1-carboxylate

 (3d)

Ketoester 3d was prepared according to the general procedure, using methyl acrylate in place of methyl iodide, and isolated by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes to $10 \%$ EtOAc in hexanes) as a colorless oil. $81.2 \%$ yield. $R_{f}=0.3(25 \%$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.28-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.41$ (dddd, $J=14.6,12.9,6.5,2.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.27-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84$ (m, 1H), 1.76-1.51 (m, 3H), $1.40(\mathrm{ddd}, J=13.5,12.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.03-0.91(\mathrm{~m}, 2 \mathrm{H})$, $0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 207.6,173.5,171.8,63.9,60.0,51.6,41.0$, 36.3, 29.7, 29.4, 27.5, 22.5, 17.4, -1.6; IR (Neat Film, NaCl) 3432, 2952, 2899, 2866, $1740,1713,1437,1377,1340,1308,1250,1175,1137,1093,1075,1062,1040,943$, 861, 838, 763, $695 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI + ) $m / z$ calc'd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 351.1598$; found 351.1602 .

## 2-(Trimethylsilyl)ethyl 1-methyl-2-oxocycloheptane-1-carboxylate (3e)


$3 e$
Ketoester 3e was prepared by the general procedure and purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes to $5 \% \mathrm{EtOAc}$ in hexanes) as a colorless oil. $78 \%$ yield. $R_{f}=0.4\left(20 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.25-4.14(\mathrm{~m}, 2 \mathrm{H})$, 2.78-2.68 (m, 1H), 2.49 (ddd, $J=12.2,8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.71$ $(\mathrm{m}, 3 \mathrm{H}), 1.71-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.06-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.03(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 210.5,173.7,63.6,58.8,42.0,35.4,30.1,25.8,24.7$, 21.5, 17.3, -1.6; IR (Neat Film, NaCl) 2949, 2861, 1736, 1710, 1458, 1378, 1250, 1232, 1152, 1105, 1062, 942, 860, $838 \mathrm{~cm}^{-1}$; HRMS (EI+) $m / z$ calc'd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 293.1543$; found 293.1543.

## 2-(Trimethylsilyl)ethyl 4-isobutyl-1-methyl-2-oxocyclohept-3-ene-1-carboxylate (3f)


$3 f$
Vinylogous ester 3f was prepared by the general procedure, starting from 3-isobutoxycyclohept-2-en-1-one, and purified by flash column chromatography ( $\mathrm{SiO}_{2}$, hexanes to $10 \%$ EtOAc in hexanes) as a colorless oil. $85 \%$ yield. $R_{f}=0.3(20 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 5.66-5.53(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.00$ (m, 2H), 2.57 (dddd, $J=17.7,10.1,3.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.37$ (m, 1H), 2.20 (ddd, $J=$ $17.7,7.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{ddd}, J=$ $10.0,7.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.71(\mathrm{dd}, J=6.7,4.2 \mathrm{~Hz}, 6 \mathrm{H}),-0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 197.1,173.9,171.7,105.6,74.0,62.9,58.9,33.9,33.7,27.6,24.1,18.7,18.7$, 17.0, -2.1; IR (Neat Film, NaCl) 2951, 1684, 1452, 1386, 1327, 1281, 1251, 1139, 1053, 859, 839, 718, 693, $658 \mathrm{~cm}^{-1}$; HRMS (EI+) $m / z$ calc'd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 341.2143; found 341.2139.

## 2-(Trimethylsilyl)ethyl 1-benzoyl-3-methyl-2-oxopiperidine-3-carboxylate (3g)


$3 g$

Amide ester 3g was prepared by the general procedure, starting from N -benzoyl-2piperidone, and purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ EtOAc in hexanes to $25 \%$ EtOAc in hexanes) as a colorless oil. $89 \%$ yield. $R_{f}=0.3(35 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.47$ (ddt, $J=8.0,6.9,1.3$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 7.41-7.36 (m, 2H), 4.38-4.24 (m, 2H), 3.91-3.82 (m, 1H), 3.78 (dtd, $J=12.9$, $5.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dddd, $J=13.8,5.7,4.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.85-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 175.0,173.1,173.0,135.9,131.6,129.0128 .0,64.4,52.9,46.8,33.7,22.4,20.2,17.5$, -1.5; IR (Neat Film, NaCl) 3062, 2953, 2896, 1726, 1703, 1683, 1449, 1389, 1277, 1251, 1192, 1140, 1062, 932, 859, 838, 723, $694 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) $\mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 384.1602$; found 384.1611.

