Development of (Trimethylsilyl)Ethyl Ester Protected Enolates and Applications in Palladium–Catalyzed Enantioselective Allylic Alkylation: Intermolecular Cross-Coupling of Functionalized Electrophiles

Corey M. Reeves, Douglas C. Behenna and Brian M. Stoltz*

The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 stoltz@caltech.edu

Table of Contents:

Materials and Methods	SI 2
General Procedure for TMSE β -Ketoester Substrate Synthesis	SI 4
Procedure for the Synthesis of Intermediate SI1 and Substrate 3c	SI 5
Spectroscopic Data for TMSE β -Ketoester Substrates	SI 6
General Procedure for Allyl Carbonate Substrate Synthesis	SI 10
Spectroscopic Data for Allyl Carbonate Substrates	SI 11
Procedure for the Synthesis Allyl Carbonate 6	SI 12
Optimization of Reaction Parameters (Table S1)	SI 14
General Procedure for Pd-Catalyzed Allylic Alkylation	SI 15
Spectroscopic Data for Pd-Catalyzed Allylic Alkylation Products	SI 16
Determination of Enantiomeric Excess and Polarimetry Data (Table S2)	SI 20
¹ H NMR and ¹³ C NMR Spectra for New Compounds	SI 22
¹⁹ F NMR Spectra for New Compounds	SI 64
¹ H NMR Spectra for Known Compounds 4a–4g and 4k	SI 67

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon.¹ Reaction progress was monitored by thin-layer chromatography (TLC). TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO₄ staining. Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for flash chromatography. ¹H NMR spectra were recorded on Varian Inova 300 MHz and 500 MHz spectrometers and are reported relative to residual CHCl₃ (δ 7.26 ppm) or C₆HD₅ (δ 7.16 ppm). ¹³C NMR spectra were recorded on a Varian Inova 500 MHz spectrometer (125 MHz) and are reported relative to CHCl₃ (δ 77.16 ppm) or C₆HD₅ (δ 128.06 ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p =pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet, app = apparent. Data for ¹³C NMR are reported in terms of chemical shifts (δ ppm). ¹⁹F NMR spectra were recorded on a Varian Mercury 300 spectrometer at 282 MHz, and are reported relative to the external standard F_3CCO_2H (δ -76.53 ppm). IR spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are reported as: $[\alpha]_D^T$ (concentration in g/100 mL, solvent). Analytical HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralpak (AD-H or AS) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. Analytical chiral GC analysis was performed with an Agilent 6850 GC

¹ Pangborn, A. M.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics, **1996**, 15, 1518.

utilizing a GTA (30 m x 0.25 mm) column (1.0 mL/min carrier gas flow). High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+).

Reagents were purchased from Sigma-Aldrich, Gelest, Strem, or Alfa Aesar and used as received unless otherwise stated. 2-(trimethylsilyl)ethyl chloroformate (2) was prepared according to a known procedure.² Allyl carbonates **5** and **7** were prepared from methyl chloroformate and the corresponding allyl alcohols by adaptation of a known procedure.³ β -Ketoesters **3a–3h** were prepared by adaptation of procedures by Stoltz and co-workers.^{4,5} Data reported herein is for new compounds only.

List of Abbreviations: ee – enantiomeric excess, dr – diastereomeric ratio, HPLC – highperformance liquid chromatography, SFC – supercritical fluid chromatography, GC – gas chromatograph, TBAT – tetrabutylammonium triphenyldifluorosilicate, TLC – thin-layer chromatography, THF – tetrahydrofuran, IPA – isopropanol, dba – dibenzylideneacetone, EtOAc – ethyl acetate, LiHMDS – lithium hexamethyldisilazide, Selectfluor – 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate), DCM – dichloromethane.

² Igarashi, J.; Kobayashi, Y. Tetrahedron Lett. 2005, 46, 6381.

³ Dai, Y.; Wu, F.; Zang, Z.; You, H.; Gong, H. Chem.-Eur. J. 2012, 18, 808.

⁴ Hong, A. Y.; Stoltz, B. M. Angew. Chem., Int. Ed. 2012, 51, 9674.

⁵ Behenna, D. C.; Mohr, J. T.; Sherden, N. H.; Marinescu, S. C.; Harned, A. M.; Tani, K.; Seto, M.; Ma, S.; Novák, Z.; Krout, M. R.; McFadden, R. M.; Roizen, J. L.; Enquist, J. A., Jr.; White, D. E.; Levine, S. R.;

Petrova, K. V.; Iwashita, A.; Virgil, S. C.; Stoltz, B. M. Chem. - Eur. J. 2011, 17, 14199.

General Procedure for TMSE β-Ketoester Substrate Synthesis

2-(Trimethylsilyl)ethyl 1-methyl-2-oxocyclohexane-1-carboxylate (3a). A flame-dried 1L round bottom flask was charged with 28.02 g (152.83 mmol, 2.5 equiv) of LiHMDS and a magnetic stirring bar in a nitrogen filled glove box. The flask was sealed, removed from the glovebox, fitted with a N_2 line, and suspended in a dry ice/acetone bath. 300 mL of THF was added slowly to the flask and allowed to stir until the LiHMDS had completely dissolved. 6.00 g (61.13 mmol, 1.0 equiv) of cyclohexanone 1 in 130 mL of THF was added via cannula over 30 min, and the flask was removed from the cooling bath and allowed to warm to 23 °C while continuing to stir. After 30 min, the flask was suspended in a dry ice/acetone bath and 12.15 g (67.24 mmol, 1.1 equiv) of chloroformate 2 in 130 mL of THF was added over 30 min via cannula. This mixture was allowed to warm to 23 °C and stirred for 6 h. The flask was then suspended in a water/ice bath and 21.69 g (152.83 mmol, 2.5 equiv) of methyl iodide was added dropwise. This mixture was allowed to warm to 23 °C and stirred for 6 h, at which time an additional 21.69 g (152.83 mmol, 2.5 equiv) of methyl iodide was added dropwise. The mixture was then stirred at 23 °C until full consumption of starting material and acylated intermediate was observed by TLC analysis. 300 mL of saturated aqueous NH₄Cl was then added slowly to the mixture and stirring continued for 2 h. The mixture was then extracted with EtOAc (100 mL x 3), the collected organic fractions washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The crude residue was purified by flash column chromatography (SiO₂, hexanes to 3% EtOAc in hexanes) to give 11.05 g (43.08 mmol) of ketoester 3a as a pale yellow oil. 70.1% yield. $R_f = 0.3$ (10% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 4.29–4.12 (m, 2H), 2.57–2.37 (m, 3H), 2.05– 1.95 (m, 1H), 1.76–1.57 (m, 3H), 1.48–1.37 (m, 1H), 1.26 (s, 3H), 1.01–0.92 (m, 2H), 0.02 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 208.3, 173.2, 63.6, 57.1, 40.7, 38.2, 27.5, 22.6, 21.2, 17.3, -1.6; IR (Neat Film, NaCl) 3438, 2952, 2897, 2866, 1717, 1452, 1378,

1336, 1251, 1215, 1121, 1084, 1061, 1041, 938, 861, 834, 763 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₃H₂₅O₃Si [M + H]⁺: 257.1567; found 257.1556.