## 2-(Trimethylsilyl)ethyl 1-benzoyl-3-methyl-2-oxoazepane-3-carboxylate (3h)



3h
Amide ester 3h was prepared by the general procedure, starting from 1-benzoylazepan-2one, and purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes to $25 \%$ EtOAc in hexanes) as a colorless oil. 77\% yield. $R_{f}=0.3\left(35 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 7.72-7.68$ (m, 2H), 7.50-7.45 (m, 1H), 7.39 (ddt, $J=8.2,6.6$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{ddd}, J=15.7,11.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22$ (dtd, $J=14.8,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.61$ (dddt, $J=20.7,12.0,5.0,3.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 175.6, 174.9, 173.1, 136.4, 131.5, 128.1, 127.9, 64.3, 55.0, 44.0, 34.4, 27.9, 26.9, 25.0, 17.5, -1.5; IR (Neat Film, NaCl) 2956, 1729, 1661, 1614, 1455, 1383, 1249, 1169, 1115, 860, $838 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) $m / z$ calc'd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 398.1758$; found 398.1775.

## General Procedure for Allyl Carbonate Substrate Syntheses



2-Chloroallyl methyl carbonate (5j). To a flame-dried 50 mL round bottom flask charged with a magnetic stirring bar, 1.00 g 2-chloroallyl alcohol (SI2) ( $10.8 \mathrm{mmol}, 1.0$ equiv), 2.56 g of pyridine ( $32.4 \mathrm{mmol}, 3.0$ equiv), 0.016 g of dimethylaminopyridine ( $0.14 \mathrm{mmol}, 0.013$ equiv) and 22 mL of DCM at $0{ }^{\circ} \mathrm{C}$, was added 3.06 g of methyl chloroformate ( $32.43 \mathrm{mmol}, 3$ equiv), dropwise over 10 min . The solution was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 12 h . The mixture was then diluted with 40 mL of DCM, washed consecutively with $50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and 50 mL brine before being dried over $\mathrm{MgSO}_{4}$ and directly subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane to $5 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). 1.23 g of 2-Chloroallyl methyl carbonate was isolated as a colorless oil. 75.6\% yield. $R_{f}=0.6\left(20 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.49(\mathrm{dt}, J=2.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dt}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.67(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 155.1, 135.2, 115.2, 69.0, 55.1; IR (Neat Film, NaCl ) 3008, 2959, 2255, 1752, 1639, 1444, 1383, 1358, 1265, 1182, 1116, 974, 908, 790, 745 $\mathrm{cm}^{-1}$; HRMS (MM: ESI-APCI+) $m / z$ calc'd for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 151.0156$; found 151.0150.

## Spectroscopic Data for Allyl Carbonate Substrates



51
2-(4-Fluorophenyl)allyl methyl carbonate (51) was prepared by the general procedure from 2-(4-fluorophenyl)allyl alcohol and isolated as a colorless oil by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane to $5 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane $) .87 \%$ yield. $R_{f}=0.4(20 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.51$ $(\mathrm{s}, 1 \mathrm{H}), 5.39(\mathrm{tt}, J=1.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=1.3,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.65\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=247.0 \mathrm{~Hz}\right.$ ), 155.54, 141.1, 133.85, 127.74 $\left(\mathrm{d},{ }^{3} J_{\mathrm{CF}}=7.8 \mathrm{~Hz}\right), 115.85\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=1.4 \mathrm{~Hz}\right), 115.41\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.9 \mathrm{~Hz}\right), 69.09,54.89 ;{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-126.95; IR (Neat Film, NaCl) 3007, 2959, 1893, 1750, 1634, 1603, 1511, 1447, 1372, 1260, 1164, 1102, 969, 918, 839, 791, $742 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) $m / z$ calc'd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 211.0765$; found 211.0772 .

## (R)-Methyl (2-(4-methyl-5-oxocyclohex-3-en-1-yl)allyl) carbonate (7)



Enone carbonate 7 was prepared by the general method from known allylic alcohol ( $R$ )-5-(3-hydroxyprop-1-en-2-yl)-2-methylcyclohex-2-en-1-one (i.e. $(R)$-10-hydroxy carvone) ${ }^{6}$ and isolated as a colorless oil by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in henxanes to $20 \% \mathrm{EtOAc}$ in hexanes). $91 \%$ yield. $R_{f}=0.2$ ( $20 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.74(\mathrm{ddd}, J=5.9,2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dt}, J=1.3,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07(\mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{ddt}, J=3.8,1.2,0.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$,

[^2]2.97-2.74 (m, 1H), $2.63(\mathrm{ddd}, J=16.1,3.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dddt}, J=18.2,6.0,4.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=16.1,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{ddt}, J=18.2,10.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (dt, $J=2.6,1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 198.9, 155.5, 144.7, 144.0, 135.6, 114.3, 69.1, 54.9, 42.9, 38.2, 31.3, 15.7; IR (Neat Film, NaCl) 2958, 2928, 2893, $1750,1671,1444,1364,1266,1107,984,954,913,791 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) $\mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 225.1121; found 225.1118.

## Procedure for the Synthesis Allyl Carbonate 6



Methyl $\quad N$-(2-(((methoxycarbonyl)oxy)methyl)allyl)-L-leucinate (SI5). Known hydroxy carbonate $\mathbf{S I 3}^{7}$ was prepared by the general method. Following the procedure of Altmann and co-workers, ${ }^{8} 0.77 \mathrm{~g}$ of SI3 ( $5.27 \mathrm{mmol}, 1.0$ equiv) was added to flame-dried round bottom flask charged with a magnetic stirring bar and 0.66 mL of acetonitrile. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and 1.80 g of triphenylphosphine ( $6.83 \mathrm{mmol}, 1.3$ equiv) and 0.66 mL of carbontetrachloride ( $6.85 \mathrm{mmol}, 1.3$ equiv) were added sequentially. The resulting slurry was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 2 h before being subjected directly to flash column chromatography. The resulting crude oil, SI4 was determined to be ca. $95 \%$ pure by ${ }^{1} \mathrm{H}$ NMR analysis and used without further purification (yield not determined). Following a known procedure, ${ }^{9} 0.47 \mathrm{~g}$ of crude allylic chloride intermediate SI4 ( $2.855 \mathrm{mmol}, 1.5$ equiv) was combined with 0.28 g of $\mathrm{NaI}(1.90 \mathrm{mmol}$, 1.0 equiv), 0.346 g of ( $L$ )-leucine methyl ester hydrochloride ( $1.90 \mathrm{mmol}, 1.0$ equiv), 0.061 g of tetrabutylammonium bromide ( $0.19 \mathrm{mmol}, 0.1$ equiv), $1.01 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}(9.52$ mmol, 5 equiv) and 20 mL acetonitrile in a 50 mL round bottom flask equipped with a

[^3]magnetic stirring bar. The flask was fitted with a reflux condenser and the mixture stirred at $82{ }^{\circ} \mathrm{C}$ for 14 h . The vessel was then cooled to $23{ }^{\circ} \mathrm{C}$ and the mixture diluted with 50 mL Et 2 O , washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$, dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The crude oil was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes to $15 \%$ EtOAc in hexanes) to give 0.52 g of amino ester SI5 as a colorless oil. $66.1 \%$ yield from crude SI4. $R_{f}=0.2\left(40 \%\right.$ EtOAc in hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.23-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{t}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19(\mathrm{dd}, J=80.0,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dq}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{dd}, J=9.2,6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $176.5,155.7,141.7,115.0,68.9,59.1,54.9,51.7,50.4,42.9,24.9,22.9,22.2$; IR (Neat Film, NaCl) 2956, 2868, 1750, 1737, 1443, 1368, 1267, 1196, 1151, 980, 943, $792 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) m/z calc'd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 274.1649; found 274.1659 .