Procedures for the Syntheses of TMSE β -Ketoester Intermediate SI1 and Ketoester 3c

2-(Trimethylsilyl)ethyl 1-methyl-2-oxocyclohexane-1-carboxylate (SI1). A flamedried 500 mL round bottom flask was charged with 4.67 g (25.47 mmol, 1.3 equiv) of LiHMDS and a magnetic stirring bar in a nitrogen filled glove box. The flask was sealed, removed from the glovebox, fitted with a N2 line, and suspended in a dry ice/acetone bath. 100 mL of THF was added slowly to the flask and allowed to stir until the LiHMDS had been completely dissolved. 2.00 g (20.38 mmol, 1.0 equiv) of cyclohexanone 1 in 50 mL of THF was added via cannula over 30 min, and the flask was removed from the cooling bath and allowed to warm to 23 °C while continuing to stir. After 30 min, the flask was suspended in a dry ice/acetone bath and 4.10 g (22.42 mmol, 1.1 equiv) of chloroformate 2 in 50 mL of THF was added over 30 min via cannula. This mixture was allowed to warm to 23 °C and stirred until full consumption of starting material was observed (ca. 6 h). 100 mL of saturated aqueous NH₄Cl was then added slowly and the mixture stirred for 20 min before being extraced with EtOAc (30 mL x 3). The collected organic fractions were washed with brine, dried over MgSO₄, filtered and concentrated in *vacuo*. The crude residue was purified by flash column chromatography (SiO₂, hexanes to 2% EtOAc in hexanes), to give 3.20 g (43.08 mmol) of ketoester SI1 as a colorless oil. 64.6% yield. $R_f = 0.5$ (20% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 12.29 (s, 1H), 4.27–4.21 (m, 2H), 2.23 (dtt, J = 24.7, 6.3, 1.6 Hz, 4H), 1.76–1.51 (m, 4H), 1.17– 0.86 (m, 2H), 0.04 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 171.9, 97.8, 62.4, 29.1, 22.5, 22.4, 21.9, 17.3, -1.5; IR (Neat Film, NaCl) 2952, 2899, 2860, 1742, 1718, 1654, 1618, 1453, 1398, 1360, 1297, 1258, 1219, 1175, 1079, 1060, 936, 859, 837 cm⁻¹; HRMS (MM: ESI-APCI–) m/z calc'd for C₁₂H₂₁O₃Si [M – H]⁻: 241.1265; found 241.1270.

2-(Trimethylsilyl)ethyl 1-fluoro-2-oxocyclohexane-1-carboxylate (3c). A flame dried 100 mL round bottom flask was charged with a magnetic stirring bar, 0.35 g SI1 (1.44 mmol, 1.0 equiv), 5 mL of acetonitrile and cooled to 0 °C. To this mixture was added 0.027 g TiCl₄ (0.144 mmol, 0.10 equiv) dropwise over 15 minutes. To this stirring solution was added 0.64 g Selectfluor (1.73 mmol, 1.2 equiv) in 20 mL of acetonitrile over 25 minutes. The mixture was then allowed to warm to 23 °C and stirred for 8 h. A 1:1 mixture of H₂O/EtOAc (20 mL) was added, and the mixture was extracted with EtOAc (20 mL x 3), dried over MgSO₄ and adsorbed onto 1 g SiO₂ by concentration in *vacuo*. The crude product was isolated by flash column chromatography (SiO₂, 3% Et₂O in pentane to 12% Et₂O in pentane) to give 0.29 g of **3c** as a colorless oil. 79.0% yield. R_f = 0.2 (20% EtOAc in hexanes); ¹H NMR (300 MHz, CDCl₃) δ 4.41–4.26 (m, 2H), 2.84– 2.36 (m, 3H), 2.21–2.04 (m, 1H), 2.00–1.79 (m, 4H), 1.15–0.97 (m, 2H), 0.04 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 202.0 (d, ${}^{4}J_{CF} = 19.5$ Hz), 167.0 (d, ${}^{2}J_{CF} = 24.6$ Hz), 96.4 (d, ${}^{1}J_{CF} = 197.0 \text{ Hz}$, 65.0, 39.7, 36.0 (d, ${}^{3}J_{CF} = 21.7 \text{ Hz}$), 26.6, 21.0 (d, ${}^{5}J_{CF} = 6.0 \text{ Hz}$), 17.3, -1.6; ¹⁹F NMR (282 MHz, CDCl₃) δ –173.70; IR (Neat Film, NaCl) 2953, 1732, 1452, 1287, 1251, 1223, 1157, 1093, 1051, 860, 838 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for $C_{12}H_{21}FO_3SiNa [M + Na]^+$: 283.1136; found 283.1145.

Spectroscopic Data for TMSE β-Ketoester Substrates

2-(Trimethylsilyl)ethyl 1-benzyl-2-oxocyclohexane-1-carboxylate (3b)

Ketoester **3b** was prepared by the general procedure and was isolated by flash column chromatography (SiO₂, hexanes to 5% EtOAc in hexanes) as a colorless oil. 79.4% yield. $R_f = 0.3$ (20% EtOAc in hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.48–7.04 (m, 5H), 4.16 (td, J = 9.8, 7.1 Hz, 2H), 3.13 (dd, J = 125.3, 13.7 Hz, 2H), 2.60–2.35 (m, 2H), 2.05 (ddd, J = 12.4, 6.1, 3.0 Hz, 1H), 1.83–1.59 (m, 4H), 1.57–1.40 (m, 1H), 0.92 (ddd, J = 8.9, 7.2, 1.0 Hz, 2H), 0.07 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 208.9, 172.8, 138.3, 132.0, 129.5, 128.2, 65.2, 63.8, 42.9, 42.0, 37.5, 29.2, 24.1, 18.8, 0.0; IR (Neat Film, NaCl) 3029, 2952, 2856, 1713, 1496, 1453, 1439, 1250, 1221, 1177, 1132, 1086, 1053, 988, 932, 860, 838, 765, 744 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₉H₂₉O₃Si [M + H]⁺: 333.1880; found 333.1863.