Methyl $N$-(2-(((methoxycarbonyl)oxy)methyl)allyl)- $N$-methyl-L-leucinate (6). To a 10 mL round bottom flask containing a magnetic stirring bar and a solution of 0.37 g SI5 ( $1.35 \mathrm{mmol}, 1.0$ equiv) in 4 mL of methanol was added 0.056 g of formaldehyde ( 1.88 mmol, 1.4 equiv) as a $37 \%$ solution in $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h at which point 0.11 g sodium cyanoborohydride was carefully added. After an additional 12 h of stirring, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, extracted with EtOAc ( $5 \mathrm{~mL} x 3$ ), dried over $\mathrm{MgSO}_{4}$, concentrated in vacuo and subjected directly to purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc}\right.$ in hexanes to $25 \% \mathrm{EtOAc}$ in hexanes) to yield 0.25 g of carbonate 6 as a colorless oil. $63.8 \%$ yield. $R_{f}=0.5(33 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.30-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{t}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{dd}, J=8.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=75.0,13.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.22$ $(\mathrm{s}, 3 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{dd}, J=17.5,6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,155.6,141.2,115.4,68.5,63.8,57.3,54.7,50.9,38.4,37.0$,
24.7, 22.9, 21.9; IR (Neat Film, NaCl) 2955, 2870, 2803, 1751, 1658, 1444, 1385, 1368, 1269, 1193, 1157, 1126, 1072, 978, 945, $792 \mathrm{~cm}^{-1} ;$ HRMS (MM: ESI-APCI+) $m / z$ calc'd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 288.1805$; found 288.1795.

## Optimization of Reaction Parameters (Table S1)

|  <br> 3a |  |  <br> TBAT (1.25 equiv), Solvent, $40^{\circ} \mathrm{C}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | X | Equiv Allyl | Sovent | ee (\%) ${ }^{\text {a }}$ | Yield (\%) ${ }^{\text {b }}$ |
| 1 | Br | 1.0 | toluene | 83 | 55 |
| 2 | OTs | 1.0 | 1,4-dioxane | 77 | 43 |
| 3 | OMs | 1.0 | 1,4-dioxane | 84 | 45 |
| 4 | OAc | 1.0 | 1,4-dioxane | 82 | 15 |
| 5 | $\mathrm{OCO}_{2}$ Allyl | 1.0 | 1,4-dioxane | 83 | 78 |
| 6 | $\mathrm{OCO}_{2} \mathrm{Me}$ | 1.0 | 1,4-dioxane | 84 | 78 |
| 7 | $\mathrm{OCO}_{2} \mathrm{Me}$ | 0.75 | 1,4-dioxane | 82 | 51 |
| 8 | $\mathrm{OCO}_{2} \mathrm{Me}$ | 1.5 | 1,4-dioxane | 82 | 74 |
| 9 | $\mathrm{OCO}_{2} \mathrm{Me}$ | 2.0 | 1,4-dioxane | 84 | 73 |
| 10 | $\mathrm{OCO}_{2} \mathrm{Me}$ | 1.1 | toluene | 82 | 33 |
| 11 | $\mathrm{OCO}_{2} \mathrm{Me}$ | 1.1 | MTBE | 84 | 65 |
| 12 | $\mathrm{OCO}_{2} \mathrm{Me}$ | 1.1 | THF | 83 | 83 |
| 13 | $\mathrm{OCO}_{2} \mathrm{Me}$ | 1.1 | tol/hex | 93 | 45 |
| $14{ }^{\text {c }}$ | $\mathrm{OCO}_{2} \mathrm{Me}$ | 1.1 | THF | 86 | 81 |

\% ee determined by chiral GC analysis of the crude reaction mixture. (b) Yield determined by comparison to tridecane internal standard. (c) Reaction performed at $25^{\circ} \mathrm{C}$.

General Procedure for Optimization Experiments: Inside a nitrogen filled glovebox, an oven-dried 0.5 dram vial was charged with a magnetic stirring bar, 0.0046 g [ $\left.\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ ( $0.005 \mathrm{mmol}, 0.05$ equiv), $0.0047 \mathrm{~g}(S)-t$-Bu-PHOX ( $0.0125 \mathrm{mmol}, 0.125$ equiv), 0.067 g TBAT ( $0.125 \mathrm{mmol}, 1.25$ equiv), 0.018 g tridecane ( $0.10 \mathrm{mmol}, 1.0$ equiv) and 3.0 mL THF. This mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min at which time 0.026 g of $\beta$-ketoester 3a ( $0.10 \mathrm{mmol}, 1.0$ equiv) and 0.013 g of allyl methyl carbonate ( 0.11
mmol, 1.1 equiv) were added, neat. The vial was capped and stirring continued for 12 h at which time the vial was removed from the glovebox, uncapped and the magnetic stirring bar removed. The reaction mixture was diluted with hexanes ( 2 mL ) and passed through a pipette plug $\left(\mathrm{SiO}_{2}\right)$ with 4 mL of hexanes followed by 4 mL of $\mathrm{Et}_{2} \mathrm{O}$. From the combined organic fractions, a sample was prepared and the mixture analyzed by GC.