2-(Trimethylsilyl)ethyl 1-(3-methoxy-3-oxopropyl)-2-oxocyclohexane-1-carboxylate (3d)

Ketoester **3d** was prepared according to the general procedure, using methyl acrylate in place of methyl iodide, and isolated by flash column chromatography (SiO₂, 5% EtOAc in hexanes to 10% EtOAc in hexanes) as a colorless oil. 81.2% yield. $R_f = 0.3$ (25% EtOAc in hexanes); ¹H NMR (300 MHz, CDCl₃) δ 4.28–4.08 (m, 2H), 3.62 (s, 3H), 2.41 (dddd, J = 14.6, 12.9, 6.5, 2.7 Hz, 4H), 2.27–2.06 (m, 2H), 2.02–1.92 (m, 1H), 1.92–1.84 (m, 1H), 1.76–1.51 (m, 3H), 1.40 (ddd, J = 13.5, 12.1, 4.2 Hz, 1H), 1.03–0.91 (m, 2H), 0.00 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 207.6, 173.5, 171.8, 63.9, 60.0, 51.6, 41.0, 36.3, 29.7, 29.4, 27.5, 22.5, 17.4, -1.6; IR (Neat Film, NaCl) 3432, 2952, 2899, 2866, 1740, 1713, 1437, 1377, 1340, 1308, 1250, 1175, 1137, 1093, 1075, 1062, 1040, 943, 861, 838, 763, 695 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₆H₂₈O₅SiNa [M + Na]⁺: 351.1598; found 351.1602.

2-(Trimethylsilyl)ethyl 1-methyl-2-oxocycloheptane-1-carboxylate (3e)

Ketoester **3e** was prepared by the general procedure and purified by flash column chromatography (SiO₂, hexanes to 5% EtOAc in hexanes) as a colorless oil. 78% yield. $R_f = 0.4$ (20% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 4.25–4.14 (m, 2H), 2.78–2.68 (m, 1H), 2.49 (ddd, J = 12.2, 8.6, 2.5 Hz, 1H), 2.19–2.10 (m, 1H), 1.88–1.71 (m, 3H), 1.71–1.48 (m, 3H), 1.43–1.34 (m, 1H), 1.33 (s, 3H), 1.06–0.94 (m, 2H), 0.03 (s, 9H);¹³C NMR (126 MHz, CDCl₃) δ 210.5, 173.7, 63.6, 58.8, 42.0, 35.4, 30.1, 25.8, 24.7, 21.5, 17.3, -1.6; IR (Neat Film, NaCl) 2949, 2861, 1736, 1710, 1458, 1378, 1250, 1232, 1152, 1105, 1062, 942, 860, 838 cm⁻¹; HRMS (EI+) *m/z* calc'd for C₁₄H₂₆O₃Si [M + Na]⁺: 293.1543; found 293.1543.

2-(Trimethylsilyl)ethyl 4-isobutyl-1-methyl-2-oxocyclohept-3-ene-1-carboxylate (3f)

Vinylogous ester **3f** was prepared by the general procedure, starting from 3isobutoxycyclohept-2-en-1-one, and purified by flash column chromatography (SiO₂, hexanes to 10% EtOAc in hexanes) as a colorless oil. 85% yield. $R_f = 0.3$ (20% EtOAc in hexanes); ¹H NMR (500 MHz, C₆D₆) δ 5.66–5.53 (m, 1H), 4.32–4.07 (m, 2H), 3.16–3.00 (m, 2H), 2.57 (dddd, J = 17.7, 10.1, 3.9, 1.2 Hz, 1H), 2.50–2.37 (m, 1H), 2.20 (ddd, J =17.7, 7.0, 3.6 Hz, 1H), 1.77–1.67 (m, 2H), 1.66 (s, 3H), 1.59–1.41 (m, 2H), 0.88 (ddd, J =10.0, 7.0, 2.1 Hz, 2H), 0.71 (dd, J = 6.7, 4.2 Hz, 6H), -0.13 (s, 9H); ¹³C NMR (126 MHz, C₆D₆) δ 197.1, 173.9, 171.7, 105.6, 74.0, 62.9, 58.9, 33.9, 33.7, 27.6, 24.1, 18.7, 18.7, 17.0, -2.1; IR (Neat Film, NaCl) 2951, 1684, 1452, 1386, 1327, 1281, 1251, 1139, 1053, 859, 839, 718, 693, 658 cm⁻¹; HRMS (EI+) *m*/*z* calc'd for C₂₈H₃₃O₃Si [M + H]⁺: 341.2143; found 341.2139.

2-(Trimethylsilyl)ethyl 1-benzoyl-3-methyl-2-oxopiperidine-3-carboxylate (3g)

Amide ester **3g** was prepared by the general procedure, starting from *N*-benzoyl-2piperidone, and purified by flash column chromatography (SiO₂, 5% EtOAc in hexanes to 25% EtOAc in hexanes) as a colorless oil. 89% yield. $R_f = 0.3$ (35% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.76–7.72 (m, 2H), 7.47 (ddt, J = 8.0, 6.9, 1.3Hz, 1H), 7.41–7.36 (m, 2H), 4.38–4.24 (m, 2H), 3.91–3.82 (m, 1H), 3.78 (dtd, J = 12.9,5.2, 1.4 Hz, 1H), 2.47 (dddd, J = 13.8, 5.7, 4.3, 1.4 Hz, 1H), 2.06–1.91 (m, 2H), 1.85– 1.74 (m, 1H), 1.46 (s, 3H), 1.14–1.05 (m, 2H), 0.07 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 175.0, 173.1, 173.0, 135.9, 131.6, 129.0 128.0, 64.4, 52.9, 46.8, 33.7, 22.4, 20.2, 17.5, -1.5; IR (Neat Film, NaCl) 3062, 2953, 2896, 1726, 1703, 1683, 1449, 1389, 1277, 1251, 1192, 1140, 1062, 932, 859, 838, 723, 694 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₉H₂₇NO₄SiNa [M + Na]⁺: 384.1602; found 384.1611.