## General Procedure for Pd-Catalyzed Allylic Alkylation

Please note that the absolute configuration for all products 4 has been inferred by analogy to previous studies. For isolated yields, see the main text Table 2 and Figure 2. For respective GC, HPLC or SFC conditions, as well as optical rotation data, please refer to Table S2.

(S)-2-benzyl-2-(2-methylallyl)cyclohexan-1-one (4i). Inside a nitrogen filled glovebox, an oven-dried 20 mL scintillation vial was charged with a magnetic stirring bar, 0.011 g $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right](0.012 \mathrm{mmol}, 0.05$ equiv), $0.011 \mathrm{~g}(S)-t$-Bu-PHOX ( $0.029 \mathrm{mmol}, 0.125$ equiv), 0.15 g TBAT ( $0.28 \mathrm{mmol}, 1.25$ equiv) and 7 mL THF. This mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 30 min at which time 0.075 g of $\beta$-ketoester 3a ( $0.23 \mathrm{mmol}, 1.0$ equiv) and 0.033 g of allyl methyl carbonate ( $0.25 \mathrm{mmol}, 1.1$ equiv) were added, neat. The vial was capped and stirring continued for 16 h at which time the vial was removed from the glovebox, uncapped and magnetic stirring bar removed. The reaction mixture was concentrated in vacuo. The resulting crude semisolid was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes to $2 \% \mathrm{EtOAc}$ in hexanes) to give ketone $\mathbf{4 i}$ as a colorless oil. $89 \%$ yield. $89 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{25}-20.1\left(c \quad 1.2, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.3$ ( $10 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H})$, $4.86(\mathrm{dd}, J=2.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=114.0,13.7$
$\mathrm{Hz}, 2 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.81-$ $1.69(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{dd}, J=1.5,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 214.8,142.2,137.8,130.9,127.9,126.2,114.7,52.5,43.2,41.7,39.7,35.7$, 26.7, 24.6, 20.8; IR (Neat Film, NaCl) 3026, 2935, 2863, 1700, 1448, 1123, 893, $746 \mathrm{~cm}^{-}$
${ }^{1}$; HRMS (MM: ESI-APCI+) $m / z$ calc'd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 243.1743$, found 243.1745; SFC conditions: $1 \% \mathrm{MeOH}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak OD-H column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$ : major $=5.79$, minor $=6.48$.

## Spectroscopic Data for Pd-Catalyzed Allylic Alkylation Products

## (S)-3-Allyl-1-benzoyl-3-methylazepan-2-one (4h)



Lactam 4h was prepared by the general procedure and isolated by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes to $25 \% \mathrm{EtOAc}$ in hexanes) as a colorless oil. $91 \%$ yield. $90 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{25}-35.2\left(c 1.7, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.2\left(30 \% \mathrm{EtOAc}\right.$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H})$, 5.72 (dddd, $J=17.1,10.3,7.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.91$ (ddd, $J=14.8,8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dddt}, J=71.6,13.7,7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.78$ $(\mathrm{m}, 4 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 182.5,174.7$, $137.0,133.7,131.0,128.1,127.4,118.7,47.7,44.7,42.6,35.1,28.0,24.9,23.3$; IR (Neat Film, NaCl) 3072, 2830, 1676, 1448, 1279, 1244, 1224, 1148, 1117, 1096, 971, 951, 919, 790, 726, $695 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI + ) $m / z$ calc'd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 272.1645, found 272.1660 ; HPLC conditions: $5 \% \mathrm{IPA}, 1.0 \mathrm{~mL} / \mathrm{min}$, Chiralpak OJ-H column, $\lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$ : major $=5.60$, minor $=5.00$.