2-(Trimethylsilyl)ethyl 1-benzoyl-3-methyl-2-oxoazepane-3-carboxylate (3h)

Amide ester **3h** was prepared by the general procedure, starting from 1-benzoylazepan-2one, and purified by flash column chromatography (SiO₂, 5% EtOAc in hexanes to 25% EtOAc in hexanes) as a colorless oil. 77% yield. $R_f = 0.3$ (35% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.72–7.68 (m, 2H), 7.50–7.45 (m, 1H), 7.39 (ddt, J = 8.2, 6.6, 1.1 Hz, 2H), 4.47–4.39 (m, 1H), 4.38–4.31 (m, 2H), 3.15 (ddd, J = 15.7, 11.2, 1.2 Hz, 1H), 2.22 (dtd, J = 14.8, 3.6, 1.8 Hz, 1H), 2.01–1.90 (m, 2H), 1.89–1.77 (m, 1H), 1.61 (dddt, J = 20.7, 12.0, 5.0, 3.2 Hz, 3H), 1.44 (s, 3H), 1.14–1.06 (m, 2H), 0.08 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 175.6, 174.9, 173.1, 136.4, 131.5, 128.1, 127.9, 64.3, 55.0, 44.0, 34.4, 27.9, 26.9, 25.0, 17.5, -1.5; IR (Neat Film, NaCl) 2956, 1729, 1661, 1614, 1455, 1383, 1249, 1169, 1115, 860, 838 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₀H₂₉NO₄SiNa [M + Na]⁺: 398.1758; found 398.1775.

General Procedure for Allyl Carbonate Substrate Syntheses

2-Chloroallyl methyl carbonate (5j). To a flame-dried 50 mL round bottom flask charged with a magnetic stirring bar, 1.00 g 2-chloroallyl alcohol (**SI2**) (10.8 mmol, 1.0 equiv), 2.56 g of pyridine (32.4 mmol, 3.0 equiv), 0.016 g of dimethylaminopyridine (0.14 mmol, 0.013 equiv) and 22 mL of DCM at 0 °C, was added 3.06 g of methyl chloroformate (32.43 mmol, 3 equiv), dropwise over 10 min. The solution was allowed to warm to 23 °C and stirred for 12 h. The mixture was then diluted with 40 mL of DCM, washed consecutively with 50 mL H₂O and 50 mL brine before being dried over MgSO₄ and directly subjected to flash column chromatography (SiO₂, pentane to 5% Et₂O in pentane). 1.23 g of 2-Chloroallyl methyl carbonate was isolated as a colorless oil. 75.6% yield. $R_f = 0.6$ (20% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 5.49 (dt, J = 2.0, 1.2 Hz, 1H), 5.41 (dt, J = 1.8, 0.9 Hz, 1H), 4.68–4.67 (m, 2H), 3.80 (d, J = 1.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.1, 135.2, 115.2, 69.0, 55.1; IR (Neat Film, NaCl) 3008, 2959, 2255, 1752, 1639, 1444, 1383, 1358, 1265, 1182, 1116, 974, 908, 790, 745 cm⁻¹; HRMS (MM: ESI-APCI+) *m*/*z* calc'd for C₃H₈ClO₃ [M + H]⁺: 151.0156; found 151.0150.

Spectroscopic Data for Allyl Carbonate Substrates

2-(4-Fluorophenyl)allyl methyl carbonate (5l) was prepared by the general procedure from 2-(4-fluorophenyl)allyl alcohol and isolated as a colorless oil by flash column chromatography (SiO₂, pentane to 5% Et₂O in pentane). 87% yield. $R_f = 0.4$ (20% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.36 (m, 2H), 7.09–6.99 (m, 2H), 5.51 (s, 1H), 5.39 (tt, J = 1.2, 0.5 Hz, 1H), 5.00 (dd, J = 1.3, 0.6 Hz, 2H), 3.79 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.65 (d, ¹ $J_{CF} = 247.0$ Hz), 155.54, 141.1, 133.85, 127.74 (d, ³ $J_{CF} = 7.8$ Hz), 115.85 (d, ⁴ $J_{CF} = 1.4$ Hz), 115.41 (d, ² $J_{CF} = 21.9$ Hz), 69.09, 54.89; ¹⁹F NMR (282 MHz, CDCl₃) δ –126.95; IR (Neat Film, NaCl) 3007, 2959, 1893, 1750, 1634, 1603, 1511, 1447, 1372, 1260, 1164, 1102, 969, 918, 839, 791, 742 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₁H₁₂FO₃ [M + H]⁺: 211.0765; found 211.0772.

(R)-Methyl (2-(4-methyl-5-oxocyclohex-3-en-1-yl)allyl) carbonate (7)

Enone carbonate 7 was prepared by the general method from known allylic alcohol (*R*)-5-(3-hydroxyprop-1-en-2-yl)-2-methylcyclohex-2-en-1-one (i.e. (*R*)-10-hydroxy carvone)⁶ and isolated as a colorless oil by flash column chromatography (SiO₂, 5% EtOAc in hexanes to 20% EtOAc in hexanes). 91% yield. $R_f = 0.2$ (20% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 6.74 (ddd, J = 5.9, 2.7, 1.4 Hz, 1H), 5.22 (dt, J = 1.3, 0.7 Hz, 1H), 5.07 (dd, J = 1.4, 0.7 Hz, 1H), 4.64 (ddt, J = 3.8, 1.2, 0.5 Hz, 2H), 3.79 (s, 3H),

⁶ Xuan, M.; Paterson, I.; Dalby, S. M. Org. Lett. **2012**, 14, 5492.

2.97–2.74 (m, 1H), 2.63 (ddd, J = 16.1, 3.8, 1.6 Hz, 1H), 2.52 (dddt, J = 18.2, 6.0, 4.5, 1.5 Hz, 1H), 2.39 (dd, J = 16.1, 13.2 Hz, 1H), 2.31 (ddt, J = 18.2, 10.8, 2.5 Hz, 1H), 1.78 (dt, J = 2.6, 1.3 Hz, 3H);¹³C NMR (126 MHz, CDCl₃) δ 198.9, 155.5, 144.7, 144.0, 135.6, 114.3, 69.1, 54.9, 42.9, 38.2, 31.3, 15.7; IR (Neat Film, NaCl) 2958, 2928, 2893, 1750, 1671, 1444, 1364, 1266, 1107, 984, 954, 913, 791 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₂H₁₇O₄ [M + H]⁺: 225.1121; found 225.1118.

Procedure for the Synthesis Allyl Carbonate 6

Methyl *N*-(2-(((methoxycarbonyl)oxy)methyl)allyl)-*L*-leucinate (SI5). Known hydroxy carbonate $SI3^7$ was prepared by the general method. Following the procedure of Altmann and co-workers,⁸ 0.77 g of **SI3** (5.27 mmol, 1.0 equiv) was added to flame-dried round bottom flask charged with a magnetic stirring bar and 0.66 mL of acetonitrile. The solution was cooled to 0 °C and 1.80 g of triphenylphosphine (6.83 mmol, 1.3 equiv) and 0.66 mL of carbontetrachloride (6.85 mmol, 1.3 equiv) were added sequentially. The resulting slurry was allowed to warm to 23 °C and stirred for 2 h before being subjected directly to flash column chromatography. The resulting crude oil, SI4 was determined to be ca. 95% pure by ¹H NMR analysis and used without further purification (yield not determined). Following a known procedure, ⁹0.47 g of crude allylic chloride intermediate SI4 (2.855 mmol, 1.5 equiv) was combined with 0.28 g of NaI (1.90 mmol, 1.0 equiv), 0.346 g of (L)-leucine methyl ester hydrochloride (1.90 mmol, 1.0 equiv), 0.061 g of tetrabutylammonium bromide (0.19 mmol, 0.1 equiv), 1.01 g Na₂CO₃ (9.52 mmol, 5 equiv) and 20 mL acetonitrile in a 50 mL round bottom flask equipped with a

⁷ Flegelová, Z.; Pátek, M. J. Org. Chem. **1996**, 61, 6735.

⁸ Neuhaus, C. M.; Liniger, M.; Stieger, M.; Altmann, K. -H. Angew. Chem., Int. Ed. 2013, 52, 5866.

⁹ Sun, C. -S.; Lin, Y. -S.; Hou, D. -R. J. Org. Chem. **2008**, 73, 6877.

magnetic stirring bar. The flask was fitted with a reflux condenser and the mixture stirred at 82 °C for 14 h. The vessel was then cooled to 23 °C and the mixture diluted with 50 mL Et₂O, washed with H₂O (20 mL x 2), dried over MgSO₄ and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (SiO₂, 5% EtOAc in hexanes to 15% EtOAc in hexanes) to give 0.52 g of amino ester **SI5** as a colorless oil. 66.1% yield from crude **SI4**. $R_f = 0.2$ (40% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 5.23–5.08 (m, 2H), 4.66 (t, J = 1.0 Hz, 2H), 3.79 (s, 3H), 3.71 (s, 3H), 3.25 (t, J = 7.3 Hz, 1H), 3.19 (dd, J = 80.0, 13.8 Hz, 1H), 1.74 (dq, J = 13.5, 6.7 Hz, 1H), 1.51 (br s, 2H), 1.43 (t, J = 7.2 Hz, 2H), 0.89 (dd, J = 9.2, 6.6 Hz, 6H);¹³C NMR (126 MHz, CDCl₃) δ 176.5, 155.7, 141.7, 115.0, 68.9, 59.1, 54.9, 51.7, 50.4, 42.9, 24.9, 22.9, 22.2; IR (Neat Film, NaCl) 2956, 2868, 1750, 1737, 1443, 1368, 1267, 1196, 1151, 980, 943, 792 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₃H₂₄NO₅ [M + H]⁺: 274.1649; found 274.1659.

Methyl *N*-(2-(((methoxycarbonyl)oxy)methyl)allyl)-*N*-methyl-*L*-leucinate (6). To a 10 mL round bottom flask containing a magnetic stirring bar and a solution of 0.37 g SI5 (1.35 mmol, 1.0 equiv) in 4 mL of methanol was added 0.056 g of formaldehyde (1.88 mmol, 1.4 equiv) as a 37% solution in H₂O. The mixture was stirred at 23 °C for 12 h at which point 0.11 g sodium cyanoborohydride was carefully added. After an additional 12 h of stirring, the mixture was diluted with H₂O (5 mL), extracted with EtOAc (5 mL x 3), dried over MgSO₄, concentrated *in vacuo* and subjected directly to purification by flash column chromatography (SiO₂, 10% EtOAc in hexanes to 25% EtOAc in hexanes) to yield 0.25 g of carbonate **6** as a colorless oil. 63.8% yield. $R_f = 0.5$ (33% EtOAc in hexanes); ¹H NMR (300 MHz, CDCl₃) δ 5.30–5.07 (m, 2H), 4.63 (t, J = 1.0 Hz, 2H), 3.79 (s, 3H), 3.69 (s, 3H), 3.34 (dd, J = 8.3, 7.0 Hz, 1H), 3.18 (dd, J = 75.0, 13.8 Hz, 2H), 2.22 (s, 3H), 1.73–1.61 (m, 1H), 1.61–1.46 (m, 2H), 0.90 (dd, J = 17.5, 6.6 Hz, 6H);¹³C NMR (126 MHz, CDCl₃) δ 173.3, 155.6, 141.2, 115.4, 68.5, 63.8, 57.3, 54.7, 50.9, 38.4, 37.0,

24.7, 22.9, 21.9; IR (Neat Film, NaCl) 2955, 2870, 2803, 1751, 1658, 1444, 1385, 1368, 1269, 1193, 1157, 1126, 1072, 978, 945, 792 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₄H₂₆NO₅ [M + H]⁺: 288.1805; found 288.1795.

Optimization of Reaction Parameters (Table S1)

		(<i>S</i>)-t-Bu	(dba) ₃] (5 mol%) I-PHOX(12.5 mol	») >>	Me	
TMS 3a			TBAT (1.25 equiv), Solvent, 40 °C		4a	
Entry	Х	Equiv Allyl	Sovent	ee (%) ^a	Yield (%) ^b	
1	Br	1.0	toluene	83	55	
2	OTs	1.0	1,4-dioxane	77	43	
3	OMs	1.0	1,4-dioxane	84	45	
4	OAc	1.0	1,4-dioxane	82	15	
5	OCO ₂ Allyl	1.0	1,4-dioxane	83	78	
6	OCO ₂ Me	1.0	1,4-dioxane	84	78	
7	OCO ₂ Me	0.75	1,4-dioxane	82	51	
8	OCO ₂ Me	1.5	1,4-dioxane	82	74	
9	OCO ₂ Me	2.0	1,4-dioxane	84	73	
10	OCO ₂ Me	1.1	toluene	82	33	
11	OCO ₂ Me	1.1	МТВЕ	84	65	
12	OCO ₂ Me	1.1	THF	83	83	
13	OCO ₂ Me	1.1	tol/hex	93	45	
14°	OCO ₂ Me	1.1	THF	86	81	

% ee determined by chiral GC analysis of the crude reaction mixture. (b) Yield determined by comparison to tridecane internal standard. (c) Reaction performed at 25 °C.