## (R)-2-Benzyl-2-(2-chloroallyl)cyclohexan-1-one (4j)


$4 j$
Ketone $\mathbf{4} \mathbf{j}$ was prepared according to the general procedure and isolated by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}\right.$ in hexanes to $10 \% \mathrm{EtOAc}$ in hexanes) as a colorless oil. $72 \%$ yield. $96 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{25}-7.0\left(c \quad 1.4, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.4\left(10 \% \mathrm{EtOAc}\right.$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.39-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.08(\mathrm{~m}, 3 \mathrm{H}), 5.30(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17$ (t, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=40.6,14.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=56.9,15.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.66-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.63(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 213.5$, 137.0, 130.7, 128.1, 127.7, 126.5, 116.6, 52.5, 43.9, 41.3, 39.7, 35.1, 26.5, 20.9; IR (Neat Film, NaCl) 2939, 2858, 1705, 1631, 1494, 1452, 1429, 1118, 1088, 889, $701 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) $m / z$ calc'd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}: 263.1197$, found 263.1199; SFC conditions: $3 \% \mathrm{MeOH}, 2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak OD-H column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$ : major $=6.09$, minor $=7.04$.

## (R)-2-Benzyl-2-(2-(4-fluorophenyl)allyl)cyclohexan-1-one (4l)



Ketone $\mathbf{4 1}$ was prepared according to the general procedure, and isolated by flash column chromatography ( $\mathrm{SiO}_{2}, 1 \% \mathrm{EtOAc}$ in hexanes to $3 \% \mathrm{EtOAc}$ in hexanes) as a colorless oil. $91 \%$ yield. $95 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{25}-9.9$ (c 2.0, $\mathrm{CHCl}_{3}$ ); $\mathrm{R}_{f}=0.3$ ( $10 \%$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.11-6.85(\mathrm{~m}, 4 \mathrm{H}), 5.26(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=102.0,13.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.31$ $(\mathrm{tt}, J=6.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.50(\mathrm{~m} 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 214.3,162.2$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CF}}=246.2 \mathrm{~Hz}\right), 144.5,139.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.3 \mathrm{~Hz}\right), 137.8,130.7,128.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.9\right.$ Hz ), 127.9, 126.3, 117.6, $115.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.3 \mathrm{~Hz}\right), 53.3,41.7,40.9,39.7,35.1,26.1,20.8$; ${ }^{19}$ F NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-128.24; IR (Neat Film, NaCl) 3027, 2939, 2864, 1703, 1602, 1508, 1453, 1223, 1159, 1126, 905, 841, $750 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) $\mathrm{m} / \mathrm{z}$
calc'd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}: 323.1806$, found 323.1809 ; SFC conditions: $10 \% \mathrm{MeOH}$, $2.5 \mathrm{~mL} / \mathrm{min}$, Chiralpak OJ-H column, $\lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{min})$ : major $=8.59$, minor $=10.15$.
Methyl $\boldsymbol{N}$-(2-(((R)-1-benzyl-2-oxocyclohexyl)methyl)allyl)- $N$-methyl-L-leucinate (8)


Ketone 8 was prepared by the general procedure and isolated by flash column chromatography $\left(\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc}\right.$ in hexanes to $5 \% \mathrm{EtOAc}$ in hexanes) as a colorless oil. $95 \%$ yield. $>25: 1 \mathrm{dr},[\alpha]_{\mathrm{D}}{ }^{25}-20.57\left(c 1.75, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.5(30 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.15-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.05-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.93$ (dd, $J=176.8,13.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.40-$ $2.31(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=15.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{ddq}, J=8.0,4.3,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.81-1.47(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{dd}, J=11.9,6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 214.9,173.3,143.0,138.1,130.9,127.8,126.1,116.5,62.9,61.8,52.6,50.8,41.2$, 39.5, 38.9, 38.4, 36.8, 36.5, 26.9, 24.8, 23.0, 22.2, 20.8; IR (Neat Film, NaCl) 2949, 2868, 1732, 1703, 1641, 1452, 1189, 1152, 1122, 1019, 910, $702 \mathrm{~cm}^{-1}$; HRMS (MM: ESIAPCI+) $m / z$ calc'd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 400.2836$, found 400.2860 .