General Procedure for Optimization Experiments: Inside a nitrogen filled glovebox, an oven-dried 0.5 dram vial was charged with a magnetic stirring bar, 0.0046 g $[Pd_2(dba)_3]$ (0.005 mmol, 0.05 equiv), 0.0047 g (*S*)-*t*-Bu-PHOX (0.0125 mmol, 0.125 equiv), 0.067 g TBAT (0.125 mmol, 1.25 equiv), 0.018 g tridecane (0.10 mmol, 1.0 equiv) and 3.0 mL THF. This mixture was stirred at 25 °C for 30 min at which time 0.026 g of β -ketoester **3a** (0.10 mmol, 1.0 equiv) and 0.013 g of allyl methyl carbonate (0.11

mmol, 1.1 equiv) were added, neat. The vial was capped and stirring continued for 12 h at which time the vial was removed from the glovebox, uncapped and the magnetic stirring bar removed. The reaction mixture was diluted with hexanes (2 mL) and passed through a pipette plug (SiO₂) with 4 mL of hexanes followed by 4 mL of Et₂O. From the combined organic fractions, a sample was prepared and the mixture analyzed by GC.

General Procedure for Pd-Catalyzed Allylic Alkylation

Please note that the absolute configuration for all products **4** has been inferred by analogy to previous studies. For isolated yields, see the main text Table 2 and Figure 2. For respective GC, HPLC or SFC conditions, as well as optical rotation data, please refer to Table S2.

(*S*)-2-benzyl-2-(2-methylallyl)cyclohexan-1-one (4i). Inside a nitrogen filled glovebox, an oven-dried 20 mL scintillation vial was charged with a magnetic stirring bar, 0.011 g $[Pd_2(dba)_3]$ (0.012 mmol, 0.05 equiv), 0.011 g (*S*)-*t*-Bu-PHOX (0.029 mmol, 0.125 equiv), 0.15 g TBAT (0.28 mmol, 1.25 equiv) and 7 mL THF. This mixture was stirred at 25 °C for 30 min at which time 0.075 g of β-ketoester **3a** (0.23 mmol, 1.0 equiv) and 0.033 g of allyl methyl carbonate (0.25 mmol, 1.1 equiv) were added, neat. The vial was capped and stirring continued for 16 h at which time the vial was removed from the glovebox, uncapped and magnetic stirring bar removed. The reaction mixture was concentrated *in vacuo*. The resulting crude semisolid was purified by flash column chromatography (SiO₂, hexanes to 2% EtOAc in hexanes) to give ketone **4i** as a colorless oil. 89% yield. 89% ee, $[\alpha]_D^{25}$ –20.1 (*c* 1.2, CHCl₃); $R_f = 0.3$ (10% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.27–7.23 (m, 2H), 7.22–7.17 (m, 1H), 7.15–7.11 (m, 2H), 4.86 (dd, *J* = 2.0, 1.4 Hz, 1H), 4.69 (dd, *J* = 2.0, 1.0 Hz, 1H), 2.93 (dd, *J* = 114.0, 13.7 Hz, 2H), 2.60–2.49 (m, 1H), 2.44–2.38 (m, 1H), 2.37 (s, 3H), 1.92–1.84 (m, 1H), 1.81– 1.69 (m, 2H), 1.67 (dd, J = 1.5, 0.8 Hz, 3H), 1.64–1.56 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 214.8, 142.2, 137.8, 130.9, 127.9, 126.2, 114.7, 52.5, 43.2, 41.7, 39.7, 35.7, 26.7, 24.6, 20.8; IR (Neat Film, NaCl) 3026, 2935, 2863, 1700, 1448, 1123, 893, 746 cm⁻¹; HRMS (MM: ESI-APCI+) *m*/*z* calc'd for C₁₇H₂₃O [M + H]⁺: 243.1743, found 243.1745; SFC conditions: 1% MeOH, 2.5 mL/min, Chiralpak OD–H column, $\lambda = 210$ nm, t_R (min): major = 5.79, minor = 6.48.

Spectroscopic Data for Pd-Catalyzed Allylic Alkylation Products

(S)-3-Allyl-1-benzoyl-3-methylazepan-2-one (4h)

Lactam **4h** was prepared by the general procedure and isolated by flash column chromatography (SiO₂, 5% EtOAc in hexanes to 25% EtOAc in hexanes) as a colorless oil. 91% yield. 90% ee, $[\alpha]_D^{25}$ –35.2 (*c* 1.7, CHCl₃); $R_f = 0.2$ (30% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.52–7.48 (m, 2H), 7.47–7.42 (m, 1H), 7.39–7.35 (m, 2H), 5.72 (dddd, J = 17.1, 10.3, 7.6, 7.1 Hz, 1H), 5.13–5.06 (m, 2H), 4.13–4.05 (m, 1H), 3.91 (ddd, J = 14.8, 8.8, 2.0 Hz, 1H), 2.40 (dddt, J = 71.6, 13.7, 7.6, 1.2 Hz, 2H), 1.91–1.78 (m, 4H), 1.78–1.67 (m, 2H), 1.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 182.5, 174.7, 137.0, 133.7, 131.0, 128.1, 127.4, 118.7, 47.7, 44.7, 42.6, 35.1, 28.0, 24.9, 23.3; IR (Neat Film, NaCl) 3072, 2830, 1676, 1448, 1279, 1244, 1224, 1148, 1117, 1096, 971, 951, 919, 790, 726, 695 cm⁻¹; HRMS (MM: ESI-APCI+) *m*/*z* calc'd for C₁₇H₂₁NO₂ [M + H]⁺: 272.1645, found 272.1660; HPLC conditions: 5% IPA, 1.0 mL/min, Chiralpak OJ–H column, $\lambda = 220$ nm, t_R (min): major = 5.60, minor = 5.00.

(*R*)-2-Benzyl-2-(2-chloroallyl)cyclohexan-1-one (4j)

Ketone **4j** was prepared according to the general procedure and isolated by flash column chromatography (SiO₂, 5% EtOAc in hexanes to 10% EtOAc in hexanes) as a colorless oil. 72% yield. 96% ee, $[\alpha]_{D}^{25}$ –7.0 (*c* 1.4, CHCl₃); R_f = 0.4 (10% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.16 (m, 2H), 7.20–7.08 (m, 3H), 5.30 (d, *J* = 1.3 Hz, 1H), 5.17 (t, *J* = 1.2 Hz, 1H), 2.99 (dd, *J* = 40.6, 14.1 Hz, 2H), 2.69 (dd, *J* = 56.9, 15.6 Hz, 2H), 2.66–2.34 (m, 2H), 1.97–1.63 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 213.5, 137.0, 130.7, 128.1, 127.7, 126.5, 116.6, 52.5, 43.9, 41.3, 39.7, 35.1, 26.5, 20.9; IR (Neat Film, NaCl) 2939, 2858, 1705, 1631, 1494, 1452, 1429, 1118, 1088, 889, 701 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₆H₂₀ClO [M + H]⁺: 263.1197, found 263.1199; SFC conditions: 3% MeOH, 2.5 mL/min, Chiralpak OD-H column, λ = 210 nm, t_R (min): major = 6.09, minor = 7.04.

(R)-2-Benzyl-2-(2-(4-fluorophenyl)allyl)cyclohexan-1-one (4l)

Ketone **4I** was prepared according to the general procedure, and isolated by flash column chromatography (SiO₂, 1% EtOAc in hexanes to 3% EtOAc in hexanes) as a colorless oil. 91% yield. 95% ee, $[\alpha]_D^{25}$ –9.9 (*c* 2.0, CHCl₃); $R_f = 0.3$ (10% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.12 (m, 5H), 7.11–6.85 (m, 4H), 5.26 (d, *J* = 1.3 Hz, 1H), 5.09 (d, *J* = 1.5 Hz, 1H), 2.86 (dd, *J* = 102.0, 13.7 Hz, 2H), 2.87–2.73 (m, 2H), 2.31 (tt, *J* = 6.2, 2.5 Hz, 2H), 1.83–1.50 (m 6H) ; ¹³C NMR (126 MHz, CDCl₃) δ 214.3 , 162.2 (d, ¹*J*_{CF} = 246.2 Hz), 144.5, 139.2 (d, ⁴*J*_{CF} = 3.3 Hz), 137.8, 130.7, 128.2 (d, ³*J*_{CF} = 7.9 Hz), 127.9, 126.3, 117.6, 115.0 (d, ²*J*_{CF} = 21.3 Hz), 53.3, 41.7, 40.9, 39.7, 35.1, 26.1, 20.8; ¹⁹F NMR (282 MHz, CDCl₃) δ –128.24; IR (Neat Film, NaCl) 3027, 2939, 2864, 1703, 1602, 1508, 1453, 1223, 1159, 1126, 905, 841, 750 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z*

calc'd for C₂₂H₂₄FO [M + H]⁺: 323.1806, found 323.1809; SFC conditions: 10% MeOH, 2.5 mL/min, Chiralpak OJ-H column, $\lambda = 210$ nm, t_R (min): major = 8.59, minor = 10.15. Methyl *N*-(2-(((*R*)-1-benzyl-2-oxocyclohexyl)methyl)allyl)-*N*-methyl-*L*-leucinate (8)

Ketone **8** was prepared by the general procedure and isolated by flash column chromatography (SiO₂, 2% EtOAc in hexanes to 5% EtOAc in hexanes) as a colorless oil. 95% yield. >25:1 dr, $[\alpha]_D^{25}$ -20.57 (*c* 1.75, CHCl₃); $R_f = 0.5$ (30% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.25–7.21 (m, 2H), 7.21–7.16 (m, 1H), 7.15–7.11 (m, 2H), 5.12 (q, *J* = 1.3 Hz, 1H), 4.94–4.88 (m, 1H), 3.67 (s, 3H), 3.33 (t, *J* = 7.6 Hz, 1H), 3.05–2.90 (m, 2H), 2.93 (dd, *J* = 176.8, 13.7 Hz, 2H), 2.67–2.54 (m, 2H), 2.40–2.31 (m, 1H), 2.25 (dd, *J* = 15.1, 1.1 Hz, 1H), 2.20 (s, 3H), 1.90 (ddq, *J* = 8.0, 4.3, 1.9 Hz, 1H), 1.81–1.47 (m, 8H), 0.90 (dd, *J* = 11.9, 6.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 214.9, 173.3, 143.0, 138.1, 130.9, 127.8, 126.1, 116.5, 62.9, 61.8, 52.6, 50.8, 41.2, 39.5, 38.9, 38.4, 36.8, 36.5, 26.9, 24.8, 23.0, 22.2, 20.8; IR (Neat Film, NaCl) 2949, 2868, 1732, 1703, 1641, 1452, 1189, 1152, 1122, 1019, 910, 702 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₅H₃₇NO₃ [M + H]⁺: 400.2836, found 400.2860.

Methyl N-(2-(((S)-1-benzyl-2-oxocyclohexyl)methyl)allyl)-N-methyl-L-leucinate (9)

Ketone **9** was prepared by the general procedure, using ligand **L3** instead of **L2**, and isolated by flash column chromatography (SiO₂, 2% EtOAc in hexanes to 5% EtOAc in hexanes) as a colorless oil. 95% yield. 1:21 dr, $[\alpha]_D^{25}$ +12.94 (*c* 1.25, CHCl₃); $R_f = 0.5$ (30% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.25–7.21 (m, 2H), 7.21–7.16 (m, 1H), 7.16–7.12 (m, 2H), 5.11 (d, *J* = 1.5 Hz, 1H), 4.89 (d, *J* = 1.7 Hz, 1H), 3.68 (s,

3H), 3.29 (dd, J = 7.7, 7.0 Hz, 1H), 3.03–2.93 (m, 2H), 2.92 (dd, J = 197.9, 13.7 Hz, 2H), 2.68–2.58 (m, 2H), 2.34 (dt, J = 13.8, 4.9 Hz, 1H), 2.27–2.21 (m, 1H), 2.19 (s, 3H), 1.91 (d, J = 12.8 Hz, 1H), 1.85–1.56 (m, 8H), 0.89 (dd, J = 12.4, 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 214.8, 173.2, 143.2, 138.2, 131.0, 127.8, 126.1, 116.5, 63.3, 61.6, 52.5, 50.8, 41.1, 39.5, 39.3, 38.2, 36.7, 36.7, 26.9, 24.9, 22.8, 22.5, 20.8; IR (Neat Film, NaCl) 3027, 2950, 2867, 1734, 1702, 1641, 1602, 1495, 1452, 1192, 1154, 1125, 1030, 909, 749, 702 cm⁻¹; HRMS (MM: ESI-APCI+) *m*/*z* calc'd for C₂₅H₃₇NO₃ [M + H]⁺: 400.2846, found 400.2855.