## Methyl $N$-(2-(((S)-1-benzyl-2-oxocyclohexyl)methyl)allyl)- $N$-methyl-L-leucinate (9)



Ketone 9 was prepared by the general procedure, using ligand $\mathbf{L 3}$ instead of $\mathbf{L 2}$, and isolated by flash column chromatography $\left(\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc}\right.$ in hexanes to $5 \% \mathrm{EtOAc}$ in hexanes) as a colorless oil. $95 \%$ yield. $1: 21 \mathrm{dr},[\alpha]_{\mathrm{D}}{ }^{25}+12.94$ (c $\left.1.25, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.5$ ( $30 \%$ EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16$ (m, 1H), 7.16-7.12 (m, 2H), $5.11(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}$,
$3 \mathrm{H}), 3.29(\mathrm{dd}, J=7.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=197.9,13.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.68-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{dt}, J=13.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.91$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.56(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{dd}, J=12.4,6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.8,173.2,143.2,138.2,131.0,127.8,126.1,116.5,63.3,61.6,52.5$, 50.8, 41.1, 39.5, 39.3, 38.2, 36.7, 36.7, 26.9, 24.9, 22.8, 22.5, 20.8; IR (Neat Film, NaCl) 3027, 2950, 2867, 1734, 1702, 1641, 1602, 1495, 1452, 1192, 1154, 1125, 1030, 909, 749, $702 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) m/z calc'd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 400.2846$, found 400.2855 .

## (R)-5-(3-((S)-1-Benzyl-2-oxocyclohexyl)prop-1-en-2-yl)-2-methylcyclohex-2-en-1-one

 (10)

Ketone 10 was prepared by the general procedure, at $40^{\circ} \mathrm{C}$, and isolated by flash column chromatography $\left(\mathrm{SiO}_{2}, 3 \% \mathrm{EtOAc}\right.$ in hexanes to $15 \% \mathrm{EtOAc}$ in hexanes) as a colorless oil. $87 \%$ combined yield ( 10 and 11). Characterization data reported for major diastereomer. 6:1 dr, $[\alpha]_{\mathrm{D}}{ }^{25}+49.25\left(c 0.25, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.1$ ( $30 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{dq}, J=4.2,1.3$ Hz, 1H), 4.97-4.91 (m, 1H), 4.82 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.03-2.83 (m, 2H), 2.64-2.49 (m, 2 H ), 2.49-2.37 (m, 4H), 2.38-2.09 (m, 3H), 1.85-1.78 (m, 2H), 1.77 (dt, $J=2.6,1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.7,199.8,147.4,144.7$, $137.3,135.3,130.6,128.0,126.5,113.1,52.5,43.6,42.2,41.8,39.5,39.4,35.6,31.9$, 26.7, 20.8, 15.7; IR (Neat Film, NaCl) 2923, 2863, 1702, 1672, 1494, 1450, 1365, 1248, 1109, 901, 750, $703 \mathrm{~cm}^{-1}$; HRMS (MM: ESI-APCI+) m/z calc'd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 359.1982$, found 359.1988 .

## Determination of Enantiomeric Excess and Optical Rotations (Table S2)

| entry | compound | analytic conditions | ee (\%) | polarimetry |
| :---: | :---: | :---: | :---: | :---: |
| 1 |  | GC <br> G-TA, $105^{\circ} \mathrm{C}$, isotherm $\mathrm{t}_{\mathrm{R}}$ ( min ): major 7.80, minor 8.24 | 86 | $\begin{aligned} & {[\alpha]_{\mathrm{b}}{ }^{25}-11.7} \\ & \left(c 0.6, \mathrm{CHCl}_{3}\right) \end{aligned}$ |
| 2 |  | SFC <br> Chiralpak OJ-H, $\lambda=210 \mathrm{~nm}$ $3 \% / \mathrm{PA}^{2} \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$, $\mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ major 5.74 , minor 4.71 | 88 | $\begin{aligned} & {[\alpha]_{\mathrm{b}}{ }^{25}-13.6} \\ & \left(c 1.3, \mathrm{CHCl}_{3}\right) \end{aligned}$ |
| 3 |  | GC <br> G-TA, $110^{\circ} \mathrm{C}$, isotherm <br> $\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ : major 5.039, minor 5.41 | 91 | $\begin{aligned} & {[\alpha]_{\mathrm{D}}{ }^{25}-68.74} \\ & \left(c \mathrm{c} .5, \mathrm{CHCl}_{3}\right) \end{aligned}$ |
| 4 |  | GC <br> G-TA, $120^{\circ} \mathrm{C}$, isotherm <br> $\mathrm{t}_{\mathrm{R}}(\min )$ : major 15.3, minor 22.18 | 89 | $\begin{aligned} & {[\alpha]_{\mathrm{b}}{ }^{25} 10.51} \\ & \left(c 1.6, \mathrm{CHCl}_{3}\right) \end{aligned}$ |
| 5 |  | GC <br> G-TA, $110^{\circ} \mathrm{C}$, isotherm <br> $t_{R}(\min )$ : major 6.45, minor 7.23 | 87 | $\begin{aligned} & {[\alpha]_{\mathrm{D}}{ }^{25}-22.13} \\ & \left(c \mathrm{c} 1.4, \mathrm{CHCl}_{3}\right) \end{aligned}$ |
| 6 |  | HPLC <br> Chiralcel OD-H, $\lambda=220 \mathrm{~nm}$ <br> $1 \%$ IPA/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$ <br> $\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ : major 6.12, minor 7.16 | 92 | $\begin{aligned} & {[\alpha]_{\mathrm{b}}{ }^{25}-65.6} \\ & \left(c 1.0, \mathrm{CHCl}_{3}\right) \end{aligned}$ |
| 7 |  | SFC <br> Chiralpak AD-H, $\lambda=254 \mathrm{~nm}$ $5 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}$, $\mathrm{t}_{\mathrm{R}}(\mathrm{min}):$ major 5.54 , minor 6.23 | 96 | $\begin{aligned} & {[\alpha]_{\mathrm{b}}{ }^{25}-76.5} \\ & \left(c 2.1, \mathrm{CHCl}_{3}\right) \end{aligned}$ |
| 8 |  | HPLC <br> Chiralcel OJ-H, $\lambda=220 \mathrm{~nm}$ $5 \%$ IPA/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$ $\mathrm{t}_{\mathrm{R}}(\mathrm{min})$ : major 5.60 , minor 5.00 | 90 | $\begin{aligned} & {[\alpha]_{\mathrm{b}}{ }^{25}-35.2} \\ & \left(c 1.7, \mathrm{CHCl}_{3}\right) \end{aligned}$ |

Determination of Enantiomeric Excess and Optical Rotations (Table S2 cont.)
entry

## ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra





$\underbrace{}_{220}$











 39 (



60
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{3 h}$.





is

ঢ
























${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound $\mathbf{8}$.


















4k



[^0]:    ${ }^{1}$ Pangborn, A. M.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics, 1996, 15, 1518.

[^1]:    ${ }^{2}$ Igarashi, J.; Kobayashi, Y. Tetrahedron Lett. 2005, 46, 6381.
    ${ }^{3}$ Dai, Y.; Wu, F.; Zang, Z.; You, H.; Gong, H. Chem.-Eur. J. 2012, 18, 808.
    ${ }^{4}$ Hong, A. Y.; Stoltz, B. M. Angew. Chem., Int. Ed. 2012, 51, 9674.
    ${ }^{5}$ Behenna, D. C.; Mohr, J. T.; Sherden, N. H.; Marinescu, S. C.; Harned, A. M.; Tani, K.; Seto, M.; Ma, S.; Novák, Z.; Krout, M. R.; McFadden, R. M.; Roizen, J. L.; Enquist, J. A., Jr.; White, D. E.; Levine, S. R.; Petrova, K. V.; Iwashita, A.; Virgil, S. C.; Stoltz, B. M. Chem. - Eur. J. 2011, 17, 14199.

[^2]:    ${ }^{6}$ Xuan, M.; Paterson, I.; Dalby, S. M. Org. Lett. 2012, 14, 5492.

[^3]:    ${ }^{7}$ Flegelová, Z.; Pátek, M. J. Org. Chem. 1996, 61, 6735.
    ${ }^{8}$ Neuhaus, C. M.; Liniger, M.; Stieger, M.; Altmann, K. -H. Angew. Chem., Int. Ed. 2013, 52, 5866.
    ${ }^{9}$ Sun, C. -S.; Lin, Y. -S.; Hou, D. -R. J. Org. Chem. 2008, 73, 6877.