(*R*)-5-(3-((*S*)-1-Benzyl-2-oxocyclohexyl)prop-1-en-2-yl)-2-methylcyclohex-2-en-1-one (10)

Ketone **10** was prepared by the general procedure, at 40 °C, and isolated by flash column chromatography (SiO₂, 3% EtOAc in hexanes to 15% EtOAc in hexanes) as a colorless oil. 87% combined yield (**10** and **11**). Characterization data reported for major diastereomer. 6:1 dr, $[\alpha]_D^{25}$ +49.25 (*c* 0.25, CHCl₃); $R_f = 0.1$ (30% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.25–7.18 (m, 3H), 7.12–7.02 (m, 2H), 6.72 (dq, *J* = 4.2, 1.3 Hz, 1H), 4.97–4.91 (m, 1H), 4.82 (d, *J* = 1.2 Hz, 1H), 3.03–2.83 (m, 2H), 2.64–2.49 (m, 2H), 2.49–2.37 (m, 4H), 2.38–2.09 (m, 3H), 1.85–1.78 (m, 2H), 1.77 (dt, *J* = 2.6, 1.3 Hz, 3H), 1.76–1.61 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 214.7, 199.8, 147.4, 144.7, 137.3, 135.3, 130.6, 128.0, 126.5, 113.1, 52.5, 43.6, 42.2, 41.8, 39.5, 39.4, 35.6, 31.9, 26.7, 20.8, 15.7; IR (Neat Film, NaCl) 2923, 2863, 1702, 1672, 1494, 1450, 1365, 1248, 1109, 901, 750, 703 cm⁻¹; HRMS (MM: ESI-APCI+) *m*/*z* calc'd for C₂₃H₂₈O₂Na [M + Na]⁺: 359.1982, found 359.1988.

entry	compound	analytic conditions	ee (%)	polarimetry
1	Me 4a	GC G-TA, 105 °C, isotherm t _R (min): major 7.80, minor 8.24	86	[α] _D ²⁵ -11.7 (c 0.6, CHCl ₃)
2	O Bn 4b	SFC Chiralpak OJ-H, λ = 210 nm 3% IPA/CO ₂ , 2.5 mL/min, t _R (min): major 5.74, minor 4.71	88	[α] _D ²⁵ -13.6 (<i>c</i> 1.3, CHCl ₃)
3		GC G-TA, 110 °C, isotherm t _R (min): major 5.039, minor 5.41	91	[α] _D ²⁵ -68.74 (<i>c</i> 1.5, CHCl ₃)
4	CO ₂ Me	GC G-TA, 120 °C, isotherm t _R (min): major 15.3, minor 22.18	89	[α] _D ²⁵ 10.51 (<i>c</i> 1.6, CHCl ₃)
5	Me 4e	GC G-TA, 110 °C, isotherm t _R (min): major 6.45, minor 7.23	87	[α] _D ²⁵ -22.13 (<i>c</i> 1.4, CHCl ₃)
6	i-BuO	HPLC Chiralcel OD-H, λ = 220 nm 1% IPA/hexanes, 1.0 mL/min t _R (min): major 6.12, minor 7.16	92	[α] _D ²⁵ -65.6 (<i>c</i> 1.0, CHCl ₃)
7	BzN 4g	SFC Chiralpak AD-H, λ = 254 nm 5% MeOH/CO ₂ , 2.5 mL/min, t _R (min): major 5.54, minor 6.23	96	[α] _D ²⁵ -76.5 (<i>c</i> 2.1, CHCl ₃)
8	BzN 4h	HPLC Chiralcel OJ-H, λ = 220 nm 5% IPA/hexanes, 1.0 mL/min t _R (min): major 5.60, minor 5.00	90	$[\alpha]_{D}^{25}$ -35.2 (<i>c</i> 1.7, CHCl ₃)

Determination of Enantiomeric Excess and Optical Rotations (Table S2)

Determination of Enantiomeric Excess and Optical Rotations (Table S2 cont.)

entry		analytic conditions	ee (%)	polarimetry
9	Bn Me	SFC Chiralpak OD-H, λ = 210 nm 1% MeOH/CO ₂ , 2.5 mL/min, t _R (min): major 5.79, minor 6.48	89	[α] _D ²⁵ -20.1 (<i>c</i> 1.2, CHCl ₃)
10	4i Bn Cl 4j	SFC Chiralpak OD-H, λ = 210 nm 3% MeOH/CO ₂ , 2.5 mL/min t _R (min): major 6.09, minor 7.04	96	[α] _D ²⁵ -7.0 (<i>c</i> 1.4, CHCl ₃)
11		SFC Chiralpak OJ-H, λ= 210 nm 4% IPA/CO ₂ , 4.0 mL/min t _R (min): major 7.86, minor 8.66	93	$[\alpha]_{D}^{25}$ -10.5 (<i>c</i> 0.8, CHCl ₃)
12	Bn H 4I F	SFC Chiralcel OJ-H, λ = 210 nm 10% MeOH/CO ₂ , 2.5 mL/min t _R (min): major 8.59, minor 10.15	95	[α] _D ²⁵ -9.9 (<i>c</i> 2.0, CHCl ₃)

¹H NMR and ¹³C NMR Spectra

- 0 <u></u>−6ε.8 <u></u>F-20.2 -1.054 <u></u>−τ0.τ \sim <u></u>−90.ε <u></u>−00.1 m <u></u>-00.1 4 <u></u>−10.5 Ь 9 bpm ₩ 100.5 ∞ 6 10

 $^1\mathrm{H}$ NMR (300 MHz, CDCl₃) of compound **3b**.

11

12

I-- 2.8 0 I-0.9 Fo.a Fo.a 5.2 1.7 1.7 \sim F.^{0.1} F^{0.1} m F-0.5 ¹H NMR (500 MHz, CDCl₃) of compound **3f**. F0.5 ഹ Fο.1 bpm \sim ∞ - ര SM 10 3f Me IIo 11 0= (*i*-Bu)O / 12

Supporting Information for Stoltz et al.

 13 C NMR (126 MHz, CDCl₃) of compound **3g**.

0 ₹E-8:2 -L-0.5 F-0.1 \sim m **=** F1.1 $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) of compound **3h**. 4 Ь 6 ррт \sim ∞ 6 10 11 Зh 12

TMS

0

BzN

Me II O

0=

- 0

-

 \sim

ω

4

ഹ

. – . 9

- ト

ø

6

10

11

12

<u></u>-0.ε

F0.5

-0.1

 $^{1}\mathrm{H}$ NMR (500 MHz, CDCl₃) of compound 5j.

~ ~

0=

MeO

¹³C NMR (126 MHz, CDCl₃) of compound **SI5**.

یھ =0

1-0.5 1-0.5 ы

9 bpm

 \sim

∞

6

10

11

12

ound 41	
) of comp	
CDCI	
(282 MHz)	
¹⁷ F NMR ()	

		<u>*</u>	F
		a da ante en al da de active de series d La comparison de series de serie	-200
		a te a successive and the second s	-180
			- 160
			-140
 	 		-120
			-100 -100
			- 80
			- 09-
			- 40
			- 20
		a se de la ser a ser a ser a la ser a s La ser a la ser a ser a la ser	- 0
			-

0

Ч

